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1 Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy, 2 Neural Development Group, Mouse Cancer Genetics Program,

Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America, 3 Center of Clinical Pathology and Innovative Therapy, INRCA,

Ancona, Italy

Abstract

Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still
unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a
cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology.
Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy
homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to
anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown
to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel
complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the
dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently
open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm)
is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel
complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the
enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system
in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic
patients.
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Introduction

Cardiomyopathy is frequently associated with Duchenne and

Becker muscular dystrophy. Indeed, with the increased lifespan of

the patients bearing such pathologies, cardiac failure is becoming

one of the most frequent causes of death [1]. The murine model of

Duchenne muscular dystrophy (mdx mutant mouse) bears a point

mutation in the gene coding for dystrophin, which causes the

premature termination of the polypeptide chain during translation

[2,3]. Consequently, mdx mice lack full-length dystrophin and

develop a late onset and progressive cardiomyopathy that has

some similarity with that observed in human dystrophic patients

[4,5]. Histological signs of disease in mouse hearts become

detectable at 6 months of age with small necrotic and infiltrative

foci. Fibrosis develops at later stages, usually by 9 months of age

[6]. The biochemical and physiological alterations observed in

young and old mdx mice have led to a number of hypotheses to

explain the pathogenesis of the cardiomyopathy. These include,

altered energetics [7], perturbation in Ca++ handling [8], nitric

oxide (NO) signaling alterations [9,10] and increased ROS-

mediated damage [11]. Nevertheless, to date there is no evidence

of a direct link between dystrophin and any of the aforementioned

alterations in the heart.

It should also be noted that physical stress affects the cardiac

and skeletal muscles differently in the mdx-related pathogenesis.

For example, the heart is a muscle that works continuously, and

yet the cardiac disease develops relatively late as compared to the

skeletal muscle. Instead, skeletal muscles such as the diaphragm,

which are in continuous work, are more affected than other

muscles [12]. Nevertheless, even the cardiopathy of the mdx mice,

to a certain degree, has been found to worsen with increased

workload [13]. These observations suggest that dystrophin may

have different roles in skeletal and cardiac muscle. However, it is

unclear whether the lack of dystrophin has a primary role in the

myopathy by rendering the dystrophic cardiomyocytes more

fragile or by affecting the myocyte energetics, which is more

relevant when the work-load is increased. We tried to address

these questions by studying the energetics of the mdx heart in

normal and hypoxic conditions. We found consistent alterations in

energy compounds in the mdx heart, including a marked decrease

in creatine-phosphate (PC) level under normal oxygenated

conditions that become more severe under hypoxic conditions.
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These data suggest that the mdx heart is more susceptible to an

ischemic insult. In searching for clues causing the decrease in PC

and increased susceptibility to ischemia we investigated the status

of the ATP sensitive potassium channel (KATP) complex since it

relies on PC for its correct functioning [14] and it is involved in

protection during ischemia [15,16]. In the heart, there are two

main KATP channel isoforms, Kir6.1 and 6.2. In addition, there

are a number of accessory subunits sensitive to sulphonilurea

(SUR), the most highly expressed being the SUR2A subunit. It has

been shown that the function of the KATP channel complex,

including the Kir6.2 and SUR2A subunit is modulated by

intracellular ATP levels. In addition, enzymes such as the creatine

kinase muscle isoform (CKm) [14] as well as other glycolytic

enzymes [17,18,19] are involved in the accurate sensing of

intracellular ATP. Specifically, it appears that the close proximity

of CKm to the Kir channel complex allows for potent modulation

of the channel activity by the CKm substrates PC and creatine,

which, respectively causes the channel to close or open.

It has been reported that activation of KATP is protective against

the effect of ischemia [16]. Furthermore, the preconditioning

activation of KATP is responsible for protecting the heart from

more severe ischemic insult [15]. Kir6.2 knockout mice bear mild

cardiac defects [20] that resemble in part the cardiomyopathy of

the mdx mice, being both progressive and late onset; furthermore

their heart, like in the mdx mice, is more susceptible to increased

workload [21,22]. These data provided the basis for our

investigation into a possible relationship between dystrophin and

the Kir6.2 and SUR2A KATP complex and to studying the KATP

complex activity in the mdx cardiomyocytes. We found a physical

interaction of the KATP channel and CKm with dystrophin, and

compromised ATP sensing capabilities by KATP channels. We

hypothesize that the altered function of the KATP system may be

responsible for the enhanced susceptibility of the mdx heart to

increased workload and ischemia.

Results

Energy compound levels in the mdx heart are severely
affected during hypoxia

It has been reported that mdx mutant hearts have metabolic

and signaling alterations preceding the development of the

cardiomyopathy. These alterations include compromised cardiac

contractile function and efficiency, reduced cellular integrity, and

exacerbated alterations in mitochondrial citric acid cycle-related

parameters and in nutrient signaling pathways related to Akt [7].

