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In clinical practice, the cancer-immunity cycle of an individual patient with hepatocellular

carcinoma (HCC) must be described to support the clinical management of cancer.

The present study explored the immunograms of patients with liver cancer based

on liver RNA sequencing data to visually display the individualized cancer-immunity

cycles. Two independent HCC cohorts [The Cancer Genome Atlas (TCGA) and Liver

Cancer-RIKEN, Japan (LIRI-JP) HCC cohorts] with whole exome sequencing (WES)

data, RNA sequencing data, and clinical data from TCGA and International Cancer

Genome Consortium (ICGC) were enrolled in this study. This study constructed HCC

immunograms of cancer immune cells to visually explore the anticancer immune

responses of patients with HCC. The patterns of the HCC immunograms were

categorized into two clusters: hot and cold HCC immunograms. Favorable overall survival

(OS) and disease-free survival (DFS) were observed in the hot immunogram cluster in the

TCGA cohort. The results for LIRI-JP cohort were similar to the TCGA cohort. The OS

of patients with HCC presenting the hot immunogram was longer than patients with the

cold immunogram in the LIRI-JP HCC cohort. Compared with cold immunograms, hot

immunograms were characterized by higher levels of immune cell infiltration and stronger

immune signatures, including cytolytic activity, IFN-γ signature, immunocostimulator,

immunoinhibitor, chemokine, adhesion molecule, MHC I, MHC II, and non-class MHC

levels. The main difference in molecular features between hot and cold immunograms

was reflected in WNT-CTNNB1 alterations and copy number variant (CNV) and loss of

heterozygosity (LOH) scores, which are the molecular features associated with resistance

to immunotherapy and tumor escape. The immunogram patterns were distinct in terms

of the different molecular features of HCC tumors. The HCC immunogram for the

cancer-immune cycle was able to visualize the personalized antitumor immune response

of patients with HCC, and the patterns of the HCC immunograms contributed to the

clinical outcomes of patients, which may facilitate an individualized assessment of the

antitumor immune response for optimal personalized immunotherapy.
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INTRODUCTION

An extensive clinical study has shown that cancer
immunotherapy is a key component of the clinical management
of cancer (1–3). A comprehensive understanding of the cancer–
immune system interaction is crucial for developing new
drugs and clinical strategies. Daniel S. Chen and Ira Mellman
proposed the cancer-immunity cycle to illustrate the steps of the
antitumor immune response, including the release of cancer cell
antigens, cancer antigen presentation, priming, and activation,
trafficking of T cells to tumors, infiltration of T cells into tumors,
recognition of cancer cells by T cells, and killing of cancer cells,
and to obtain a better understanding of the interactions between
cancer and the immune system (4). From the perspective of the
cancer-immunity cycles, cancer immunotherapy mainly includes
two classes as described below. One class of immunotherapy
is designed to improve the stimulatory immune factors, such
as adoptive T cell therapy, which may lead the revolution
of the cancer immunity cycle and potentially enhances the
eventual self-propagation of the cycle (4). The other class
of immunotherapy is designed to prevent immune effector
inhibition, such as PD-1/PD-L1 blockade, which reinvigorates
and potentially expands the pre-existing anticancer immune
response (4, 5).

As described above, different immunotherapies are designed
to regulate distinct dimensions of the cancer-immunity cycle.

Abbreviations: HCC, hepatocellular carcinoma; DFS, disease-free survival; OS,

overall survival; CNV, copy number variant; LOH, loss of heterozygosity; TMB,

tumor mutation burden; TCGA, The Cancer Genome Atlas.

FIGURE 1 | Flowchart of the data collection and analysis process. The design of the study and the process of data selection are shown. Two independent HCC

cohorts (TCGA and LIRI-JP HCC cohorts) with WES data, RNA sequencing data, and clinical data from TCGA and ICGC were enrolled in this study.

