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A B S T R A C T   

This study estimates the impact of green technology innovation and its interaction terms on CO2 
emission, by using the random and fixed effect estimate method, employs panel data of the G7 
and BRICS countries from 1990 to 2019. The regression results show that a single type of green 
technological innovation has not a significant inhibitory effect on CO2 emissions. The interaction 
of the two types of green technological innovations has a significant effect on the decrease of CO2. 
Moreover, the study test the difference effect of green technological innovations on CO2 emission 
among the G7 and BRICS countries. Furthermore, we also choose appropriate instrument vari-
ables to deal with the endogenesis of the model and examine model robustness. The findings 
demonstrate that the empirical conclusions can hold true in the test. Based on the findings above, 
we puts forward a few policy recommendations for G7 countries and BRICS countries to reduce 
carbon dioxide emissions.   

1. Introduction 

With economic growth worldwide, energy consumption has already become the main environmental degradation contributor. 
Global environmental pollution and ecological degradation have attracted increasing attention, and the demand of effective energy 
production and green development has been considered an important research topic [2,4]. Recently, due to environmental concerns 
have become more obvious [5,6]. Green technology innovation, a novel model of sustainable development that reduces environmental 
destruction, has been extensively concerned by researchers and practitioners [24,26,30]. 

Following the Environmental Kuznets Curve (EKC) hypothesis in Grossman and Krueger [3](the inverted U-shaped curve between 
per capita income and indicators of environmental pollution), considerable studies have been conducted to investigate the association 
of economic growth with CO2 emission [19,22,28,37]. The main factors affecting CO2 emissions such as economic development, 
energy and industrial structure, trade opening level and urbanization process have been discussed intensively [11,13,21,31,34], [38]. 

Existing research shows that technological factors, such as indigenous R&D activities, innovations in technology, or spillovers come 
from foreign direct investment (FDI) and foreign trade, all have potential impacts on environmental quality [1,5,16–18,23,25]. 
However, as far as we know, how and to what extent technology spillovers affect carbon emissions remains an open question. 

Among the above factors, many researchers are especially concerned about technical innovation’s effect on the environment [8, 
35]. In spite of its role in enhancing economic growth, technology also generates a variety of effects on the environment. Technology is 

* Corresponding author. No. 470, Binwen Road, Binjiang District, Hangzhou, Zhejiang, China. 
E-mail addresses: 517724690@qq.com (W. Tan), caoteng@hikvision.com (T. Cao).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e15683 
Received 3 August 2022; Received in revised form 15 April 2023; Accepted 18 April 2023   

mailto:517724690@qq.com
mailto:caoteng@hikvision.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e15683
https://doi.org/10.1016/j.heliyon.2023.e15683
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e15683&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e15683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e15683

2

like a double-edged sword. Acemoglu et al. [2] classified the technologies that cause environmental pollution as grey technologies, and 
those that have a positive impact on the environment or address pollution concerns as green technologies. Recently, green technology 
innovations have become vital tools in lowering CO2 emissions [15,32] Theoretically, though the presence of more environmental 
technology-related patents is more beneficial to CO2 reduction, few empirical findings can prove the point [15]. However, similarly, 
unanimous consensus has been achieved on the association of CO2 emissions with green technology innovations. 

Some existing researches have demonstrated that green technological innovation negatively affect carbon emissions, and some 
have drawn conclusions about how green technology innovations positively affect carbon emissions with different samples [7,14]. 
Weina et al. [32]. discovered that for Italia green technologies’ contribution to promoting efficiency of environmental production but 
not play an appreciable impact in carbon emission reduction. Kerui Du et al. [15]revealed the single threshold effect of green tech-
nological innovation on level of income. Xuefeng shao et al. [27]found that heterogeneous green technologies exert a positive impact 
on urban carbon emissions in China. Lin et al. [20]investigated how the green technology innovation affects CO2 emissions reduction 
in China. The results show that green technology innovations exist a heterogeneous impact among cities. However, there are still 
inconsistent conclusions above the relationship between green technological innovation and CO2 emissions. 

Thus far, few scholars have divided green technologies into different categories and studied the effect of green technologies on 
carbon emissions. This study refer to “environment-related technology” as green technological innovation, which including three types 
of patent-based indicators, that is, Green development technology (indicator of technology development), Green international 
collaboration technology (indicator of international collaboration) and Green diffusion technology (indicator of technology diffusion) 
(Data from the OECD database). The effects of these three green technology innovation on CO2 emission were studied respectively. 

