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abstract

PURPOSE A subset of estrogen receptor–positive (ER-positive) breast cancer (BC) contains high levels of tumor-
infiltrating lymphocytes (TILs), similar to triple-negative BC (TNBC). The majority of immuno-oncology trials
target TNBCs because of the greater proportion of TIL-rich TNBCs. The extent to which the immune micro-
environments of immune-rich ER-positive BC and TNBC differ is unknown.

PATIENTS AND METHODS RNA sequencing data from The Cancer Genome Atlas (TCGA; n = 697 ER-positive
BCs; n = 191 TNBCs) were used for discovery; microarray expression data from Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC; n = 1,186 ER-positive BCs; n = 297 TNBCs) was used for
validation. Patients in the top 25th percentile of a previously published total TIL metagene score distribution were
considered immune rich. We compared expression of immune cell markers, immune function metagenes, and
immuno-oncology therapeutic targets among immune-rich subtypes.

RESULTS Relative fractions of resting mast cells (TCGA Padj = .009; METABRIC Padj = 4.09E-15), CD8+ T cells
(TCGA Padj = .015; METABRIC Padj = 0.390), and M2-like macrophages (TCGA Padj= 4.68E-05; METABRIC
Padj = .435) were higher in immune-rich ER-positive BCs, but M0-like macrophages (TCGA Padj = 0.015;
METABRIC Padj = .004) and M1-like macrophages (TCGA Padj = 9.39E-08; METABRIC Padj = 6.24E-11) were
higher in immune-rich TNBCs. Ninety-one immune-related genes (eg, CXCL14, CSF3R, TGF-B3, LRRC32/
GARP, TGFB-R2) and a transforming growth factor β (TGF-β) response metagene were significantly overex-
pressed in immune-rich ER-positive BCs, whereas 41 immune-related genes (eg, IFNG, PD-L1, CTLA4,
MAGEA4) were overexpressed in immune-rich TNBCs in both discovery and validation data sets. TGF-β pathway
member genes correlated negatively with expression of immune activation markers (IFNG, granzyme-B,
perforin) and positively with M2-like macrophages (IL4, IL10, and MMP9) and regulatory T-cell (FOXP3)
markers in both subtypes.

CONCLUSION Different immunotherapy strategies may be optimal in immune-rich ER-positive BC and TNBC.
Drugs targeting the TGF-β pathway and M2-like macrophages are promising strategies in immune-rich ER-
positive BCs to augment antitumor immunity.
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INTRODUCTION

The presence of tumor infiltrating lymphocytes (TILs),
quantified either histologically or by immune-related
gene expression, is associated with better survival in
human epidermal growth factor receptor 2 (HER2)–
positive breast cancers (BCs), triple-negative BCs
(TNBCs), and highly proliferative estrogen receptor
(ER)–positive BCs.1-5 In addition, high TIL counts are
associated with increased sensitivity to chemotherapy
in all subtypes, reflected by higher pathologic com-
plete response rates to neoadjuvant chemotherapy.6,7

High TIL counts and expression of programmed death-
ligand 1 (PD-L1) in the tumor microenvironment are
highly correlated and both predict greater benefit from

immune checkpoint inhibitor therapy in metastatic
TNBC.6-9 High TIL counts (and PD-L1 expression)
are more frequent among TNBCs than ER-positive
BCs.4,6,10,11 Initial single-agent phase I/II trials with
immune checkpoint inhibitors showed higher re-
sponse and clinical benefit rates in TNBCs12,13 than in
unselected patients with ER-positive BCs.14,15 There-
fore, the majority of immunotherapy trials today target
TNBCs and have demonstrated promising activity.16

The first immune checkpoint inhibitor, atezolizumab,
was recently approved to treat PD-L1–positive, met-
astatic TNBC in combination with nab-paclitaxel.13

However, ER-positive BCs account for the majority of
newly diagnosed BCs and cause most BC-related
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deaths.17,18 A subset of ER-positive BCs has high TIL
counts, similar to levels seen in TNBCs.4 If the immune
microenvironment of immune-rich ER-positive BC is similar
to that of immune-rich TNBC, one could assume that
similar treatment strategies would work in both subtypes.
Conversely, if immune-rich ER-positive BCs have different
immune cell compositions than immune-rich TNBCs, these
differences could inform the design of subtype-specific
immunotherapy trials. The goal of our analysis was to
compare differences in immune gene expression between
immune-rich ER-positive BC and immune-rich TNBC and
assess differential expression of current immunotherapy
targets.