Therefore, an evaluation of the cancer-immunity cycle of
individual patients is the basis for implementing clinical
strategies tailored to each patient. Based on the theory of
the cancer-immunity cycle, Jun Nakajima constructed an
immunogram that visually illustrates the cancer-immunity cycle
of individual patients with lung cancer (6). The immunogram
for the cancer-immunity cycle integrated all exam and RNA
sequencing data, followed by the cloud transformation of the
complex omics data in a radar plot to display the immune
response of each patient. The steps of the cancer-immunity
cycle were assessed using eight axes of the immunogram
score (IGS), which included T cell immunity (IGS1), tumor
antigenicity (IGS2), priming and activation (IGS3), trafficking
and infiltration (IGS4), recognition of tumor cells (IGS5),
inhibitor cells (IGS6), checkpoint expression (IGS7), and
inhibitory molecules (IGS8). The immunogram will assist
clinicians in making personalized medical decisions for
each patient.

The liver is an immunological organ that contains numerous
adaptive and innate immune cells (7). The liver is also a special
anatomical organ in which the antigen-rich blood is scanned
by antigen-presenting cells and lymphocytes through a network
of sinusoids (8). Additionally, major hepatocellular carcinoma
(HCC) occurs in patients with underlying chronic liver
inflammation associated with hepatitis B or C virus infections,
alcohol abuse, and fatty liver (9). Therefore, the immune
microenvironment plays a vital role in HCC development.
Previous studies illustrated the immune landscape of liver cancer
based on single-cell data, RNA sequencing data, and T cell
receptor sequence data (10).
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In clinical practice, the cancer-immunity cycle of individual
patients with HCC must be described to support the clinical
management of cancer. However, few studies have been
published in this field. The present study explored immunograms
of patients with HCC based on liver RNA-Seq data to visually
display the personal cancer-immunity cycle. Moreover, we
investigated the HCC immunogram and clinical outcomes
and the correlation between the HCC immunogram and
molecular features to better understand the individual anticancer
immune response in the liver and support personal clinical
decision making.

MATERIALS AND METHODS

HCC Cohort and Data Collection and
Preprocessing
The design of the study and the process of data selection are
shown in Figure 1. We searched for HCC cohorts with whole
exome sequencing (WES), RNA sequencing, and clinical data
from The Cancer Genome Atlas (TCGA) and International
Cancer Genome Consortium (ICGC). LIHC-TCGA and LIRI-JP
HCC cohorts were enrolled in this study.

LIHC-TCGA was selected to explore the relations of the
HCC immunogram and clinical outcomes, and LIRI-JP HCC
was selected as an independent cohort to validate the prognostic
value of the HCC immunogram. Data from the LIHC-TCGA and
LIRI-JP HCC cohorts were downloaded from the UCSC Xena
browser. The values of the RNA sequencing data (FPKM) were
transformed into transcripts per million kilobase (TPM) values.
The clinical information for the HCC cohort is shown in Table 1.

The HCC Immunogram
According to a previous study, the steps of the cancer-immunity
cycle are described by eight axes of the immunogram score (IGS)
as follows: IGS1, T cell immunity; IGS2, tumor antigenicity;
IGS3, priming and activation; IGS4, trafficking and infiltration;
IGS5, recognition of tumor cells; IGS6, inhibitor cells; GS7,
checkpoint expression; and IGS8, inhibitory molecules (6). The
gene sets IGS1, IGS3, IGS4, IGS5, IGS6, IGS7, and IGS8
were used in a previous study (6). A Gene Set Variation
Analysis (GSVA) was performed to assess the value of IGS
using GSVA R packages. The tumor neoantigenicity value was
downloaded from published TCGA data (https://gdc.cancer.
gov/about-data/publications/panimmune) (11). Unsupervised
clustering of the IGS was performed using K-means clustering
with the R package (version 3.6.1), as described in previous
studies (12, 13). K-means clustering is one of most commonly
used unsupervised machine learning algorithms (13). The
HCC immunograms were classified into two clusters. The two
clusters of the immunograms in radar plots are shown as the
median IGS.