This paper is similar to the study carried out by Kerui Du et al. [15]. Whereas, their difference is mainly reflected in the selection of 
research methods and research samples. 

The main marginal contributions of the current research are:  

(1) Former studies have generally discussed the green technological innovation affecting environmental change, with less attention 
paid to the effect of the interaction of these green technological innovation on carbon dioxide emissions. In this study, the 
impact of three types of technologies on CO2 emissions is studied, including green technology development, green international 
cooperation technology and green technology diffusion. Meanwhile, the interaction of these three technologies is discussed for 
the first time. The paper has drawn some novel conclusions regarding the effect of green technological innovation on the 
environment.  

(2) Previous studies have paid little attention to endogenesis and regional heterogeneity of green technology innovation on CO2 
emissions, leading to biased conclusions and inconsistent. To avoid the deficiency, the research further adopts the panel 
regression approach to estimate the endogenesis and regional heterogeneity. 

The other parts in this paper are structured as below. Section 2 shows the econometric methodology. Section 3 provides variable 
selection and data description. Section 4 shows the results and discussion. The conclusions and policy implications are presented in 
Section 5. 

2. The model specification and econometric method 

The original model of IPAT was devised by Ehrlich &Holdren [12], and then extended by Dietz and Rosa [10]. It is a general method 
which can be employed to explore the factors that affecting environmental pollution. Many researchers have widely used the model to 
test different determinants in carbon emissions) [20,33]. The model’s key factors affecting carbon emissions, including technology 
level, population and economic size. The model can be expressed as follows: 

I =P × A × T (1)  

in Eq. (1), I, T, P, and A denote CO2 emissions, technological level, population and economic development respectively. 
To facilitate tests of the econometric estimating model, Dietz and Rosa (1997) [10]converted IPAT to the STIRPAT model, as 

follows: 

Ii = αPb
i Ac

i Td
i ei (2)  

in Eq. (2),I, T, P, and A denote the same as in Eq. (1), and a represents the intercept term, b, c and d represents the elastic value of P, A 
and T, subscript i represents different observation term and ei is the random error. 

Based on the analysis above, we perform logarithmic processing on Eq. (3), and construct the econometric estimating model as 
follows: 

lnCO2i,t =αi + β1 ln Gti,t + β2 ln Gtci,t + β3 ln Gtdi,t + β4 ln POPi,t

+β5 ln GDPi,t + β6 ln URBi,t + β7 ln ISi,t + ui,t + εi,t
(3)  

where ln Gti,t is the patent counts of green technology development, ln Gtci,t represents the share of patent counts of green international 
cooperation technology, ln Gtdi,t refers to the share of patent counts of green technology diffusion, ln GDPi,t denotes the scale of 
economic development, ln POPi,t represents the population size, ln URBi,t stands for the urbanization rate, ln ISi,t signifies the indus-
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trialization rate, i denotes the country, t indicates the year, ui,t is the economy i’s individual effects and εi,t is the random term. 
Using Eq. (3), we refer to Refs. [1,8]to introduce ln Gti,t × ln Gtdi,t and ln Gtci,t × ln Gtdi,t to the model. The interaction terms stand 

for the Interaction effects of two kind of green technologies. Considering technology spillover capacity, we propose Eq. (4) as follows: 

lnCO2i,t = αi + β1 ln Gti,t + β2 ln Gtci,t + β3 ln Gtdi,t + β4 ln GDPi,t + β5 ln POPi,t

+β6 ln URBi,t + β7 ln ISi,t + β8 ln Gti,t × ln Gtdi,t + β9 ln Gtci,t × ln Gtdi,t + ui,t + εi,t
(4)  

3. Variable selection data description 

3.1. Dependent variable 

According to Refs. [9,29], the total CO2 emissions and CO2 intensity (CI) are employed as the indicators of the dependent variable. 
These data come from the World Bank. 

3.2. Core variables 

Green technology innovation is an effective method to resolve economic and environmental conflicts, which is also the key to CO2 
emission reduction [7,15]. Existing empirical papers usually measure technological innovation based on OECD statistics database. The 
green technology innovation data are obtained from OECD statistics database. This study applies patent counts of green technology 
development (Gt), patent counts of green international cooperation technology (Gtc) and patent counts of green technology diffusion 
as our core explanatory variables. 