PATIENTS AND METHODS

Data Sources

Gene-level summarized RNA sequencing (RNA-seq) ex-
pression data from TCGA (n = 1,094) for discovery analyses
and microarray expression data from METABRIC (n =
2,273) with ER and HER2 status annotation for valida-
tion analyses were obtained from public access portals
(https://portal.gdc.cancer.gov; https://ega-archive.org/studies/
EGAS00000000098). HER2-positive patients were ex-
cluded, and only ER-positive/HER2-negative (herein des-
ignated ER-positive; TCGA, n = 627; METABRIC, n =
1,186) and ER-negative/HER2-negative (herein designated
TNBC; TCGA, n = 191; METABRIC, n = 279) patients were
included in this analysis. We obtained formalin-fixed
paraffin-embedded tissues from 63 TNBCs and 53 ER-
positive, treatment-naı̈ve, stage I to III BCs from Yale Pa-
thology Tissue Archives, matched by distribution of histo-
logic grade, for quantitative immunofluorescence (QIF) and
automated quantitative analysis (AQUA).

Assessment of Immune Cell Content and Selection of

Immune-Rich Patients

A gene expression signature score developed by Danaher
et al19 was used to score each TCGA and METABRIC
patient for total TILs. The total TIL gene signature score
is the average of scores representing 11 immune cell

subpopulations (CD45, macrophages, CD8+ T cells, T cells,
cytotoxic cells, exhausted CD8+ cells, Th1 cells, B cells,
neutrophils, natural killer [NK] cells, CD56dim NK cells).
Log2+1-transformed expression was used to calculate total
TIL gene signature scores from TCGA (RNA-seq) and
METABRIC (microarray) data. The TIL metagene score
distribution was plotted for the pooled ER-positive BC and
TNBC patients, and patients with scores in the top 25th
percentile of the distribution were defined as immune-rich.

For 156 basal-like cancers in TCGA (ER-positive BC, n =
21; TNBC, n = 135), histologic TIL counts were also
available.20,21 For these patients, we assessed the corre-
lation between histologic TIL count and TIL gene expression
score. We also assessed correlations between TIL gene
signature score and PAM50 subtype, tumor mutation
burden (TMB), and Ki-67 expression level in the TCGA data
when this information was available (ER-positive BC, n =
191; TNBC, n = 697). PAM50 subtypes and TMB cate-
gories were obtained from a previous publication, and Ki-67
categories were defined as greater than or less than the
median log2+1-transformed Ki-67 expression across TCGA
patients.22

Survival Analysis

Progression-free survival (PFS) and overall survival (OS)
times were available for 807 TCGA patients (ER-positive
BCs, n = 189; TNBCs, n = 618).23 PFS and OS were
compared by ER subtype within immune-rich patients (ER-
positive BCs, n = 114; TNBCs, n = 84) and within non-
immune-rich patients (ER-positive BCs, n = 504; TNBCs,
n = 105) using the “survival” and “survminer”R packages.24

Assessment of Immune Cell Subpopulations

CIBERSORT, an analytical tool that uses support vector
regression, was used to estimate the relative proportions of
9 aggregated immune cell populations and 22 sub-
populations in immune-rich ER-positive BCs and immune-
rich TNBCs.25,26 The average relative fraction and standard
error of the mean of each immune cell population were
compared by subtype. For TCGA patients, previously
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calculated gene expression signature scores of overall
macrophages, M1-like macrophages, M2-like macro-
phages, and the transforming growth factor β (TGF-β)
signaling response were obtained from previous publica-
tions and were compared between patients with ER-
positive BCs and those with TNBCs.27-29 Slopes of linear
regression curves between total TILs and metagene ex-
pression signatures were compared by using a t test based
on standard error in the linear regression models.30 Formalin-
fixed paraffin-embedded tissue microarrays were stained
for the nuclear marker 4′,6-diamidino-2-phenylindole and
the pan-macrophage marker CD68, and multiplexed
QIF and AQUA were used to quantify expression levels in
Yale ER-positive BC and TNBC patients as previously
described.31