Therefore, we decided to further this analysis by testing how mdx

hearts respond to stress conditions. To investigate whether energy

compound levels in mdx hearts are more affected than in controls

during hypoxic conditions we first performed 31P NMR in

Langendorff-perfused hearts. Both wt and mdx hearts quickly

recovered spontaneous beating after the cannulation. In order to

obtain homogeneous data, 31P NMR spectra recording was

initiated 30 minutes after removal of the heart. Data collected at

this time point were considered values in normoxic conditions

since we used an oxygenated solution for the perfusion. Data

collection requires about 10 minutes per sweep and at least 4

complete sweeps were recorded in order to have a sufficient signal

to noise ratio. Although this time frame is too long to apply any

protocol to induce ischemia or hypoxia that can be reversed

without causing any permanent damage, 31P NMR spectra-

derived quantification of energy compounds is valuable because it

provides ex vivo data and it permits a valuable comparison with

the data obtained with a different technique. A series of 4 sweeps

were averaged to obtain spectra that were then used to quantify

the concentration of PC and Pi. 31P NMR spectra of wt and mdx

mouse hearts show PC/Pi ratio as well as pH values that are

significantly altered in mdx mice compared to those of wt (the ratio

is 1.1160.31 in mdx hearts versus 2.0460.16 p,0.05; in wt; the

pH value was 7.0360.03 versus 7.1960.03 p,0.02 n = 5 in each

experimental group). Representative traces are shown in Fig. S1.

Since 31P NMR spectra analysis is not feasible in conjunction

with a protocol to induce ischemia we then tested energy

compound levels by HPLC on quickly frozen specimens of

Langendorff-perfused hearts under normoxic and hypoxic condi-

tions. In normoxic conditions, we confirmed the data obtained by

NMR regarding the relative levels of Pi and PC. Specifically, we

found a significantly lower PC level in mdx hearts compared to wt

(wt = 36.1462.13 mmol/g dry weight; mdx = 26.3161.48 mmol/

g dry weight; p,0.05) whereas the Pi was increased (wt =

10.6660.11 mmol/g dry weight; mdx = 14.8361.2 mmol/g dry

weight; p,0.01; Table 1). Interestingly, under hypoxic conditions,

both wt and mdx hearts showed a comparable fall of ATP while

ADP, AMP and PC changed differently. Hypoxia caused ADP

and AMP concentrations to increase more than two-and four-fold

respectively in wt mice. However, in mdx mice, ADP did not

increase much while AMP concentration increased seven-fold,

which represents a 100% increase when compared to wt (Table 1).

Moreover, during hypoxia the PC concentration in wt hearts was

reduced to 15% of its value in normoxic condition while in the

mdx hearts its concentration was only 9.5% of its normoxic level.

These data suggest that the dystrophic hearts are more susceptible

to hypoxic insult than wt.

Loss of function of KATP in mdx hearts
It has been reported that KATP functions as an innate

mechanism of protection during cardiac adaptation to stress and

workload [18]. Therefore we investigated the functional status of

the KATP system in cardiomyocytes isolated from the mdx hearts.

We chose to analyze embryonic mdx cardiomyocytes first since we

reasoned that adult mdx cardiomyocytes might already be

compromised by an advanced dystrophic cardiomyopathy.

Opening of KATP channels caused by a reduction in the

intracellular ATP concentration generates potassium currents that

can be studied to directly investigate the functional status of KATP

channels. Therefore, we used three different approaches to reduce

Table 1. Data obtained by HPLC analysis of control and mdx
mouse hearts.

Wt mdx

Normoxic Hypoxic Normoxic Hypoxic

PC 36.1462.13 5.660.87 26.3161.48* 2.4560.61$

Cr 30.806 0.84 64.7066.04 31.0062.13 56.0062.08

Pi 10.6660.11 31.8763.49 14.8361.20* 33.1062.33

ATP 18.2560.93 8.5560.32 15.8360.89 5.8560.67

ADP 5.8060.17 12.5360.58 6.1160.24 9.1060.57$

AMP 1.2460.16 5.2861.07 1.2260.16 8.4560.32$

Normoxic and hypoxic condition are compared. The values represent the
compound concentration expressed as mmol/g dry weight 6 SE; n = 5 per
group.
*t-test p,0.05 significantly different values between mdx and wt in normoxic
conditions.
$ p,0.05 by 2 way ANOVA, animal type x condition.
doi:10.1371/journal.pone.0027034.t001

Altered KATP Function in mdx Cardiomyocytes
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the intracellular ATP concentration causing KATP channel

opening.

1) Dialysis of intracellular ATP. We patched the

cardiomyocytes to obtain a whole cell configuration using an

intracellular solution with no ATP. In wt cardiomyocytes we

detected a strong current within 3 to 5 minutes from the

membrane break-in (Fig. 1A). This time course is compatible

with the dialysis of the physiological intracellular ATP [23,24].

The current obtained reached its maximum within 10 minutes

after the break-in and was completely abolished by 25 mM of the

KATP specific channel blocker Glibenclamide. Furthermore,

current leakage at the holding potential of –70 mV inverted its

polarity from an inward to an outward current, indicating that the

permeability to potassium increased to an extent that the

unclamped resting potential of the cell moved closer to the

Nernst equilibrium for potassium (i.e. to the potential where

potassium is not flowing through the membrane). These data allow

the characterization of this current as a KATP mediated current

(IATP). Surprisingly, in mdx cardiomyocytes we were unable to

record any IATP (Fig. 1B).
2) Poisoning of mitochondria. We used the perforated

patch clamp method to maintain the physiological intracellular

milieu during the recording [25]. Subsequently, we reduced the

intracellular ATP level by poisoning the mitochondria with

100 mM dinitrophenol (DNP).