3.3. Control variables 

In terms of the control variables, we employ the two significant variables in Du et al. [15]with per capita GDP (constant 2015 US$) 
as the indicator of economic development level, and the ratio of urban population as the indicator of urbanization level (URB). 
Following Xu and Lin [33], we take the total population in sample country as the proxy of population size (POP). This study uses 
industry (including construction), value added (% of GDP) as the proxy of industrial structure (IS) [36]. 

3.4. Data description 

Table 1 lists variable description and data sources. Table 2 displays the statistical characteristics of variables by groups. It presents 
significant differences in carbon dioxide emissions, green technology innovation and structural types between G7 countries and BRICS 
countries. For example, the GDP per capita’s mean of the G7 group is approximately 7.28 times that of the BRICS group, the green 
technology patent’s mean is 7.41 times that of the BRICS group, and the CO2 emission’s mean is only 0.69 times that of the BRICS 
group. 

4. Results and discussion 

4.1. Benchmark regression 

To avoid false regression, it is indispensable to test the multicollinearity of each explanatory variable by means of the variance 
expansion factor (VIF). From Table 3, first column, it can be seen that the value of VIF for each explanatory variable is less than 10. This 
implies that there is no severe multicollinearity among these explanatory variable. 

In addition, to ensure the credibility of regression estimation, it is need to test the stationarity of the variable through unit root test 

Table 1 
Variable description and data sources.  

Variable Description Data source 

Dependent variable 
CO2 CO2 emissions (kt) https://databank.worldbank.org/source 
CI CO2 emissions (kt)/Land area (sq. km) https://databank.worldbank.org/source 
Core variables 
Gt Patent counts of green development technology https://stats.oecd.org/# 
Gtc Patent counts of green international collaboration technology (% of environment-related technology) https://stats.oecd.org/# 
Gtd Patent counts of green diffusion technology https://stats.oecd.org/# 
Gt0 Patent counts of green development technology(% of environment-related technologies) https://stats.oecd.org/# 
Control variables 
GDP GDP per capita (constant 2015 US$) https://databank.worldbank.org/source 
POP Total population https://databank.worldbank.org/source 
URB Urban population (% of total population) https://databank.worldbank.org/source 
IS Industry (including construction), value added (% of GDP) https://databank.worldbank.org/source  
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Table 2 
Descriptive statistics for 12 countries under review.  

Group Variable Obs Mean Std. Dev. Min Max 

G7 CO2 203 1293357 1664279 304530 5776410 
Gt 210 2538.667 2843.343 128.08 10395.72 
Gtc 210 75.05714 15.94058 38 97 
Gtd 210 10324.15 12970.61 278 42886 
GDP 203 37450.02 7360.078 27479.58 60836.77 
POP 210 1.02e+08 8.30e+07 2.77e+07 3.28e+08 
URB 210 77.835 5.526266 66.706 91.698 
IS 189 24.23443 4.339432 17.18838 34.5538 

B5 CO2 145 1887300 2457007 198260 1.03e+07 
Gt 150 342.6867 916.8483 1.75 5693.64 
Gtc 144 64.65972 28.53171 8 100 
Gtd 147 9122.741 27600.67 16 167183 
GDP 150 5142.044 2904.647 527.5145 10155.42 
POP 150 5.60e+08 5.43e+08 3.68e+07 1.41e+09 
URB 150 57.32712 20.18588 25.547 86.824 
IS 150 31.44496 8.125584 18.1885 47.5574 

Note: G7 and B5 represent the G7 countries and BRICS countries, respectively. 

Table 3 
Test results for multicollinearity and unit root test of panel data.  

Variable VIF LLC IPS Fisher-PP Fisher-ADF 

lnCO2 lnCI 

lnCO2 – – − 1.6012** − 1.9920** 65.0389 *** 60.0902*** 
lnCI – – − 3.0163*** − 2.3488 *** 63.4323*** 60.9781*** 
lnGt 7.33 8.76 − 4.2167*** − 2.5910*** 59.7621*** 69.3302*** 
LnGt0 1.71 1.92 − 2.7890*** - 3.7504*** 62.1524*** 60.5636*** 
lnGtc 2.18 2.29 − 5.8161*** − 2.3903*** 47.2901*** 82.5325*** 
lnGtd 6.87 6.87 − 6.3357*** − 1.7850 ** 19.3244** 55.8847 *** 
lnGDP 7.07 8.24 − 2.6360*** − 4.8823*** 9.7627** 44.8975 *** 
lnPOP 7.05 7.13 − 2.3121** − 0.6585** 114.7589*** 59.4061 *** 
lnURB 8.65 8.81 − 2.4835*** − 0.1970** 112.1966 *** 53.9990 *** 
lnIS 2.18 2.39 − 1.9233** − 2.1089** 104.2146*** 82.1105*** 

Note: ***<0.01.** <0.05. *<0.10. 