Differential Gene Expression Analysis

The “DESeq2” (TCGA, RNA-seq data) and “limma”
(METABRIC, microarray data) R packages were used for
differential gene expression analysis of 779 immune-
related genes (NanoString PanCancer IO 360 Panel,
NanoString Technologies, Seattle, WA) and 137 cur-
rently available immuno-oncology drug target genes
between immune-rich ER-positive BCs and immune-rich
TNBCs.32-34 Availability of RNA expression data for each
member gene in TCGA and METABRIC databases is
summarized in the Data Supplement. Genes with false
discovery rate Padj , .05 were considered significantly
differentially expressed for a broad investigation of dif-
ferentially regulated immune pathways.

Statistical Analysis

All statistical analyses were performed in R v 3.5.0. P values
were adjusted for false discovery rate by the Benjamini-
Hochberg method in the CIBERSORT and differential gene
expression analyses. The t test was used for parametric
analyses, Wilcoxon rank sum test was used for non-
parametric analyses of non-normally distributed data,
Fisher’s exact test was used to analyze contingency tables,
and the log-rank test was used to compare survival curves.
The “corrplot” R package was used to derive and plot
Pearson’s correlation coefficients for the expression of
immune genes and immuno-oncology drug target genes,
and hierarchical clustering was used for visualization.35

RESULTS

TIL Metagene Score Distribution in Patients With

ER-Positive BC or TNBC

By using the signature described by Danaher et al19 to
quantify cell types and total TIL presence, we determined
that macrophages and CD8+ T cells were the 2 most
abundant immune cell types in both cancer subtypes in
TCGA (Fig 1). We observed the same in METABRIC. In
TCGA, the 75th percentile TIL metagene score was 5.92,
and it categorized 119 ER-positive BCs (19%) and 89
TNBCs (45%) as being immune rich. In METABRIC, the

75th percentile score was 6.26, and it categorized 225 ER-
positive BCs (19%) and 140 TNBCs (50%) as being im-
mune rich. The total TIL gene signature scores correlated
moderately but significantly with histologic TIL scores in
TCGA (R = 0.44; P = 1.18E-08; Fig 2A) when these data
were available. In TCGA, there was no statistically signifi-
cant difference between the distribution of PAM50 sub-
types or Ki-67 expression levels between immune-rich and
non–immune-rich ER-positive BCs. Conversely, immune-
rich TNBCs demonstrated higher Ki-67 expression than
non–immune-rich TNBCs (Fig 2B-D). Patients with
immune-rich ER-positive BCs had significantly higher TMB
than patients with non–immune-rich ER-positive BCs; this
difference was not seen among patients with TNBCs. For
a subset of TCGA patients with available survival in-
formation (n = 804), PFS and OS were compared by
subtype (Data Supplement). Immune-rich patients had
similar PFS and OS regardless of ER status. In contrast,
among the non–immune-rich cancers, OS was significantly
longer in patients with ER-positive BCs than in patients with
TNBCs (P = .043), as expected.

Immune Cell Subpopulations in the Tumor

Microenvironment of Immune-Rich ER-Positive BCs and

Immune-Rich TNBCs

By using CIBERSORT, we found higher relative fractions
of T cells (Padj = .009) and mast cells (Padj = .0005) in
patients with immune-rich ER-positive BCs compared
with those who had immune-rich TNBCs (Fig 3A) in TCGA.
In patients with immune-rich TNBCs, the relative fractions
of macrophages (Padj = .026) and NK cells (Padj = .0007)
were higher relative to those in patients with immune-rich
ER-positive BCs. The higher relative fractions of T cells
(Padj = .005) and mast cells (Padj = 1.73E-20) in immune-
rich ER-positive BCs and the higher relative fraction of
macrophages (Padj = 1.22E-06) in immune-rich TNBCs
were also observed in METABRIC (Fig 3B). QIF also
showed higher overall expression of the pan-macrophage
marker CD68 in TNBC tissues relative to tissue from ER-
positive BCs from Yale Pathology Archives (P = .011;
Fig 3C).