In wt cardiomyocytes the DNP treatment induces the

appearance of a strong potassium current that can be completely

abolished by Glibenclamide (25 mM) treatment or washout

(Fig. 2A). The DNP-induced current reaches a peak within 5

minutes from its onset. However, DNP treatment of dystrophic

cardiomyocytes does not cause any IATP current (Fig. 2A). Instead,

40–50 minutes after the DNP application the cell membrane

becomes very unstable and the seal is lost. Occasionally, some cells

are able to withstand the DNP treatment for up to one hour but

even these cells do not show any KATP mediated current,

eventually become progressively swollen and form membrane

blebs.
3) Treatment with the agonist cromakalim. Surprisingly,

a strong KATP mediated current is induced both in the perforated

and in the whole cell configuration in mdx cardiomyocytes upon

treatment with the potassium channel agonist cromakalim

(100 mM) (Fig. 2B, Fig. S2). This current was not different from

the one recorded in the wt cells either in its amplitude or in the

developing time course. The current obtained was also completely

blocked by the antagonist Glibenclamide (25 mM) as in wt cells.

The current density in all configurations was quantified at

+40 mV and normalized according to cell size (Fig. 3).

Since the agonist cromakalim acts on the KATP channel

auxiliary subunit, these data strongly suggest that the KATP

channels are present and are correctly assembled at the membrane

of the mdx cardiomyocyte. However, the cells are unable to sense

the changes in intracellular [ATP].

To investigate whether the defects observed in embryonic

cardiomyocytes were also present in the adult we analyzed the

KATP function in cardiomyocytes freshly isolated from young or

Figure 1. IATP obtained by dialysis of intracellular ATP is
missing in the mdx cardiac cells. Time course of IATP development
in wt (A) and mdx cultured cardiomyocytes (B). In wt cells the dialysis of
ATP rapidly induces the IATP current that is selectively abolished by the
application of the antagonist. In the mdx cells no IATP is induced by the
whole-cell recording conditions after 13 minutes. The current develops
rapidly after the application of the selective agonist Cromakalim and is
rapidly abolished by the selective antagonist Glibenclamide. Insets
show the current traces relative to the time point.
doi:10.1371/journal.pone.0027034.g001

Figure 2. IATP obtained by poisoning mitochondria is missing in the mdx cardiac cells. A) Time course of IATP development in wt and mdx
cultured cardiomyocytes recorded in perforated patch clamp. In wt cells treatment with DNP poisons the mitochondria, and consequently decreases
the [ATP]i leading to the disappearance of the IATP current by wash out. In the mdx cells no IATP is induced by DNP treatment after 50 minutes. Longer
treatment usually results in membrane instability and cell death. B) In mdx cardiomyocytes in perforated patch clamp the IATP current develops
rapidly after the application of the selective agonist Cromakalim, while the application of the selective antagonist Glibenclamide completely
abolishes the current. The lower trace represents the applied voltage protocol.
doi:10.1371/journal.pone.0027034.g002

Altered KATP Function in mdx Cardiomyocytes
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adult mice. As shown in Fig. 4 young mdx cardiomyocytes failed to

respond to DNP. Cardiomyocytes from old mdx animals also

failed to respond to DNP. Total KATP currents obtained upon

perfusion with cromakalim (100 mM) were not significantly

different between the old and young cardiomyocytes although

we noticed a tendency toward smaller values in the old mdx

cardiomyocytes (Table S2). These data suggest that the defect in

KATP function is present at every developmental stage of the mdx

cardiomyocytes and is independent of the onset of the histological

signs of cardiomyopathy.

Expression of KATP isoforms is not altered in mdx
cardiomyocytes

To gain insight into the mechanism causing the KATP channel

loss of sensitivity to intracellular ATP level in the mdx

cardiomyocytes we investigated the expression level of the different

channel isoforms. We performed RT-PCR expression analysis for

the principal (Kir6.1, Kir6.2) and the associated subunit (SUR1,

SUR2A and SUR2B) isoforms of the KATP channel in both mdx

and wt hearts. We found no changes in the level of expression of

any KATP channel isoform between the wt and dystrophic hearts

(Fig. S4). Interestingly, in the ventricular wall of the mouse heart

the mRNA for the accessory subunits SUR1, SUR2A and SUR2B

are expressed at equal levels while, as previously reported [15], the

Kir6.2 subunit is expressed at a higher level than the Kir6.1

subunit (Fig. S4). These data suggest that since there are no

imbalances in the level of expression of the different KATP channel

isoforms and subunits, other mechanisms may be causing the

KATP channel loss of sensitivity to intracellular ATP level in the

mdx cardiomyocytes.

Kir6.2 co-immunolocalizes with dystrophin
Since our electrophysiology data suggest that the KATP channels

are present and functioning in the mdx mutant cardiomyocytes we

sought to determine their subcellular localization in isolated

control and mutant cardiomyocytes. Immuno-staining of wt

cardiomyocytes showed that Kir6.2 localizes in horizontal stripes

coinciding with t-tubules, as previously reported [26] (Figure 5).

Importantly, Kir6.2 staining of mdx cardiomyocytes revealed a

similar striated t-tubule associated pattern. Optical density profiles

along the longitudinal axis of the fiber further confirmed the

overlapping staining of Kir6.2 with dystrophin in the wt

cardiomyocytes. Immunostaining with an anti-dystrophin anti-

body also showed its presence at the plasma membrane and on the

t-tubule as reported by Stevenson et al. and Frank et al. [27,28].

