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Background. Recent evidence shows that adipogenic differentiation of orbital fibroblasts (OFs) promotes the development of
thyroid-associated ophthalmopathy (TAO), an organ-specific immune disease. Furthermore, miR-96-5p has been linked to
adipogenic differentiation of C2C12myoblasts and is significantly correlated with the severity of TAO.+e purpose of this study is
to look into the role of miR-96-5p in the adipogenesis of OFs with TAO.Methods. +e orbital tissues from TAO patients and non-
TAO participants were collected, and primary OFs were isolated and cultured for further analysis. miR-96-5p expression was
examined using qRT-PCR. +e adipogenic differentiation of OFs was then studied. Results. Orbital fibroblasts isolated from
adipose tissues of TAO patients (t-OFs) demonstrated greater adipogenic differentiation ability than OFs isolated from adipose
tissues of non-TAO participants. miR-96-5p was found to be overexpressed in the orbital tissues of TAO patients and t-OFs.
Further research revealed that miR-96-5p, by targeting Smad7, could exacerbate PPAR-c/C/EBPα signaling-induced adipogenic
differentiation of t-OFs. However, inhibiting miR-96-5p could block t-OFs adipogenic differentiation-mediated adipogenesis via
Smad7/PPAR-c/C/EBPα. Conclusions. miR-96-5p plays a critical regulatory role in the development of TAO by targeting Smad7
and promoting adipogenic differentiation of OFs.

1. Introduction

+yroid-associated ophthalmopathy (TAO), also known
as Graves’ ophthalmopathy, is an organ-specific immune
disease marked by increased adipose/connective tissue
volume and the potential for blindness. It is one of the
most common ophthalmic diseases in clinical practice,
with TAO having the highest prevalence among orbital
diseases [1, 2]. TAO, on the other hand, is a common
extrathyroid manifestation and has in recent years been
linked to hypothyroidism, subacute thyroiditis, and thy-
roid cancer [3]. At present, TAO research currently fo-
cuses primarily on immunology [4], pathology [5], genetic
background [6, 7], and environmental factors [8, 9], but
the pathogenesis and pathogenesis of TAO remain un-
known [10].

Emerging evidence shows that TAO symptoms are
caused by inflammation of orbital connective tissue. +e
infiltration of inflammatory cells, the accumulation of ex-
tracellular matrix proteins, the proliferation of fibroblasts,
and the increasing of orbital adipose tissue causes the ex-
pansion of orbital connective tissue +is results in orbital
tissue fibrosis, orbital tissue remodeling, and destruction of
adjacent eyeball structure and function, promoting the
development of TAO [11, 12]. Orbital fibroblast (OFs) are
thought to be important immune targets and effector cells in
the development of TAO [13, 14]. Current research evidence
indicates that fibrosis and inflammatory factor secretions
mediated by OFs play a role in the development of TAO [15].
Furthermore, adipogenic differentiation of OFs is important
in the increase of orbital adipose tissue in TAO [16, 17], and
adipogenesis mediated by adipogenic differentiation of
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activated OFs may result in the orbital protrusion in TAO
patients [18]. However, the molecular mechanism of adi-
pogenic differentiation of orbital fibroblasts during TAO
needs to be investigated further.

MicroRNAs (miRNAs) are endogenous single-stranded
noncoding small mRNAs. Approximately, 90% of miRNAs
are expressed differently in different parts of the human eye,
and each miRNA can play a unique role in eye tissues [19].
Moreover, an increasing body of evidence suggests that
miRNAs are critical in regulating adipogenesis [20]. miR-96-
5p has been linked to adipogenic differentiation of C2C12
myoblasts [21]. A previous study found that miR-96-5p was
highly expressed in thyroid tissues of patients with auto-
immune thyroid disease and was significantly positively
correlated with TAO severity [22]. +ese findings suggested
that high expression of miR-96-5p is associated with higher
severity of diseases in patients with Graves’ orbitopathy
(GO), including active eye disease, goiter, high antibody
titer, and/or higher recurrence rate. Previous research on
miR-96-5p has mostly focused on its role in tumor occur-
rence and development [23–25]. Additionally, one study
found miR-96-5p to be a potential biomarker for multi-
system atrophy, Parkinson’s disease, and gestational diabetes
mellitus [26]. However, the role of miR-96-5p in the adi-
pogenic differentiation of OFs in TAO is still unknown.