Next, we examined differences among 22 immune cell
subpopulations. In immune-rich ER-positive tumors in
TCGA, the relative fractions of CD8+ T cells (Padj = .015) and
resting mast cells (TCGA Padj = .009) were higher relative to
those in immune-rich TNBC tumors in both data sets
(Fig 3D). In addition, despite lower overall macrophage
content, the relative fraction of M2-like macrophages was
also higher in immune-rich ER-positive BCs (Padj = 4.68E-
05). In contrast, the relative fractions of M0-like macro-
phages (Padj = .015) and M1-like macrophages (Padj =
9.39E-08) were significantly higher in patients with
immune-rich TNBCs compared with those with immune-
rich ER-positive BCs. Differences in relative fractions of
resting mast cells (Padj = 4.09E-15), M0-like macrophages
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(Padj = .0043), and M1-like macrophages (Padj = 6.24E-11)
by immune-rich subtype were validated in METABRIC
(Fig 3E).

We also examined the distribution of previously published
overall macrophage, M1-like macrophage, M2-like mac-
rophage, and TGF-β signaling response metagene scores
that were available for the TCGA patients only.28,29 Con-
sistent with the findings above, immune-rich TNBCs had
higher overall macrophage (P = .041) and M1-like mac-
rophage (P = 4.79E-09) metagene expression scores rel-
ative to immune-rich ER-positive BCs. Immune-rich ER-
positive BCs had higher M2-like macrophage (P = .012)

and TGF-β response (P = 0.035) metagene expression
scores (Fig 4A). The subtype-specific differences inM1-like
macrophage (P = 1.85E-04) and TGF-β response (P =
.029) metagene scores significantly increased with higher
total TIL gene signature scores, whereas the differences in
overall macrophage (P = .786) and M2-like macrophage
(P = .097) scores between cancer subtypes were not
specific to immune-rich patients (Fig 4B). Slopes of the
linear regression lines between total TILs and immune
metagene expression scores, along with statistical com-
parisons of the slopes by subtype, are summarized in the
Data Supplement.
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FIG 1. Identification of patients with immune-rich estrogen receptor–positive breast cancers (ER-positive BCs) and triple-negative BCs (TNBCs). (A-B) Gene
signature scores were calculated for 11 immune cell subpopulations for patients with ER-positive BCs and TNBCs in (A) The Cancer Genome Atlas (TCGA)
and (B) Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, as described by Danaher et al.19 The x-axis indicates
immune cell subpopulations plus the total tumor-infiltrating lymphocyte (TIL) population. The y-axis indicates the calculated gene signature scores for each
subpopulation. For patients in (C) TCGA and (D) METABRIC, the distributions of total TIL gene signature scores were plotted on the x-axis, and patients in the
top 25th percentile (designated by red vertical lines) were designated immune-rich (75th percentile score: TCGA, 5.92; METABRIC, 6.26). The TCGA cohort
had a total of 627 patients with ER-positive BC and 191 patients with TNBC. The METABRIC cohort had a total of 1,186 patients with ER-positive BC and 279
with TNBC. NK, natural killer.
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Differential Expression of Immune-Related Genes and

Immuno-Oncology Drug Target Genes Between

Immune-Rich ER-Positive BCs and Immune-Rich TNBCs

At the individual gene level, 132 of 754 immune-related
genes were significantly overexpressed in TCGA immune-
rich ER-positive BCs. Ninety-one of these immune-related
genes, including mast cell genes MS4A2 and CPA3 and
potential therapeutic targets CXCL14, CX3CR1, and
CSF3R, were also upregulated in METABRIC patients with
immune-rich ER-positive BCs (Data Supplement). In
immune-rich TNBCs, 303 immune-related genes were
overexpressed compared with immune-rich ER-positive