As expected, dystrophin was not detected in mdx mutant

cardiomyocytes. Taken together these data strongly suggest that

in wt cardiomyocytes dystrophin and Kir6.2 share the t-tubule

localization and in mdx cardiomyocytes Kir6.2 staining is still

localized at the t-tubules.

KATP and Creatine Kinase co-immuno precipitate with
dystrophin

It has been reported that dystrophin may have scaffolding activity

since it mediates the correct membrane localization of several

different proteins in specific tissues (reviewed in [29]). Therefore, we

investigated whether it may also interact with the KATP channel

complex. We first looked for a physical interaction between

dystrophin and Kir6.2, the most highly expressed isoform of the

KATP complex. Cell lysates from mdx and wt cardiomyocytes were

immunoprecipitated with an antibody recognizing full-length

dystrophin and blotted with an antibody specific for Kir6.2. While

the Kir6.2 subunit is present in the cell lysate of both wt and mdx

hearts, its presence was detected only in the immunoprecipitation

experiment from the wt heart (Fig. 6A, Fig S3).

It has been reported that CKm physically associates with KATP

[14] therefore we tested whether CKm could also interact directly

or indirectly with dystrophin. Ventricular cell lysates were

immuno-precipitated with an anti-dystrophin antibody and the

blots were probed with an antibody specific to CKm. Again, as

observed for the Kir6.2 subunit CKm was present in the whole cell

lysates of both wt and mdx hearts but we detected the presence of

CKm only in the IP from the wild type animals (Fig. 6B). The

reverse IP was also performed to test whether dystrophin is

required for CKm interaction with Kir6.2. Cell lysates from wt

and mdx hearts were immunoprecipitated with a specific antibody

against Kir6.2 or SUR2A and analyzed for the presence of CKm

and Dys427. We found that CKm was immunoprecipitated only

in wt lysate (Fig. 7). Importantly, full length dystrophin was also

co-IP by Kir6.2 or SUR2A in wt cardiomyocytes. Since the IP was

performed in tissues and not in an artificial overexpression system,

this result strongly suggests that Kir6.2 and SUR2A do interact

directly, or as part of a protein complex with CKm in vivo and

that dystrophin is required for these interactions.

CKm membrane localization is disrupted by lack of
dystrophin

We have found that CKm is normally present in mdx

cardiomyocyte lysates (Fig. 6B) but does not interact directly in

vivo with Kir6.2 and SUR2A (Fig. 7). So we investigated whether

the loss of dystrophin would affect not only CKm interaction with

Kir6.2 and SUR2A but also its subcellular localization. Crude

lysates of ventricular wall muscle were separated into the cytosolic

and membrane fraction. The fractions were tested by western blot

for the presence of CKm, BK, and full length dystrophin (Dys427).

The BK potassium channel was used as control for the membrane

fraction. As expected, CKm was highly expressed in the cytosolic

fraction of ventricular cardiomyocytes from both wt and mdx

animals. Surprisingly, while we could detect some CKm in the

membrane fraction from wt hearts, no CKm was present in the

equivalent fraction from the mdx mice (Fig. 8). These data,

together with the co-immunoprecipitation results suggest that

dystrophin is essential for the proper localization of CKm at the

plasma membrane.

Discussion

In the present study, we tested the functionality of an

enzymatic/ion channel multimeric complex, i.e. the KATP channel

Figure 3. Summary of IATP density measured at +40 mV.
Induction of the IATP currents by: dialysis of intracellular ATP (n = 8);
mitochondria poisoning with DNP (n = 12); or application of the
selective agonist Cromakalim (n = 9). Only in the latter case do mdx
cardiomyocytes show an IATP density similar to wt. IATP in mdx
cardiomyocytes is significantly different (* p,0.05) than that induced
by ATP dialysis or DNP treatment.
doi:10.1371/journal.pone.0027034.g003

Altered KATP Function in mdx Cardiomyocytes
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complex in the mdx dystrophic mouse model. The KATP channels

are highly expressed in cardiac tissue, as well as in other

metabolically active tissues, where they are believed to be

responsible for the fine metabolic modulation of membrane

potential-dependent cellular functions [30]. Interestingly, we found

that dystrophic mdx hearts have a significant reduction in PC levels

in normoxic conditions and are more susceptible to hypoxia than

controls. It has been reported that normal KATP channel function is

cardioprotective during an ischemic insult and it relies on the

activity of PC and its enzyme CKm. Moreover, a mutation in the

gene encoding the SUR2A subunit disrupting the catalytic KATP

channel gating has been linked to dilated cardiomyopathy in human

[31]. Thus, we focused on the analysis of the KATP channel complex

function and its regulatory enzymes to gain insight into the

pathogenesis of the cardiomyopathy caused by the mdx mutation.

We found that the mdx cardiomyocytes are unable to sense

changes in their metabolic state. In addition, we show that specific

KATP channel complex subunits and CKm, an enzyme essential

for the ATP sensing capabilities of KATP, co-immunoprecipitate

with dystrophin. Importantly, the membrane location of CKm is

lost in mdx cardiomyocytes.