Smad7 is a key negative regulator in the TGF-β signal
transduction pathway, and its role in osteogenic differen-
tiation has been well documented [27, 28]. Recent evidence
has shown a role for Smad7 in adipogenesis [29, 30]. While
peroxisome proliferator-activated receptor-c (PPAR-c)
signal transduction has been identified as the primary in-
ducer of adipogenesis [31, 32], studies have revealed in-
teractions between TGF-β signaling and PPAR-c signaling
[33]. Studies have shown that the Smad signal plays an
important role in periorbital fibrosis in TAO [34–36], and
Smad7 is predicted to be one of the target genes of miR-96-
5p (StarBase, URL: http://starbase.sysu.edu.cn/agoClipRNA.
php?source�mRNA). +e present study, however, explores
whether miR-96-5p plays a role in adipogenic differentiation
of OFs during TAO progression via Smad7/PPAR-c
signaling.

+e present study demonstrated that Smad7 is a target
gene of miR-96-5p, and miR-96-5p is noticeably overex-
pressed in TAO orbital adipose/connective tissues and OFs.
+e findings provide evidence that miR-96-5p promotes
adipogenic differentiation of OFs by targeting Smad7 and
activating PPAR-c signaling, thereby promoting TAO
adipogenesis.

2. Materials and Methods

2.1. Sample Collection and Cell Culture. Orbital adipose
tissue was obtained from 15 TAO patients and 10 non-TAO
subjects as described in a previous study [16]. All partici-
pants provided informed written consent. +e Institutional
Review Board (IRB) of the Affiliated Hospital of Yunnan
University approved this study (approval no. 2019173). +e
following were the inclusion criteria for TAO patients: (1)
patients had orbital decompression for proptosis correction;

(2) patients were euthyroid and had inactive TAO status at
the time of surgery; (3) patients had not been treated with
steroids or radiation therapy for at least 3 months. For non-
TAO subjects: (1) age- and sex-matched to TAO subjects; (2)
no thyroid or other inflammatory diseases were present; (3)
control subjects underwent cosmetic upper and lower
blepharoplasty.

Cultures of primary orbital fibroblasts (OFs) were grown
following previously described methods [37]. Briefly, the
tissue blocks were cut into pieces and placed in a DMEM
medium containing 20% FBS, 100U/mL penicillin, and
20 μg/mL gentamicin from Hyclone Laboratories (Logan,
UT). +e explants were cultured until fibroblasts formed a
monolayer and grew out of the explants.+emonolayer cells
were then mildly digested with trypsin/EDTA, and sub-
cultured in a DMEM medium containing 10% FBS in a
humidified 5% CO2 incubator at 37°C. Following cell sorting
and flow cytometry detection of the surface antigen of the
obtained cells, cells of the third to seventh generations in
good condition were used for subsequent cell experiments.
In comparison to OFs obtained from orbital adipose tissues
of non-TAO subjects (n-OFs), the orbital adipose tissues
obtained from TAO patients were referred to as t-OFs in the
following study.

2.2. Cell Transfection. Orbital fibroblasts were transfected
with the miR-96-5p inhibitor, siRNA of Smad7 (siSmad7),
and each control following the manufacturer’s protocols.
+e miR-96-5p inhibitor and siSmad7 were obtained from
Guangzhou RiboBio Biotechnology Co., Ltd. (Guangzhou;
China). Cells were transfected with 50 nM of miR-96-5p
inhibitor or siSmad7 using commercial Lipofectamine®2000 transfection reagent (Invitrogen; +ermo Fisher Sci-
entific, Inc.; USA) following the manufacturer’s instructions
and recent study [38]. Briefly, the cells were incubated with
50 nM of miR-96-5p inhibitor or siSmad7 for 48 to 72 hours
and maintained under normal growth conditions. At 72
hours, qRT-PCR was used to confirm the efficiency of
transfection of miR-96-5p inhibitor and siSmad7.

2.3. Dual-Luciferase Reporter Assay. +e binding sites be-
tween miR-96-5p and Smad7 were predicted with StarBase
(URL: http://starbase.sysu.edu.cn/agoClipRNA.php?
source�mRNA). Luciferase vectors containing the 3’UTR
of human Smad7 with the miR-96-5p binding sites and
mutant miR-96-5p binding sites were purchased from
Shanghai GenePharma Co., Ltd. +e vectors were
cotransfected into 293T cells with miR-96-5p mimics by
Lipofectamine® 2000 transfection reagent (Invitrogen;
+ermo Fisher Scientific, Inc.; USA). +e luciferase reporter
activity was measured after 48 h using a Dual-Luciferase®eporter Assay System (Promega Corporation). +is assay
was performed according to the previous description [38].