BCs in TCGA, and 218 of these were validated in META-
BRIC. We also examined differences in the expression of
immuno-oncology drug targets currently in clinical devel-
opment. Sixteen of 136 available therapeutic target genes
were overexpressed in TCGA patients with immune-rich
ER-positive BCs, and 12 of these, including 3 members of
the TGF-β signaling pathway (TGF-β3, LRRC32/GARP, and
TGFβ-R2), were also overexpressed in METABRIC patients
with immune-rich ER-positive BCs (Table 1; Data Sup-
plement). Fifty-nine immuno-oncology drug target genes
were overexpressed in immune-rich TNBCs in TCGA, and
41 of these, including IFNG, LAG3, CD274/PD-L1, CTLA4,
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and the cancer-testis antigen, MAGEA4, were also over-
expressed in immune-rich TNBCs in METABRIC.

Correlation Between TGF-β Pathway Expression and Other
Immune-Related Genes

TGF-β is a pleotropic cytokine that can stimulate regulatory
T cells, induce M2-like macrophage polarization, and
suppress effector T cells, NK cells, and dendritic cells.
Furthermore, TGF-β signaling has been linked to an
immune-excluded phenotype in cancer. We therefore ex-
amined correlations between the differentially expressed
TGF-β pathway members (TGF-β3, LRRC32, and TGF-
βR2) and the expression levels of the 53 immuno-oncology
drug target genes that were differentially expressed in both
data sets (12 upregulated in immune-rich ER-positive BCs,
41 upregulated in immune-rich TNBCs) across immune-
rich TNBCs and ER-positive BCs. In both TCGA and
METABRIC, expression of the TGF-β pathway members
correlated positively with each other and negatively with
most immune activation markers (Fig 5A-B; Data Sup-
plement). Similar correlation patterns were seen between
TGF-β pathway members and immune activation marker
expression when only immune-rich ER-positive BCs were
analyzed (Fig 5C-D). Across all 754 available immune-
related genes, TGF-β pathway members were negatively
correlated with expression of IFNG (TGF-β3, r = –0.38;

TGF-βR2, r = –0.33; LRRC32, r = –0.47), granzyme-B (TGF-
β3, r = –0.42; TGF-βR2, r = –0.39; LRRC32, r = –0.46),
perforin (TGF-β3, r = –0.24; TGF-βR2, r = –0.14; LRRC32,
r = –0.33), T-cell markers, including CTLA4 (TGF-β3, r =
–0.17; TGF-βR2, r = –0.21; LRRC32, r = –0.21), ICOS (TGF-
β3, r = –0.17; TGF-βR2, r = –0.13; LRRC32, r = –0.23), and
CD274 (TGF-β3, r = –0.18; TGF-βR2, r = 0.11; LRRC32, r =
–0.24), as well as TNF pathway members TNF (TGF-β3, r =
–0.29; TGF-βR2, r = –0.09; LRRC32, r = –0.27) and
TNFRSF9 (TGF-β3, r = –0.18; TGF-βR2, r = –0.19; LRRC32,
r = –0.29) in TCGA (Data Supplement). These negative
correlations were all validated in METABRIC. We also noted
a positive correlation between expression of TGF-β1 and the
M2-like macrophage markers IL4 (r = 0.24), IL10 (r = 0.38),
andMMP9 (r = 0.43) as well as the regulatory T-cell marker
FOXP3 (r = 0.42) in the TCGA data.