Table 4 
Estimated results of benchmark regression.   

lnCO2 lnCI 

(1) (2) (3) (4) 

lnGt − 0.0251 0.133*** 0.728*** 0.154*** 
(0.0307) (0.0254) (0.0649) (0.0251) 

lnGtc − 0.420*** 0.0336 0.373* 0.0382 
(0.0883) (0.0402) (0.187) (0.0360) 

lnGtd 0.214*** 0.152*** − 0.397*** 0.113*** 
(0.0336) (0.0268) (0.0710) (0.0234) 

lnGDP 0.458*** 0.261*** 0.255 0.489*** 
(0.0752) (0.0676) (0.159) (0.0578) 

lnPOP 0.712*** 0.979*** − 0.176 1.538*** 
(0.0527) (0.124) (0.111) (0.153) 

lnURB − 0.497* 1.556*** − 1.753*** 1.213*** 
(0.202) (0.193) (0.427) (0.171) 

lnIS 0.997*** 0.588*** 1.049** − 0.171 
(0.158) (0.0671) (0.333) (0.0930) 

lnGtlnGtd  − 0.0222***  − 0.0184***  
(0.00331)  (0.00317) 

Cons − 5.023** − 16.62*** 1.242 − 39.48*** 
(1.840) (2.426) (3.887) (2.831) 

R2 0.833  0.639 0.904 
N 325 325 325 325 

Standard errors in parentheses. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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of panel data before regression estimation. Therefore, LLC test, IPS test, Fisher-PP test and Fisher-ADF test are used in this paper. The 
results of panel unit root test are shown in Table 3. It indicates that the hypothesis of null are rejected among these four approaches and 
for the whole variables are significantly at the level of 5%, which implies that the all variables are stationarity. Thus, it implies that the 
regression can be performed. 

The pooled regression model, the panel random and fixed effects model are adopted for estimating Eq. (3). Table 3 shows the test 
results in the all sample analysis. Columns (1) and (3) adopt pooled regression. Columns (2) and (4) apply the panel random and fixed 
effects model regression. Besides, the explained variables are CO2 emissions (lnCO2) and carbon intensity (lnCI). Estimation results 
display that the partial variable of pooled regression is significant. But, the test of individual effect indicates the existence of individual 
effects in panel data, so pooled regression is abandoned. Therefore, it is appropriate to use random model and fixed model to test. 

Hausman test is used to determine whether a random-effects test or a fixed-effects test. Hausman test indicate that lnCO2 is suitable 
for random effect test, and lnCI is suitable for fixed effect test. 

Therefore, Columns (2) in Table 4 indicate the random effect estimation results of CO2 emissions (lnCO2) and columns (4) of Table 4 
show the fixed effect estimation results of CO2 intensity (lnCI), the estimated coefficient of the independent variables lnGt and lnGtd is 
positively significant at the 1% level, and that of the independent variable lnGtc is not significant. According to estimation results, 
green technology development (lnGt) singly may not significantly reduce CO2 emissions (lnCO2) and carbon intensity (lnCI). However, 
according to columns (2) to (4) in Tables 4 and it can be found that the interaction term (lnGt*lnGtd) of explanatory variables is 
significantly negative at the level of 5% in the whole sample. This implies that a good combination of various green technology can 
efficiently cut down CO2 emissions. In terms of control variables, conclusions based on Table 4 indicate that coefficient’s value of 
lnGDP, lnPOP and lnURB are all significantly positive. This is basically keeping with the conclusion drawn by Kerui Du et al. [15]. 

4.2. Regional heterogeneity analysis 

Fig. 1 displays a comparison of CO2 emissions between G7 countries and BRICS countries in different periods. It can be observed 
thatCO2 emissions show a steady downward trend in the G7 countries while a continuous upward trend in the B5 countries. As revealed 
by the comparison of green technology innovation, there exists a big gap in green technology innovation betweenG7 countries and 
BRICS countries, but the gap is narrowing in recent times (see Fig. 2.) 