2.4.QuantitativeReal-TimePolymeraseChainReaction (qRT-
PCR). +e expression level of RNAwas determined by qRT-
PCR according to the previous study [38]. In detail, total
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RNA was extracted from tissues and cells using Trizol re-
agent (Invitrogen; +ermo Fisher Scientific, Inc.; USA)
according to the manufacturer’s instructions to detect the
expression levels of miR-96-5p in orbital tissues and OFs.
miRNA qRT-PCR was performed using a TaqMan™
MicroRNA Reverse Transcription kit (Applied Biosystems;
+ermo Fisher Scientific, Inc.; USA) and a TaqMan Uni-
versal PCR Master Mix (Applied Biosystems; +ermo Fisher
Scientific, Inc.; USA). +e 2−ΔΔCq method [39] was used to
present the relative expressions of miRNA as fold changes,
and U6 was used to normalize the miRNA level. +e primer
sequences used were as follows: human U6, forward: 5′-
CTCGCTTCGGCAGCACATATACT-3′and reverse: 5′-
ACGCTTCACGAATTTGCGTGTC-3′; human miR-96-5p,
forward: 5′- CAGTCGTTTTTACACGATCAC-3′ and re-
verse: 3′- GGTCCAGTTTTTTTTTTTTTTTAAACC-5′.

2.5. Western Blotting. Orbital tissues and fibroblast cells
were harvested and lysed in RIPA buffer containing protease
inhibitors (Invitrogen; USA), and protein concentrations
were determined using the Pierce BCA assay (Invitrogen;
USA), following the manufacturer’s protocols. +e proteins
in lysates (40 μg of each sample) were then separated by SDS-
PAGE and transferred to PVDF membranes. +e mem-
branes were blocked with 5% nonfat milk for 1 h at room
temperature and subsequently incubated with primary an-
tibodies overnight at 4°C. Expression levels of the proteins of
interest were analyzed using primary antibodies against
Smad7, PPAR-c, C/EBPα, adiponectin, and FABP-4 pur-
chased from Abcam, UK, at a dilution of 1 :1000. Mem-
branes were rinsed three times with 1X Tris-buffered saline
containing 0.5% Tween-20 (TBST) and then incubated for
1 h with anti-rabbit IgG (1 : 2000, Abcam, UK) horseradish
peroxidase-conjugated secondary antibody. Membranes
were rinsed three times with TBST and examined with an
ECL kit (Bio-Rad Laboratories, Inc.).+e protein bands were
quantified using the ImageJ software (version 1.52a; Na-
tional Institutes of Health), and GAPDH (1 :1000, Abcam,
UK) was used as a loading control. Each experiment was
performed in triplicate.

2.6. Oil Red O Staining. Briefly, cells were fixed in 4%
paraformaldehyde (PFA) for 15min and then washed three
times with PBS for 5min each. After that, cells were incu-
bated for 10–15min with oil red O working solution (oil red:
distilled water� 3 : 2) at room temperature. Following that,
60% isopropanol was used to separate the samples for 30 s
before washing with distilled water for 1min. Finally, the
filter paper was used to absorb the surrounding water, and
the cells were sealed with glycerin gelatin. As a result, the
lipid droplets stained orange-red to bright red.

2.7. Statistical Analyses. All experiments were performed at
least three times independently, with at least three cell
cultures harvested from different individuals. +e results are
presented in the form of the mean± standard deviation.
Differences between groups were assessed by Students’

t-tests and one-way ANOVA or two-way ANOVA followed
by Bonfferroni’s multiple comparisons test. In all analyses,
P< 0.05 denoted statistical significance.

3. Results

3.1. miR-96-5p Is Highly Expressed in Orbital Tissue and
Orbital Fibroblasts of TAO Patients. +e expression of miR-
96-5p in orbital tissues and OFs from TAO patients was
investigated in qRT-PCR assays. +e results showed that
miR-96-5p was significantly upregulated in the orbital tis-
sues of TAO patients compared to non-TAO participants
(Figure 1(a)). Furthermore, the expression of miR-96-5p in
t-OFs was noticeably higher than that in n-OFs
(Figure 1(b)), whereas the relative expression level of miR-
96-5p in t-OFs was nearly 1.5 times that of n-OFs. +ese
findings suggested that miR-96-5p upregulation may play an
important role in the progression of TAO and influence the
bioactivity of t-OFs.