We used three different strategies to reduce the intracellular

ATP concentration in order to open the KATP channel. In wild

type cardiomyocytes all strategies were successful and produced

comparable current values, confirming the presence of functional

channels and their ability to sense variations in ATP levels. In the

perforated patch clamp configuration there is no dialysis of the

intracellular content with the pipette solution and therefore the

intracellular enzymatic milieu remains unaltered. With the

perforated configuration, DNP-induced chemical ischemia in

normal cardiomyocytes caused the insurgence of a potent current

that we characterized as KATP-derived current. In fact, this

current could be blocked by the specific KATP channel blocker

glibenclamide, and an identical current could be induced by the

Figure 4. Current recorded from adult cardiomyocytes. A) Wt and mdx traces primed with 100 mM Pinacidil, before and after application of
DNP 100 mM in voltage clamp whole cell configuration. The voltage protocol used to elicit the current is also indicated. The red trace shows the
current after 5 minutes of DNP application. B) Time course of a recording from wt and mdx cells in relation to the timing of Pinacidil and DNP
application. C) KATP current quantified from the recording of 9 wt (from 3 mice) and 12 mdx (from 4 mice) cells. The current was normalized to the cell
size.
doi:10.1371/journal.pone.0027034.g004

Altered KATP Function in mdx Cardiomyocytes
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specific KATP channel agonist cromakalim. Furthermore, the

current was hyperpolarizing and reversed at about 280 mV

strongly suggesting that it was driven by potassium ions.

Surprisingly, mdx cardiomyocytes recorded in identical conditions

did not develop this current upon DNP treatment. These results

were further confirmed by recording the mdx cardiomyocytes in

whole cell configuration. Strikingly, the KATP current that quickly

Figure 5. Kir6.2 retains the t-tubule subcellular localization in the absence of dystrophin. Immuno-fluorescence analysis of young adult
wt and mdx mutant cardiomyocytes stained for Dys427 and Kir6.2 (A, B). Note dystrophin (red) presence at the plasma membrane and t-tubules of
the wt fiber (A, left image) while it is not detectable in the mdx mutant fiber (B, left image). Kir6.2 (green, A and B center images) is associated to the t-
tubules in both wt and mdx mutant fibers. A and B, right images, show co-staining of Dys427 and Kir6.2. Longitudinal optical density profiles (C)
plotted in red for dystrophin and in green for Kir6.2 show identical spacing in wt cardiomyocytes suggesting co-localization of the two proteins. Note
that the profile for Kir6.2 in the mdx mutant fiber is indistinguishable from that of the wt fiber.
doi:10.1371/journal.pone.0027034.g005

Figure 6. Kir6.2 and CKm co-immunoprecipitate with Dys427.
A) Cardiac lysates from wt and mdx animals were immunoprecipitated
with an anti Dys427 antibody and probed for the presence of Kir6.2
(lower part). The membrane was then re-probed with the anti Dys427
antibody (upper part). Kir6.2 is abundant in the total lysate of both wt
and mdx hearts but co-immunoprecipitates with Dys427 only in the wt
sample. B) CKm interacts with dystrophin. Samples as in A were probed
with an anti CKm antibody (lower panel) The membrane was
subsequently reprobed with an anti Dys427 antibody (upper part).
Note that CKm is abundant in the total lysate of both wt and mdx
hearts but co-immuno precipitate with Dys427 only in the wt sample.
doi:10.1371/journal.pone.0027034.g006

Figure 7. CKm and Dys427 are immunoprecipitated by Kir6.2
and SUR2A. Lysates from wt and mdx mouse hearts were
immunoprecipitated with an anti Kir6.2 (A) or SUR2A (B) antibody.
Blots were probed with anti CKm, Dys427, Kir6.2 and SUR2A antibodies.
Inputs (right panels) show that CKm is present in both wt and mdx
lysates but is co-immunoprecipitated by Kir6.2 or SUR2A only in wt
lysates where Dys427 is present.
doi:10.1371/journal.pone.0027034.g007

Altered KATP Function in mdx Cardiomyocytes
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developed in normal cells, following a change in intracellular ATP

level was never observed in the mdx mutant cells. However, in the

mdx cells the current could be recorded in response to the

treatment with cromakalim, a specific agonist of the SUR2A

component of KATP [32]. This is important because it provides

evidence that the KATP multi-octameric complex is both expressed

and assembled at the membrane in mdx cardiomyocytes. It also

suggests that the KATP channel does not open in response to a

decrease in the intracellular concentration of ATP.

The interaction between Kir6.2 and dystrophin is further

confirmed by the immunostaining of adult cardiomyocytes for

dystrophin and Kir6.2. The normal localization of Kir6.2 in wt

cardiomyocytes has been described to be associated with the t-

tubule and excluded from the muscle fiber membrane where

Kir6.1 channels are present instead (25). We also found Kir6.2 in

t-tubules of wt cardiomyocytes. But most importantly, we found

that dystrophin and Kir6.2 share the same location on the t-

tubule. Moreover, lack of dystrophin does not affect Kir6.2

localization at the t-tubules.

It is not yet clear how the KATP channels sense changes in the

metabolic conditions of the cell. The intracellular ATP/ADP ratio

appears to be the most important factor regulating sarcolemmal

KATP channels, whereas ATP and ADP act, respectively as

endogenous blockers and openers of the channels (reviewed by

[33]). In this regard, it has been suggested that there is a close

functional relationship between the adenylate kinase and CKm

phospho transfer, defining the directionality of nucleotide

exchange within the sarcolemmal KATP-channel vicinity [19]. It

has also been shown that CKm is physically associated with the

sarcolemmal KATP channels [14]; genetic disruption of the CKm

gene alters the responses of KATP to metabolic alteration [34] and

pharmacological inhibition of CKm reduces the effect of

mitochondrial uncoupling on KATP channel activity [35], thus

reinforcing the concept that KATP requires CKm for correct

functioning.