The analysis results are concluded on the basis of benchmark regression sample section. In this part, to compare the regional 
heterogeneity between G7 countries and BRICS countries, we use regional heterogeneity panel data models to investigate the inter-
action impact of green technology innovation on CO2 emissions. 

According to the results show in Columns (1) to (4) of Table 5, in the G7 countries, the impact of green technology development and 
green international cooperation technology on CO2 emissions and carbon intensity are significantly positive and negative at the 1% 
level, separately. In the meanwhile, the impact of the interactive term (lnGt*lnGtd) of green development and green technology 
diffusion on CO2 emissions and carbon intensity are significantly negative at the level of 5%. In the BRICS countries, the impact of 
green technology development, green international cooperation technology and green technology diffusion on CO2 emissions and 
carbon intensity are significantly positive at the 1–5% level. Instead, the impact of the interactive term (lnGtc*lnGtd) of green in-
ternational cooperation technology and green technology diffusion is significantly negative at the 5% level. It can be found that the 
above green technology innovation term efficiently reduces CO2 emissions of G7 countries and BRICS countries, and that the 
conclusion of the significance of control variables is similar to that of the benchmark regression. 

Fig. 1. CO2 emissions in two groups over time. Note: The average in every group is shown (Unit: tons/individual country).  
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4.3. Endogenous test 

In the previous estimates, the endogeneity of endogenous variables was not considered. Thus, in the current section, Hausman’s 
endogeneity test is conducted, finding the endogeneity of interactions of core explanatory variables in the model. 

Therefore, by introducing the lag of lnCO2, lnGt, lnGtc and lnGtd as the instrument variables, we perform G2SLS random-effects IV 
regression and fixed-effects (within) IV regression tests (see Table 6). The estimated results indicate that the interaction term 
(lnGt*lnGtd) of explanatory variables is significantly negative at the level of 5% in the whole sample. Moreover, the effects of lnPOP, 
lnGDP and lnURB on lnCO2 and lnCI are significantly positive. Thus, our empirical tests can be confirmed. 

Fig. 2. Patent counts of environment-related technologies (Green technology innovation) in two groups over time. Note: The average in every group 
is shown (Unit: patent counts/individual country). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Table 5 
Estimated results of regional heterogeneity regression.   

G7 B5  

lnCO2 lnCI lnCO2 lnCI 

lnGt 0.245*** 0.243*** 0.0739*** 0.0738*** 
(0.0770) (0.0771) (0.0140) (0.0139) 

lnGtc − 0.366*** − 0.362*** 0.232** 0.232** 
(0.101) (0.102) (0.112) (0.113) 

lnGtd 0.0447 0.0411 0.162** 0.162*** 
(0.0642) (0.0642) (0.0630) (0.0630) 

lnGtlnGtd − 0.0103** − 0.0998**   
(0.0642) (0.0052)   

lnGtclnGtd   − 0.0399** − 0.0340**   
(0.0173) (0.0173) 

lnGDP 0.553*** 0.554*** 0.487*** 0.488*** 
(0.128) (0.128) (0.0797) (0.0797) 

lnPOP 0.228 0.235 1.874*** 1.873*** 
(0.327) (0.328) (0.197) (0.197) 

lnURB 1.978*** 1.968*** 0.362* 0.361* 
(0.343) (0.343) (0.174) (0.174) 

lnIS 0.657*** 0.657*** − 0.376*** − 0.376*** 
(0.139) (0.140) (0.0860) (0.0860) 

Cons − 6.816 − 20.41*** − 27.81*** − 43.27*** 
(5.875) (5.880) (3.685) (3.684) 

R2 0.712 0.712 0.979 0.979 
N 183 183 142 142 

Standard errors in parentheses. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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4.4. Robustness test 

In order to examine the robustness of our estimated results, the patent counts of green development technoloy (% of 
environment-related technologies) (Gt0)are applied to represent patent counts of green development technoloy (Gt). From 
Table 7, we can find that the robustness results are keeping with the empirical tests of Table 4. The robustness test shows that the 
interaction term (lnGt0*lnGtd) of explanatory variables is significantly negative at the level 5% in the whole sample. Furthermore, the 
effects of lnPOP, lnGDP, lnURBon lnCO2 and lnCI are significantly positive, indicating that the robustness test results basically 
consistent with the front estimates. Therefore, it can be affirmed that our empirical tests are robust. 