DISCUSSION

In this report, we used a gene expression signature of total
TILs to identify patients with immune-rich ER-positive BCs
and TNBCs in 2 publicly available databases to compare
the tumor immune microenvironment of these subtypes.
The patients with immune-rich ER-positive BCs had sig-
nificantly higher TMB than patients with non–immune-rich
ER-positive BCs, but no difference in TMB was seen be-
tween immune-rich and non–immune-rich TNBCs. These
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results are consistent with previous reports.11,36 Approxi-
mately 70% of the immune-rich ER-positive BCs we identi-
fied were luminal A molecular subtype, and the PAM50
subtype distribution and Ki-67 expression were similar be-
tween immune-rich and non–immune-rich ER-positive BCs.
An OS difference was detected between patients with
non–immune-rich ER-positive BCs relative to non–immune-
rich TNBCs, but no similar statistically significant difference
was seen between patients with immune-rich ER-positive

BCs and immune-rich TNBCs (both groups had excellent
long-term survival). By using deconvolution methods, we
observed differences in the relative fractions of immune cell
subpopulations between immune-rich ER-positive BCs and
immune-rich TNBCs. Immune-rich ER-positive BCs had
higher relative fractions of M2-like macrophages, CD8+

T cells, and resting mast cell populations, whereas immune-
rich TNBCs had overall higher macrophage content and
higher M0-like and M1-like macrophage populations. These
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FIG 5. Correlation between expression levels of 53 differentially expressed immuno-oncology drug targets in immune-rich patients. For
(A) The Cancer Genome Atlas (TCGA) and (B) Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) patients,
correlation matrices display the Pearson correlation coefficients between expression levels of 53 immuno-oncology drug targets across
patients with immune-rich estrogen receptor–positive breast cancers (ER-positive BCs) and triple-negative BCs (TNBCs). These 53 genes
were selected for being significantly differentially expressed between patients with immune-rich ER-positive BCs and TNBCs in both
TCGA and METABRIC databases. Blue boxes reflect positive correlations, and red boxes reflect negative correlations. For TCGA, the
number of patients with immune-rich ER-positive BCs was 119, and for TNBCs, it was 86; for METABRIC, the number of patients with
immune-rich ER-positive BCs was 225, and for TNBCs, it was 140. For (C) TCGA and (D) METABRIC patients, correlation matrices
display the Pearson correlation coefficients between expression levels of 53 immuno-oncology drug targets in patients with immune-rich
ER-positive BC alone. Blue boxes reflect positive correlations, and red boxes reflect negative correlations. The number of patients with
immune-rich ER-positive BCs in TCGA was 119, and in METABRIC, it was 225.
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findings were largely consistent across 2 independent data
sets. Higher overall CD68 protein expression in TNBCs was
also confirmed by immunohistochemistry.

Interestingly, immune-rich ER-positive BCs had higher
expression of a TGF-β signaling metagene and showed
coordinated overexpression of TGF-β3, TGF-βR2, and
LRRC32 compared with immune-rich TNBCs. The TGF-β
pathway is activated by ligands TGF-β1, TGF-β2, and TGF-
β3 that bind to membrane-bound serine/threonine protein
receptor kinases composed of subunits TGF-βR1 and TGF-
βR2. Although the TGF-β ligand isoforms are more than
75% similar in amino acid structure, TGF-βR2 has in-
creased affinity for TGF-β1 and TGF-β3 relative to TGF-
β2.37 LRRC32 encodes the GARP protein that tethers TGF-β
ligands to the cell membrane to prime its activation.38 The
simultaneous upregulation of the ligand, receptor, and sig-
naling components suggests a functional role for the TGF-β
pathway in immune-rich ER-positive BCs.

The immune-attenuating function of TGF-β signaling in the
tumor microenvironment has been extensively studied
in vitro and in vivo. In early in tumorigenesis, TGF-β acts as
a tumor suppressor, inducing apoptosis in premalignant
cells and inhibiting proliferation.39 After tumor formation,
TGF-β promotes cancer progression through suppressing
the host antitumor immune response.40 Among other roles,
TGF-β inhibits CD8+ effector T-cell function, inhibits the
Th1 helper T-cell phenotype, activates FOXP3-positive
regulatory T cells, drives M2-like macrophage polari-
zation, and excludes immune cells from the tumor
compartment.41-45 The distinct roles of the different TGF-β
isoforms in cancer remain undefined. Among the 3 iso-
forms, TGF-β3 is the most potent stimulator of neo-
vascularization in models of wound healing and the most
potent inhibitor of granulocyte-macrophage colony-
stimulating factor–mediated hematopoiesis in the bone
marrow. TGF-β1 and TGF-β3 are equally potent stimulators
of extracellular matrix collagen deposition in models of
pulmonary fibrosis.46 Overall, high TGF-β signaling is also
associated with lesser response to immune checkpoint
inhibitors.41,42 On an expression level, we found higher
relative fractions of CD8+ T cells in immune-rich ER-positive
BCs as well as higher TGF-β signaling; these CD8+ T cells in
immune-rich ER-positive patients may therefore lack robust
effector cytotoxic function or be excluded from the tumor
compartment by augmented TGF-β signaling.