Immune-Related Gene Signature
The gene sets for cytolytic activity (granzyme-A and perforin-1),
the IFN-γ signature, immunocostimulators, immunoinhibitors,
chemokines, HLA I signature, and HLA II signature were

TABLE 1 | HCC immunogram cluster and clinical features.

Variable N Cold

immunogram

Hot

immunogram

P-value

Age 0.320

<60 years 156 94 62

≥60 years 180 98 82

Gender 0.411

Male 228 126 102

Female 109 66 43

Etiology 0.056

Hepatitis B 94 58 36

Hepatitis C 45 20 25

Hepatitis B and C 6 1 5

NAFLD 15 8 7

Alcohol consumption 66 34 32

Others 111 71 40

Vascular invasion 0.589

Microvascular infiltration 81 50 31

Macrovascular infiltration 14 7 7

None 188 105 83

Unknown 54 30 24

Fibrosis 0.334

No fibrosis 66 43 23

Portal fibrosis 27 13 14

Fibrous septa 27 18 9

Nodular formation 6 3 3

Established cirrhosis 65 36 29

Unknown 146 79 67

Stage 0.055

I 156 82 74

II 77 41 36

III 80 54 26

IV 5 3 2

Child-pugh classification grade 0.611

A 199 117 82

B 19 13 6

C 1 0 1

Unknown 118 62 56

Neoplasm histological type 0.514

Hepatocellular carcinoma 327 188 139

Hepatocholangiocarcinoma 7 3 4

Fibrolamellar carcinoma 3 1 2

Neoplasm histological grade 0.373

G1 48 29 19

G2 160 84 76

G3 113 70 43

G4 11 7 4

Unknown 5 2 3

described in a previous study (14, 15). The immune signatures
were measured as the geometric mean of gene expression in log2
of TPM+1.
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FIGURE 2 | HCC cancer immunogram and prognosis. (A) Unsupervised clustering analysis of HCC immunograms based on eight axes of the IGS for 337 patients in

the TCGA HCC cohort. The higher IGS cluster was termed the hot HCC immunogram, and the lower IGS cluster was termed the cold HCC immunogram. The clinical

(Continued)

.
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FIGURE 2 | features, including age, sex, stage, fibrosis, etiology, histological type, and vascular invasion, are shown in patient annotations. (B) Kaplan–Meier curves

for DFS of HCC patients in the TCGA cohort stratified into the two HCC immunogram clusters. The numbers of patients in the hot and cold immunogram clusters

were 129 and 164, respectively. The log-rank test showed P = 0.00066. (C) Kaplan–Meier curves for OS of HCC patients in the TCGA cohort stratified into the two

HCC immunogram clusters. The numbers of patients in the hot and cold immunogram clusters were 144 and 192, respectively. The log-rank test yielded P = 0.0057.

(D) Kaplan–Meier curves for OS of HCC patients in the LIRI-JP HCC cohorts stratified into the two HCC immunogram clusters. The numbers of patients in the hot and

cold immunogram clusters were 121 and 108, respectively. The log-rank test yielded P = 0.017. (E,F) The radar plot showed that the immunogram patterns of the

two clusters were distinct. The axes of the radar chart were generated with the median IGS for the hot and cold immunogram clusters, respectively.

FIGURE 3 | The heatmap of immune cell subsets that infiltrated the tumors of patients in the hot and cold HCC immunogram groups. The relative abundance of 28

immune cell subsets that infiltrated the tumor was evaluated with the sample level gene set enrichment method (GSVA) from the tumor RNA-Seq data. The clinical

features, including age, sex, stage, fibrosis, etiology, histological type, and vascular invasion, are shown in the patient annotations.