5. Conclusions and policy implications 

5.1. Conclusions 

To explore the association of green technological innovation with CO2 emission in the G7 countries and BRICS countries, we 
employ the random and fixed effect estimate method covering the panel data of 12 countries from 1990 to 2019. Empirical results are 
presented as follows: 

For the full sample, the effect of green technological development and green technology diffusion on CO2 emissions and carbon 
intensity are significantly positive at the level of 1%. On the contrary, the impact of its interactive term (lnGt*lnGtd) is significantly 
negative at the level of 1%. For G7 countries, the interactive term (lnGt*lnGtd) of green technology development and green technology 
diffusion are significantly negative at the level of 1%. For BRICS countries, While interactive term (lnGtc*lnGtd) of green international 
cooperation technology and green technology diffusion are significantly negative at the level of 1%. 

The tests of endogenesis and robustness show that the effect of the interactive term (lnGt*lnGtd) is significantly negative at the level 
of 5%. Meanwhile, the effect of control variables like lnGDP, lnPOP and lnURB on CO2is significantly positive, which is keeping with 
the conclusions in previous studies (Kerui Du et al., 2019) [15]. 

5.2. Policy implication 

According to the green technological innovation and CO2 emission average index in the G7 and BRICS countries, the green 
technology innovation level in the G7 countries is much higher than that in the BRICS countries, and that the CO2 emissions of the G7 
countries are controlled. In contrast, CO2 emissions from the BRICS countries are still increasing. Therefore, this study provides some 
environmental benefits for policymakers. In terms of the G7 countries, they should continue to implement their green international 
cooperation technology, make full use combined effect of green technology development and green technology diffusion as well as 
maintain the sustainability of favorable ecological environment. For the BRICS countries, efforts to control CO2 emissions should 
include measures of promoting in the R&D and green technology development and preventing further environmental degradation 
through the combined effects of green international cooperation technology and green technology diffusion, aiming to achieve the 
sustainability. 
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Appendix  

Table 1 
Grouped by region.  

G7 countries 
Canada, France, Germany, Great Britain (United Kingdom), Japan, Italy, United States. 
BRICS countries 
Brazil, Russia, India, China, South Africa.  

Table 6 
The regression estimation of considered instrumental variables.   

lnCO2(1) lnCI(2) 

G2SLS random-effects IV regression Fixed-effects (within) IV regression 

lnGtlnGtd − 0.00838*** − 0.00762*** 
(0.00231) (0.00229) 

lnGDP 0.525*** 0.493*** 
(0.0731) (0.0752) 

lnPOP 1.318*** 1.416*** 
(0.0990) (0.132) 

lnURB 1.357*** 1.326*** 
(0.201) (0.207) 

lnIS 0.654*** 0.685*** 
(0.0725) (0.0784) 

Cons − 23.46*** − 39.38*** 
(2.225) (2.602) 

R2 0.798 0.799 
N 317 317 

Standard errors in parentheses. 
*p < 0.05, **p < 0.01, ***p < 0.001. 

Table 7 
Robustness test.   

lnCO2 lnCI 

(1) (2) 

lnGt0 0.222* 0.219* 
(0.0881) (0.0881) 

lnGtc 0.0509 0.0512 
(0.0382) (0.0382) 

lnGtd − 0.0818* − 0.0809* 
(0.0392) (0.0391) 

lnGt0lnGtd − 0.0348** − 0.0345** 
(0.0122) (0.0122) 

lnPOP 0.532*** 0.533*** 
(0.0583) (0.0583) 

lnPOP 2.073*** 2.075*** 
(0.129) (0.129) 

lnURB 0.829*** 0.826*** 
(0.163) (0.163) 

lnIS 0.0356 0.0351 
(0.0909) (0.0909) 

Cons − 33.29*** − 47.72*** 
(2.507) (2.506) 

Fix effects Y Y 
Country Y Y 
Year Y Y 
R2 0.893 0.893 
N 325 325 

Standard errors in parentheses. 
*p < 0.05, **p < 0.01, ***p < 0.001. 

W. Tan and T. Cao                                                                                                                                                                                                    



Heliyon 9 (2023) e15683

9

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e15683. 
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