Our co-immunoprecipitation results and the loss of CKm from

the mdx membrane fraction suggest that dystrophin may act as a

scaffold creating a protein complex where the KATP and all the

accessory proteins may interact and allow a coordinate sensing of

the cellular metabolic status (Fig. 9). Moreover, the uncoupling of

the KATP channel from cellular metabolic signals has been shown

in another model of cardiac failure. As we found in the mdx heart,

the intrinsic biophysical properties of the KATP channel were

unaltered and the functional deficits of the channel were caused

from cellular remodeling [36].

The lack of dystrophin has considerably different effects in the

cardiac and skeletal muscle. The skeletal muscle is affected soon

after birth with continuous cycles of degeneration/regeneration

and clear signs of cell damage, while cardiac muscle does not show

any cell damage until late adulthood and dilated cardiomyopathy

become evident at a very old age [37]. Even then this damage is

relatively modest and the main histopathological sign is the

gradual accumulation of fibrosis. Despite the lack of obvious

histological abnormalities in young mdx mice, alterations in

metabolic and electrophysiological properties have been reported

[7,8]. Moreover, the mdx-related cardiomyopathy becomes more

pronounced and appears earlier in animals subjected to sustained

physical activity [13]. Interestingly, the mdx5cv mutant mouse,

despite a much worse skeletal muscle phenotype, shows reduced

cardiac abnormalities when compared to the original mdx mutant

animal. This is probably a reflection of the reduced cardiac

workload associated with the diminished physical activity caused

by the more severe skeletal muscle phenotype in the mdx5cv

mutant [38]. Further studies have shown that injury to dystrophin-

deficient hearts was significantly correlated with the cardiac

workload since reduction of the workload after the initial physical

stress improved contractility and prevented injury in the mdx

hearts in an ex vivo paradigm [39]. Collectively, all these data

suggest that the dystrophic hearts are capable of sustaining a

moderate workload but they fail when higher performance is

Figure 8. Dystrophin is required for the membrane cellular
localization of CKm. mdx and wt whole heart crude lysates were
fractionated into the membrane (mem) and cytosolic fraction (cyt) and
analyzed by western analysis with antibodies specific for dystrophin
(top panel), BK (middle panel) and CKm (bottom panel). Note the
presence of CKm in the membrane fraction of only the wt lysate while
BK, which was used as a control, is present in both the wt and the mdx
samples. The partial degradation for Dys427 is due to the extraction
without detergent, required for the membrane separation. Multiple BK
bands are due to different glycosylation state of the protein during
synthesis.
doi:10.1371/journal.pone.0027034.g008

Figure 9. Model of how dystrophin could affect KATP channel
function.
doi:10.1371/journal.pone.0027034.g009
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required. Now we provide a mechanism to explain how the mdx

mutant heart is more susceptible to stress. Our data support the

hypothesis that dystrophin functions as a scaffolding protein that

correctly assembles the enzymes required by the KATP channel for

sensing the metabolic state of the cell and protecting it from

physical stress or ischemia (Fig. 9). This mechanism is further

supported by the demonstration that functional KATP channels are

cardioprotective since they are required for adaptation to stress

[22]. Any impairment in their physiological function, such as the

defects that we have reported in the mdx heart may contribute to

the development of cardiomyopathy. This finding is important

because it furthers our understanding into the molecular deficits

caused by a lack of dystrophin and, if confirmed in human, may

provide the basis for the development of new strategies for the

pharmacological treatment of DMD cardiomyopathy.

Materials and Methods

Animal
Wild type (C57BL/10 ScSn, wt) and genetically dystrophic

(C57BL/10 mdx) male mice (Jackson Laboratory) were used for all

experiments. Animals were treated in accordance with the

guidelines provided by the Animal Care and Use Committee of

the National Cancer Institute at Frederick, Maryland and in

accordance with guidelines established by the Italian Council for

animal care. A total of 8 animals per group (2–3 months old males

for the young adult and 12-13 months old for the old adult group)

were used for the electrophysiology, 3 animals per group were used

for RT-PCR (2–3 month old males; see Methods S1; primer used in

table S1) and western blot analysis and 5 animals per group for

biochemistry (10–12 months old). Embryos at embryonic day 17.5

(E17.5) were used for deriving embryonic cardiomyocytes.

Heart isolation and perfusion
Mice were heparinized (500 IU/kg i.p.) 15 minutes prior to the

surgical heart explantation and then anesthetized with 50 mg/kg

i.p. sodium pentobarbital. The hearts were rapidly excised and

perfused using a standard Langendorff method at a constant

pressure of 55 mmHg with KHS (118 mM NaCl, 4.7 mM KCl,

2.2 mM CaCl2, 1.2 mM MgSO4, 0.5 mM EDTA, 25 mM

NaHCO3, 11 mM glucose, pH 7.3; all reagents are from Sigma).

Heart rate and left ventricular pressure were checked using a latex

balloon, placed into the left ventricle and connected to a pressure

transducer. Only hearts with a heart rate higher than 300 bpm

after 30 min of perfusion were used for NMR (see Supporting

Information Methods S1) and biochemical analysis (normoxic

condition). Hearts were subjected to global hypoxia by switching

to a 95% N2, 5% CO2 saturated perfusion medium for a period of

10 min and used for biochemical analysis.