TGF-β can be released by cancer cells as well as by M2-like
macrophages in a positive feedback loop to attenuate
antitumor immunity.47 In several studies, the presence of
M2-like macrophages in BC was associated with poor
prognosis, and reprogramming of macrophages toward the
M1-like phenotype has been shown to increase re-
sponsiveness to immune checkpoint therapy in experi-
mental models.48,49 A recent study found that in
a macrophage-dependent autochthonous mouse model of
luminal B–type BC, inhibition of class IIa histone deacetylase

(HDAC) by TMP195 induces the recruitment and differen-
tiation of antitumor-type macrophages, reduces tumor
burden and metastases, and enhances the durability of
tumor reduction when combined with chemotherapy regi-
mens or T-cell checkpoint blockade.50 This observation in an
animal model of BC is consistent with our findings in human
tissues. We found a high proportion of protumor M2-like
macrophages in immune-rich ER-positive METABRIC and
TCGA BC patients, so reprogramming macrophages toward
theM1-like phenotypemay be a viable therapeutic approach
for immune-rich ER-positive tumors. Our analyses also
showed that expression of TGF-β pathway members cor-
related negatively with the expression of many immune
activation markers including interferon-γ (IFN-γ), gran-
zymes, and perforin, but correlated positively with M2-like
macrophagemarkers IL4, IL10,MMP9, and regulatory T-cell
marker FOXP3. Although M2-like macrophages in the tumor
microenvironment may be the source of TGF-β signaling,
high levels of apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like–associated mutational signatures
that have been previously identified in patients with immune-
rich ER-positive BCs may also contribute to upregulation of
the TGF-β pathway in tumor cells and downstream re-
cruitment of M2-like macrophages.36

Deconvolution of the leukocyte compartment also revealed
a higher relative fraction of mast cells in immune-rich ER-
positive BCs; this was corroborated by overexpression of the
mast cell markers CPA3 and MS4A2 in patients with
immune-rich ER-positive BCs compared with those who
have immune-rich TNBCs. How these cells influence an-
titumor immunity is unknown, but high mast cell infiltration
in BC has been associated with ER expression and fa-
vorable prognosis in earlier studies.51,52

In summary, our analysis of gene expression data is con-
sistent with a more attenuated immune microenvironment
mediated by increased TGF-β signaling and M-2 macro-
phage presence in immune-rich ER-positive BCs. In this
subset of ER-positive BCs, we observed high relative
fractions of CD8+ T cells, mast cells, and M2-like macro-
phages with lower expression of granzyme-B, perforin, and
IFN-γ. Future work is needed to explore the molecular
mechanisms driving the distinct immune activation pat-
terns in immune-rich ER-positive BCs and immune-rich
TNBCs. In addition, practical assays that can distinguish
patients with immune-rich and TGF-β-high from patients
with TGF-β-low ER-positive BCs are needed before these
results can be applied in the clinic. Nonetheless, the im-
munologic differences identified between immune-rich ER-
positive BCs and TNBCs support the exploration of distinct
immunotherapy strategies in these different molecular
subtypes. Our results pose the hypothesis that therapeutic
drugs targeting the TGF-β pathway (eg M7824, PF-
06952229, NIS793, ABBV151) and M2-like macrophages
(SNDX-6352) may be particularly effective in ER-positive
BCs with high immune cell infiltration.53,54
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