Molecular Features
The tumor neoantigen burden, tumor mutation burden, CNV
burden scores, and LOH scores were derived from published
TCGA data (9). Somatic alterations in 10 oncogenic signaling
pathways were analyzed as previously described (16). We
grouped genes into known 10 canonical pathways that included
the cell cycle, Hippo, Myc, Notch, Nrf2, PI3 kinase/Akt, RTK-
RAS, TGFβ signaling, p53, and β-catenin/WNT, as previously
described. The sample in which genes in specific pathways
contained somatic mutations was designated as specific pathway
altered. The sample in which all genes in specific pathways were
wild type was designated as specific pathway unaltered. The

difference in the cancer pathway alteration frequency between the
two HCC immunogram clusters was assessed using Fisher’s exact
test (two-sided).

Statistical Analysis
Data are presented as means and standard errors of the means
(SEM). Group values were assessed using a normal distribution
test. For normally distributed data, group means were compared
using Student’s t-test, and non-parametric tests were performed
when the data were not normally distributed. P < 0.05 was
defined as statistically significant. Two-sided Fisher’s exact test
was used to compare alteration frequencies between patients with
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FIGURE 4 | The immune signature strength of the hot and cold HCC immunogram groups. (A–H) The scatter plots showed higher levels of immune signatures,

including cytolytic activity, cytolytic activity, IFN-γ signature, chemokine, immunoinhibitor, adhesion molecule, MHC I, MHC II, and non-class MHC, in hot HCC

(Continued)

.
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FIGURE 4 | immunograms than in cold HCC immunograms. Group values were assessed using a normal distribution test. For normally distributed data, group means

were compared using Student’s t-test, and non-parametric tests were performed when the data were not normally distributed (*P < 0.05, **P < 0.01, and ns: not

significant, P > 0.05).

FIGURE 5 | The alterations in cancer-related pathways identified in hot and cold HCC immunograms. The heatmap of the alterations in cancer-related pathways in

hot and cold HCC immunograms. The difference in the frequency of alterations in cancer-related pathways between the two HCC immunogram clusters was

assessed using Fisher’s exact test (two-sided) (*P < 0.05, **P < 0.01, and ns: not significant, P > 0.05).

HCC presenting cold and hot HCC immunograms. The log-rank
test was performed to investigate associations between the HCC
immunogram patterns and the DFS and OS. Statistical analyses
were performed using SPSS version 22.0 statistical software and
R version 3.6.1.

RESULTS

HCC Cancer Immunogram and Prognosis
We adopted a cancer immunogram that visually illustrates the
state of the cancer-immunity cycle to evaluate the antitumor
response in patients with HCC. We explored the HCC
immunogram of the TCGA cohort. Referring to a previous
study, the steps of the cancer-immunity cycle are characterized
by the following eight axes of the IGS: IGS1, T cell immunity;
IGS2, tumor neoantigen burden; IGS3, priming and activation;
IGS4, trafficking and infiltration; IGS5, recognition of tumor
cells; IGS6, inhibitor cells; IGS7, checkpoint expression; and
IGS8, inhibitor molecules. As shown in Figure 1, we collected
the clinical data from the TCGA HCC cohort, WES, and RNA
sequencing data. The landscape of the TCGA HCC cancer
immunogram and the eight axes of the IGS are shown in
Figure 2A. An unsupervised clustering analysis of the IGS
was performed, and the HCC immunograms were separated
into two clusters. The seven axes of the IGS of one cluster
were significantly higher than the other cluster. The tumor

neoantigen burden (IGS2) is not significantly changed between
two clusters (Figure 2A and Supplementary Figure 1). The
tumor neoantigen burden (IGS2) was not related to other
axes of the immunogram, including T cell immunity (IGS1),
priming and activation (IGS3), trafficking and infiltration
(IGS4), recognition of tumor cells (IGS5), inhibitor cells (IGS6),
checkpoint expression (IGS6), and inhibitor molecules (IGS8)
(Supplementary Figure 2).