Biochemical analysis
High-energy phosphate compounds, creatine and inorganic

phosphate (Pi) were estimated by HPLC methods as previously

described [40]. Briefly, after perfusion, normoxic and hypoxic hearts

were quickly frozen in chilled isopentane and freeze-dried for at least

20 hours. Samples were powdered with a mechanical homogenizer

(Mixer Mill, MM200). The dried tissue powder was dissolved in

0.42 M perchloric acid and, after neutralization and precipitation by

1 M KOH, the extract was injected into the HPLC system.

Cellular protein sub-fraction and Western blotting
analysis

Animals were euthanized in a CO2 chamber and the heart

quickly removed. The ventricular wall was homogenized in ice-

cold buffer I (TRIS 10 mM, NaH2PO4 20 mM, EDTA 1 mM,

protease inhibitor cocktail (Roche) pH 7.8) and centrifuged at

5000 g 610 min. The supernatant was ultra-centrifuged at

35000 g; the pellet containing the membrane fraction was

dissolved in buffer II (HEPES 20 mM, NaCl 150 mM, Triton

X100 1%, pH 7.5). Total protein concentration was determined

using the Bradford method. The cytosolic and membrane fractions

were separated on 4%–12% Tris-Glycine Gels (Invitrogen) and

electroblotted onto a polyvinylidene difluoride membrane (In-

vitrolon). The membrane was divided in three strips by cutting at

approximately 110 and 60 KDa. The upper part was used to

detect the full length dystrophin (Dys427) with anti-DYS1

antibody (Novocastra Labs), the middle part was used as a control

of the cell membrane fraction by hybridizing with an antibody

specific to the calcium modulated potassium channel BK (APC-

021, Alomone Labs) and the lower part for detection of the CKm

(sc-15164, Santa Cruz Biotech). The membrane strips were

incubated with the specific primary antibody overnight at 4uC.

Appropriate peroxidase conjugated secondary antibody was

applied for 1 hour at RT and detected with chemiluminescent

reagent (GE HealthCare). The strips were recomposed in the

original position and X ray films were exposed and digitized for

further data analysis.

Immunoprecipitation
The ventricular wall was homogenized in ice cold buffer II (GE

Healthcare). Pre-clearing was done with goat or rabbit serum

(10 ml/ml) and 10 ml of protein A/G PLUS-Agarose (sc-2003) for

one hour at 4uC and centrifuged for 10 min at 13500 rpm at 4uC.

The supernatant was incubated with an anti-DYS1 (Novocastra

Labs; 1/100), an anti Kir6.2 or anti SUR2A (sc-20809, sc-25684

Santa Cruz Biotech 1/200) antibody overnight at 4uC. The

resulting immuno complex was precipitated with protein A/G

PLUS-Agarose for 3 hours at 4uC. Beads were washed with buffer

II (56500 ml) using micro columns (GE Healthcare), re-suspended

in Laemmli sample buffer, boiled for 3 min and the proteins

recovered by centrifugation at 13500 rpm 62 min were analyzed

by western blotting as described above with the CKm, Kir6.2 (ab-

79582, AbCam 1/1000), SUR2A (sc-32462 Santa Cruz Biotech

1/200) or Dys427 antibodies.

Electrophysiology
Mouse embryonic cardiomyocytes were cultured from wt and

mdx mice and used for electrophysiological measurements after 4

days in vitro. Briefly, embryonic hearts were isolated and cultured

by successive digestion with 0.25% trypsin (Gibco) and 0.2%

collagenase type II (Sigma). Fibroblast contamination was

minimized by pre-plating cells onto tissue culture dishes for 60

minutes. The cardiomyocyte enriched cultures were plated onto

laminin-coated (Invitrogen) 1 cm glass coverslips placed on a 6 cm

culture dish at a density of 26104 cells per cm2. Growth medium

consisted of 25 mM glucose DMEM lacking L-glutamine (Gibco)

supplemented with 10% fetal bovine serum (Hyclone) and 1%

gentamycin, 1% penicillin/streptomycin, and 1% antimycotic. A

single coverslip was transferred into the recording chamber and

perfused with Tyrode solution (in mM: NaCl 136.5, KCl 5.4,

CaCl2 1.8, MgCl2 0.53, glucose 5.5, HEPES2NaOH 5.5;

pH 7.4). Perforated patch clamp was obtained with borosilicate

glass pipette filled with (in mM): KCl 140, MgCl2 1, HEPES2

KOH 5 (pH 7.3) and Nystatin dissolved in DMSO (0.1 mg/ml) at

a final concentation of approximately 400 mg/ml. A ramp from -

120 mV to 40 mV in 1 sec was applied every 20 second from a

holding potential of 240 mV. IATP was elicited by different

methods: by poisoning of mitochondria with dinitrophenol (DNP;
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100 mM), which causes a drop in [ATP]i leading to a potent

potassium current [41] within 10 to 20 minutes; with the specific

agonist Cromakalim 100 mM, and by dialysis of ATP in whole cell

configuration with no ATP in the recording pipette (intracellular

as in perforated but without nystatin). Glibenclamide 25 mM

(Sigma) and Cromakalim 100 mM (Sigma) were used respectively

as antagonist and agonist of IATP. Membrane capacitance, which

is directly related to cell size, was calculated for each cell by

measuring the area under the transient capacitive currents elicited

by 5 mV depolarizing pulses from 240 mV and acquired at a

sampling rate of 50 kHz, after subtraction of the steady-state

current component. Cell capacitance was used to normalize the

current values to the cell size such that the values are expressed as

pico Ampere/pico Farad (pA/pF).