3.2. t-OFs Show a Higher Ability of Adipogenesis.
PPAR-c/C/EBPα signaling is important in adipogenic dif-
ferentiation; as such, the expression of PPAR-c/C/EBPα
signaling related proteins as well as adipogenesis markers
such as adiponectin and FABP-4 in n-OFs and t-OFs was
determined using western blotting. +e expressions of
PPAR-c, C/EBPα, adiponectin, and FABP-4 in t-OFs were
significantly increased (Figures 2(a)–2(e)). Furthermore, oil
red O staining revealed noticeable lipid accumulation in
t-OFs, whereas no lipid accumulated in n-OFs (Figures 2(f ),
2(g)). +ese data indicate that the number of red O-positive
cells in t-OFs was nearly 3 times greater than that in n-OFs.
Collectively, the findings demonstrate that t-OFs have a
greater capacity for adipogenesis than n-OFs, which may be
due to the high activation of PPAR-c/C/EBPα signaling.

3.3. miR-96-5p Inhibition Reduces Adipogenesis of t-OFs.
To confirm the role of miR-96-5p in t-OF adipogenesis, a
miR-96-5p inhibitor was transfected into t-OFs, and the
expression of miR-96-5p and related proteins as well as t-OF
lipid accumulation were measured. +e miR-96-5p inhibitor
significantly impeded the expression of miR-96-5p in t-OFs
(Figure 3(a)). Also, the miR-96-5p inhibitor significantly
decreased the expressions of PPAR-c, C/EBPα, adiponectin,
and FABP-4 in t-OFs (Figures 3(b)–3(f)). Furthermore,
miR-96-5p inhibition reduced t-OF lipid accumulation
(Figures 3(g), 3(h)); of note, following miR-96-5p inhibition,
the positive rate of oil red O staining in t-OFs cells decreased
by more than 1.5 times.+ese findings suggest that knocking
out miR-96-5p can inhibit t-OF adipogenesis.

3.4. miR-96-5p Targets and Inhibits the Expression of Smad7.
Previous research revealed that Smad7 is involved in the
regulation of adipogenesis [29, 30]; as such, we examined the
expression of Smad7 in t-OFs western blotting. +e results
showed lower Smad7 expression in t-OFs than in n-OFs
(Figure 4(a)). Meanwhile, miR-96-5p inhibition promoted
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Figure 1: +e expression of miR-96-5p in orbital tissues and orbital fibroblasts from non-TAO and TAO participants. (a) +e relative
expression of miR-96-5p in orbital tissues measured by qRT-PCR. (b) +e relative expression levels of miR-96-5p in OFs separated from
adipose tissues with or without TAO. ∗∗P< 0.01 vs non-TAO or n-OFs group by two-tailed Students’ t-test.
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Figure 2: Continued.
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Smad7 expression in t-OFs (Figure 4(b)). Furthermore,
Smad7 was predicted to be one of the target genes of miR-96-
5p, and there was a binding site between miR-96-5p and
3’UTR of Smad7 (Figure 4(c)). A dual-luciferase reporter
assay confirmed that miR-96-5p could precisely bind to
wild-type Smad7 3’UTR (Figure 4(d)). +ese findings sug-
gested that miR-96-5p may promote t-OF adipogenesis by
targeting Smad7.

3.5. miR-96-5p Inhibition Decreases t-OF Adipogenesis by
Increasing Smad7 Expression. To investigate whether miR-
96-5p promotes t-OFs adipogenic differentiation of t-OFs,
miR-96-5p inhibitor and siSmad7 were cotransfected into
t-OFs, and protein expressions and lipid accumulation in
t-OFs were measured. Smad7 expression was increased by
inhibiting miR-96-5p but decreased by siSmad7
(Figures 5(a) and 5(b)). siSmad7 also increased the ex-
pressions of PPAR-c, C/EBPα, adiponectin, aind FABP-4 in
t-OFs, which were inhibited by the miR-96-5p inhibitor
(Figures 5(c)–5(g)). Of note, the lipid accumulation in t-OFs
inhibited by miR-96-5p inhibition was also reversed by
siSmad7 (Figures 5(h) and 5(i)), and after miR-96-5p in-
hibition, the positive rate of oil red O staining in t-OFs cells
decreased by about 2 times, but after adding siSmad7 to
inhibit the expression of Smad7, the positive rate of oil red O
staining in t-OFs cells increased to about 90% of that in the

control group. +ese findings suggested that miR-96-5p
promotes t-OF adipogenic differentiation by specifically
inhibiting Smad7 expression and that miR-96-5p inhibition
can block t-OF adipogenic differentiation by upregulating
Smad7 expression and inhibiting PPAR-c/C/EBPα
signaling.