The cluster with higher immunogram scores was named the
“hot immunogram,” and the cluster with lower immunogram
scores was named the “cold immunogram.” Moreover, the
two immunogram clusters of patients with HCC showed
significant differences in DFS and OS (log-rank test, P <

0.01). Favorable OS and DFS were observed in patients with
HCC and hot immunograms (Figures 2B,C). The radar plot
showed that the immunogram patterns of the two clusters
were distinct (Figures 2E,F). Furthermore, the relationship
between clinical features and HCC immunogram patterns was
investigated (Table 1). The immunogram patterns were not
associated with clinical features, including age, gender, etiology,
vascular invasion, fibrosis, stage, Child-Pugh classification grade,
histological type, and neoplasm histological grade (Table 1).

The LIRI-JP HCC cohort was enrolled to test the HCC
immunogram patterns and prognosis and to validate the
prognostic value of the HCC immunograms. The clinical data,
WES data, and RNA sequencing data were collected. HCC
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TABLE 2 | HCC immunogram cluster and frequency of alterations in

cancer-related pathways.

Cancer pathway N Cold

immunogram

Hot

immunogram

P-value

(Fisher’s

Exact Test)

WNT pathway 0.008

WNT altered 151 98 53

WNT unaltered 184 92 92

TGFβ pathway 0.493

TGFβ altered 20 13 7

TGFβ unaltered 315 177 138

PI3K pathway 0.788

PI3K altered 71 39 32

PI3K unaltered 264 151 113

RTK/RAS pathway 0.417

RTK/RAS altered 115 69 46

RTK/RAS unaltered 220 121 99

Notch pathway 0.432

Notch altered 77 47 30

Notch unaltered 258 143 115

Myc pathway 0.105

Myc altered 14 11 3

Myc unaltered 321 179 142

Hippo pathway 0.724

Hippo altered 108 63 45

Hippo unaltered 227 127 100

Nrf2 pathway 0.551

Nrf2 altered 28 14 14

Nrf2 unaltered 307 176 131

Cell cycle pathway 0.197

Cell cycle altered 44 29 15

Cell cycle unaltered 291 161 130

P53 pathway 0.139

P53 altered 127 79 48

P53 unaltered 208 111 97

The bold values indicates P < 0.05.

immunograms of patients with HCC in the LIRI-JP cohort were
assessed and an unsupervised clustering analysis of the IGS was
performed using the methods mentioned above. The results for
the LIRI-JP cohort were similar to the TCGA cohort. The HCC
immunograms were separated into two clusters termed the “hot
immunogram” and “cold immunogram” according to the IGS.
The OS of patients with HCC presenting the hot immunogram
was longer than that of patients with the cold immunogram
(log-rank test, P < 0.01, Figure 2D).

The Immune Characteristics of Hot and
Cold HCC Immunograms
The relative abundance of 28 immune cell subsets that infiltrate
the tumor was evaluated using the single-sample Gene Set
Enrichment Analysis (ssGSEA) method with the tumor RNA-Seq
data. Immune cell infiltration was investigated in the two HCC
immunogram clusters. As shown in Figure 3, greater numbers

of 28 innate and adaptive immune cell subsets infiltrated the
tumors of patients with hot immunograms than patients with
cold immunograms. Furthermore, we observed higher levels of
immune signatures, including cytolytic activity, IFN-γ signature,
immunocostimulator, immunoinhibitor, chemokine, adhesion
molecule, MHC I, MHC II, and non-class MHC, in hot HCC
immunograms (P < 0.05, Figure 4).

The Molecular Features of Hot and Cold
HCC Immunograms
The driver gene mutations and signaling pathway alterations
between the two HCC cancer immunogram clusters were
investigated. The WNT pathway was altered and the CTNNB1
gene mutation frequency was higher in the cold HCC
immunogram cluster than in the hot HCC immunogram cluster
(two-sided Fisher’s exact test, P < 0.05; Figure 5 and Table 2).
The other signaling pathways, including the cell cycle, PI3K,
P53, Notch, Myc, Hippo, Nrf2, and TGFβ pathways, were
not significantly altered between the two HCC immunogram
clusters (two-sided Fisher’s exact test, P > 0.05; Figure 5 and
Table 2). Moreover, higher CNV burden scores and LOH scores
were observed in the cold HCC immunogram cluster than in
the hot HCC immunogram cluster (P < 0.05, Figure 6). The
other genetic variants, including non-synonymous mutations,
immunogenic mutations, indel numbers, and immunogenic
indel numbers, were not significantly altered (P> 0.05, Figure 6).