4. Discussion

+yroid-related ophthalmopathy (TAO) is a common
ophthalmic disease, with the highest incidence among or-
bital diseases that can cause blindness [1, 2]. TAO is dis-
tinguished by an increase in adipose/connective tissues.
Compelling evidence shows that TAO symptoms are caused
by inflammation of the orbital connective tissue [11, 12].
Also, researchers have demonstrated that adipogenesis
mediated by adipogenic differentiation of orbital fibroblasts
(OFs) plays an important role in TAO progression [16, 17].
Previous research has shown that many genes and signal
transduction pathways, such as insulin-like growth factor-1
receptor, FABP4/5, APOE, PPARG and ADIPOQ, PI3K Akt
signal transduction, cAMP signal transduction, AGE-RAGE
signal, and Wnt signal pathway, are involved in the adi-
pogenesis of TAO patients [40, 41]. +is study confirmed
that OFs isolated from adipose tissues of TAO patients had
greater adipogenic differentiation ability than OFs isolated
from adipose tissues of non-TAO participants. PPAR-c/C/
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Figure 2: +e adipogenesis ability of OFs from non-TAO and TAO participants. (a) +e representative bands of western blotting for PPAR-c,
C/EBPα, adiponectin, and FABP-4. (b–e)+e relative expression levels of PPAR-c, C/EBPα, adiponectin, and FABP-4 in n-OFs and t-OFs. (f)+e
representative images of oil red O staining on n-OFs and t-OFs. (g) Relative oil red O-positive cell rate measured by ImageJ. ∗∗∗P< 0.001,
∗∗∗∗P< 0.0001vs n-OFs group by two-tailed Students’ t-test.

Evidence-Based Complementary and Alternative Medicine 5



EBPα signaling is linked to adipogenic differentiation;
adiponectin and FABP-4 are adipogenic markers, and their
expressions were upregulated in t-OFs.

Recent evidence shows that miRNAs play an important
role in the development of TAO. For instance, Jang et al.
revealed that miR-27 could inhibit the adipogenic differ-
entiation of OFs in Graves’ disease patients [16]. Elsewhere,

miR-183 and miR-96 were found to potentially contribute to
the progression of Graves’ orbitopathy by regulating T cell
activation [42], whereas miR-146a could regulate the fibrosis
of OFs in Graves’ orbitopathy [35, 43]. miR-96-5p was found
to be significantly positively correlated with TAO severity
[22], and it was also revealed to play a role in adipogenic
differentiation of C2C12 myoblasts [21]. In the present
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Figure 3: +e role of miR-96-5p knockdown in adipogenic differentiation of t-OFs. (a) +e relative expression of miR-96-5p in different
groups of t-OFs. (b) +e representative bands of western blotting for PPAR-c, C/EBPα, adiponectin, and FABP-4. (c–f), +e relative
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study, we discovered that miR-96-5p was overexpressed in
orbital tissues and OFs of TAO patients. Further research
revealed that miR-96-5p could aggravate PPAR-c/C/EBPα
pathway-induced adipogenic differentiation of t-OFs by
specifically inhibiting Smad7 expression. Inhibiting miR-96-
5p, on the other hand, could inhibit t-OF adipogenic dif-
ferentiation-mediated adipogenesis via Smad7/PPAR-c/C/
EBPα. Notably, in addition to adipogenic differentiation,
OFs-mediated orbital fibrosis and inflammatory factor re-
lease are important in the development and progression of
TAO [15]. Meanwhile, miRNA expression acted as a key

regulator in OFs-mediated orbital fibrosis and inflammatory
factor release. Previous research found that miR-146a could
inhibit TGF-β-induced OFs fibrosis [35]. Other studies have
demonstrated that miR-146a could promote OFs prolifer-
ation and proinflammatory IL-6 expression by targeting
Notch2 [43, 44] and that miR-21 and miR-155 could also be
involved in fibrosis and inflammation caused by OFs in
orbital tissues [36, 45, 46]. +ese findings suggest that
miRNAs play an important role in the development of TAO
and that miRNAs may be potential biomarkers and thera-
peutic targets for TAO.
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Figure 5: Continued.
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In conclusion, the present study demonstrates a role for
miR-96-5p in adipogenesis of orbital fibroblast in TAO pa-
tients. +e results revealed that miR-96-5p is highly expressed
in orbital tissues of TAO patients and t-OFs and that miR-96-
5p can promote t-OF adipogenesis by specifically inhibiting
Smad7 expression. Furthermore, miR-96-5p knockdown po-
tentially inhibits t-OF adipogenic differentiation via Smad7/
PPAR-c/C/EBPα signaling. +is research suggests that miR-
96-5p could be a biomarker and potential therapeutic target for
TAO. However, because this is our preliminary work to in-
vestigate the role of miR-96-5p in TAO, it has significant
limitations. We will improve the experimental design in

subsequent studies, including cell experiments, animal model
construction, and clinical sample detection and verification.
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