The Immunogram Patterns of Molecular
Features
The main differences in molecular features between hot and cold
immunograms were reflected in WNT-CTNNB1 alterations and
CNV and LOH scores. We further investigated the immunogram
patterns of tumors with different molecular features. As shown
in Figure 7, the immunogram patterns were distinct for different
molecular features of HCC tumors. The radar plot revealed
higher IGS for T cell immunity, inhibitor cells, and checkpoint
expression in tumors without Wnt-CTNNB1 alterations than
in tumors in which Wnt-CTNNB1 was altered (P < 0.05,
Figure 7A). Tumors with a high CNV burden were characterized
by lower IGS for T cell immunity, priming and activation,
trafficking and infiltration, recognition of tumor cells, inhibitor
cells, checkpoint expression, and inhibitor molecules (P < 0.05,
Figure 7B). Compared with tumors with a low LOH burden,
tumors with a high LOH burden showed lower IGS for T cell
immunity, priming and activation, trafficking and infiltration,
and recognition of tumor cells and inhibitor molecules (P < 0.05,
Figure 7C).

DISCUSSION

This study constructed an HCC immunogram of the cancer-
immunity cycle to visually explore the anticancer immune
responses of patients with HCC. The pattern of the HCC
immunogram was categorized into two clusters, which were
termed the hot immunogram and cold HCC immunogram.
Favorable OS and DFS were observed for patients with HCC and

Frontiers in Oncology | www.frontiersin.org 8 July 2020 | Volume 10 | Article 1189

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hu et al. An Immunogram of HCC

FIGURE 6 | The molecular features of hot and cold HCC immunograms. (A–F) Scatter plots show the levels of molecular features, including CNV burden scores, LOH

scores, non-synonymous mutations, immunogenic mutations, indel numbers, and immunogenic indel numbers in the hot and cold HCC immunogram clusters,

respectively. Group values were assessed using a normal distribution test. For normally distributed data, means of two clusters were compared using Student’s t-test,

and non-parametric tests were performed when the data were not normally distributed (*P < 0.05, **P < 0.01, and ns: not significant, P > 0.05).
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FIGURE 7 | The immunogram patterns of molecular features. (A–C) Radar charts showing the immunogram patterns in tumors with and without Wnt-CTNNB1

alterations (A), tumors with high and low CNV burdens (B), and tumors with high and low LOH scores (C). The median IGS are shown in the radar charts. Data were

compared with non-parametric tests (*P < 0.05).
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hot immunograms. Moreover, the main difference in molecular
features between hot and cold immunograms was reflected
in WNT-CTNNB1 alterations and CNV and LOH scores.
Meanwhile, the immunogram patterns were distinct for different
molecular features of HCC tumors.

Based on emerging data, the anticancer immune response
plays a vital role in cancer management (17–19). Previous
studies reported an immunoscore based on an assessment of the
numbers of CD3+ T cell and CD8+ T cells that infiltrated colon
tumors (20). A recent study described three immunophenotypes
based on CD8+ T cells, which included inflamed (CD8+ T
cells infiltrated tumors, but were inhibited), immune excluded
(CD8+ T cells accumulated, but had not efficiently infiltrated
tumors), and immune desert (CD8+ T cells were absent from the
tumor) (21). The immunophenotypes based on CD8+ T cells are
helpful to understand the tumor microenvironment. Moreover,
omics data from tumors provide additional information about
the interaction of oncology and immunity. However, in clinical
practice, clinicians must integrate data with multiple dimensions
into a comprehensive visualization to assess the antitumor
immune response and make appropriate clinical decisions for
each patient. When the immunogram was utilized, the steps
of the anticancer immune response of individual patients were
described. In the present study, the different patterns of HCC
immunograms were associated with different clinical outcomes.
A significant benefit in terms of prognosis was observed in
patients with HCC presenting hot immunograms. The results
were validated in two independent HCC cohorts, including
TCGA and LIRI-JP HCC cohorts. The antitumor response was
likely activated in those patients, which reflected the higher
IGS for T cell immunity, priming and activation, trafficking
and infiltration, and recognition of tumor cells. In addition,
greater numbers of infiltrated antitumor immune effector cells
(activated CD8+ T cells and NK cells) and a stronger antitumor
immune effector signature (cytolytic activity and IFN-γ) were
associated with hot immunograms. Interestingly, the levels of
immunoregulatory factors, including inhibitor cells, checkpoint
expression, and inhibitor molecules, increased in patients with
hot immunograms. We speculated that immunoregulatory
factors exerted negative feedback on the activation of the
antitumor immune response. The higher checkpoint expression
associated with T cell-rich immunity and a strong immune
effector signature (cytolytic activity and IFN-γ) may be related to
the activation-exhaustion cascade in tumor-resident T cells (22).

The first step of the antitumor immune cycle is the release
of tumor antigens and their capture by dendritic cells. Next,
the dendritic cells present the captured antigens to T cells
throughMHCI andMHCII molecules, inducing the priming and
activation of an effector T cell response against the cancer-specific
antigens. However, the tumor neoantigen burden and tumor
mutation burden of patients with HCC were not associated
with T cell immunity, priming and activation, trafficking
and infiltration, recognition of tumor cells, and antitumor
immune effector signatures (cytolytic activity and IFN-γ). Our
results were similar to the findings reported for patients with
lung cancer (23). Based on these findings, progression from
cancer neoantigen release to the T cell antitumor response

involves multiple steps and complex mechanisms. As a single
indicator, tumor neoantigens are unable to predict the antitumor
immune response.

An understanding of the interaction between the tumor
immune environment and molecular variations is vital to
optimizing the immunotherapy strategy. In the present study,
we investigated the alterations in 10 cancer-related pathways
and molecular features between the two patterns of HCC
immunograms. We observed a higher frequency of alterations in
the WNT-CTNNB1 pathway in cold HCC immunogram pattern
clusters. The immunogram patterns were distinct in tumors with
and without WNT-CTNNB1 alterations. The radar plot showed
higher IGS for T cell immunity, inhibitor cells, and checkpoint
expression in tumors without Wnt-CTNNB1 alterations than in
tumors with Wnt-CTNNB1 alterations. A clinical trial reported
that patients with HCC carryingWNT/CTNNB1mutations were
resistant to immune checkpoint blockade (24). Our results may
explain this immune resistance mechanism from the perspective
of the HCC immunogram pattern. Moreover, our molecular
analysis revealed higher CNV burden scores and LOH scores in
the cold HCC immunogram cluster. The immunogram patterns
of tumors with high CNV and LOH scores were characterized by
lower IGS for T cell immunity, priming and activation, trafficking
and infiltration, and recognition of tumor cells. A higher CNV
and LOH burden in tumors correlated with immune escape and
a poorer response to immunotherapy in previous studies (25, 26).

This study has several limitations. A further study should be
designed to explore the clinical value of HCC immunograms
in patient selection for personalized immunotherapy. From the
perspective of theory, the individualized treatment strategies
should be established based on the immunogram pattern for an
assessment of the immune response of each patient.

In summary, a comprehensive understanding and assessment
of the antitumor immune response is critical for medical
decision making in cancer management. The present study used
immunograms to provide visual antitumor immune response
assessments for individual patients with HCC. Moreover, we
illustrated the correlation between HCC immunograms and the
molecular features of the tumor. This study may provide valuable
resources for personalized HCC immunotherapy.
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