Dissociation and electrophysiological recording of adult
cardiomyocytes

Mice were heparinized (500 IU/kg i.p.) 15 minutes prior to the

removal of the heart. The hearts were rapidly excised (from mice

anesthetized with Fluotane) and perfused using a standard

Langendorff method at a constant pressure of 55 mmHg with

‘‘Isolation buffer’’ (130 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl2,

25 mM HEPES, 0.33 mM NaH2PO4, 22 mM D-glucose, 1 mM

Lactic acid, 3 mM Pyruvic acid, 5 U insulin, 0.1 mM EGTA

pH 7.4; all reagents are from Sigma). After 3–5 min of washing

the solution was changed to the ‘‘digestion solution’’ (Isolation

solution without EGTA with added 50 mM CaCl2, and

Collagenase Type II 300 U/ml Worthington Lakewood NJ).

Digestion was performed for 5–8 min and then the heart was

minced in Isolation buffer plus 250 mM CaCl2, without EGTA.

The dissociated cardiomyocytes were centrifuged at 100 g for 5

minutes and resuspended in DMEM at room temperature.

Cardiomyocytes transferred to the recording chamber were

perfused with 130 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl2,

1 mM CaCl2, 5.5 mM HEPES, 5 mM D-glucose. Rod shaped

adult cardiomyocytes were recorded in whole cell configuration as

described in [5]. The pipette solution was: 55 mM KCl, 85 mM

K-Gluconate, 1 mM MgCl2, 10 mM HEPES, 100 mM EGTA,

pH 7.4 and maintained at a holding potential of 240 mV. DNP

and Pinacidil were dissolved in DMSO as stock and dissolved to

the final concentration in the perfusion solution just before their

use. Ramp voltage protocol (120 mV/s) was applied every 20 s.

The KATP current was evaluated at +40 mV. Glibenclamide

(25 mM) completely inhibited the current and was used to

pharmacologically characterize the current. Pinacidil (100 mM)

was used to prime the KATP channel such that the subsequent

application of DNP 100 mM allowed the channel to open [35].

Immunostaining of adult cardiomyocytes
Adult cardiomyocytes were dissociated as described above,

plated on laminin coated coverslips, fixed with 3.5% paraformal-

dehyde in PBS for 10 minutes at room temperature and placed in

ice cold methanol for 5 minutes on ice. Cardiomyocytes were then

rinsed (365 min) in PBS and blocked with 5% donkey serum in

PBS and 0.1% triton X100 for one hour at RT. Cells were then

washed (365 min) with wash buffer (PBS with 0.5% donkey serum

and 0.01% triton X100). The primary antibody incubation was

performed for one hour at RT in wash buffer. Anti Dys-427 (NCL-

DYS1, Novocastra 1/1000) and anti Kir6.2 (APC-020, Alomone

labs 1/1000) were used to detect the full-length dystrophin and

Kir6.2 subunit, respectively. Alexa Fluor 568 donkey anti mouse

antibody (1/2500) was used to detect dystrophin; Alexa Fluor 647

donkey anti rabbit was used to detect Kir6.2 (1/2500). The

secondary antibody incubation was performed for 30 min at RT

in wash buffer. Coverslips were then washed (365 min) and

mounted for confocal microscopy analysis (Zeiss LSM-510).

Optical density profiles were integrated from a 100 pixel height

box in the appropriate axis with image-J and plotted in excel

(Microsoft).

Statistical analysis
Data (mean6SE) were compared by the Student’s T test or by

the one way ANOVA test where appropriate. P,0.05 was

considered statistically significant.

Supporting Information

Figure S1 31P NMR spectra. Averages of 4 traces from a

control mouse heart (continuous line) and from an mdx mouse

heart (dotted line) are shown. Note the increase in the peak area of

Pi and the decrease in the peak area of PC in the mdx trace.

(TIF)

Figure S2 Current recorded from an mdx neonatal
cardiomyocyte in voltage clamp whole cell configura-
tion. The voltage protocol used to elicit the current is also shown.

The red trace shows the current after 10 minutes from the break

in, and the black trace the current obtained 5 minutes after

perfusion with 100 mM of Cromakalim. The red trace shows a fast

outward spike of current that arises when the applied ramp

reached approximately -50 mV. This current is likely due to the

opening of a mixture of calcium and sodium voltage gated

channels and is shunted in the black trace by the IATP. The

recording conditions are: intracellular solution (in mM): KCl 140,

MgCl2 1, HEPES2KOH 5, pH 7.3. Perfusion solution (in mM):

NaCl 136.5, KCl 5.4, CaCl2 1.8, MgCl2 0.53, glucose 5.5,

HEPES2NaOH 5.5; pH 7.4.

(TIF)

Figure S3 Kir6.2 and a-Syntrophin but not Rho-GDI co-
immunoprecipitate with Dys427. Heart lysates from wt and

mdx animals were immunoprecipitated with an anti Dys427

antibody and analyzed by Western analysis. Membranes were cut

horizontally using the molecular markers as reference and probed

with an anti- Kir6.2, a -Syntrophin, Rho-GDI and anti Dys427

antibody. Note, that dystrophin is detected as expected in the wt

but not in the mdx mutant hearts whereas Kir6.2 and a -

Syntrophin (used as positive controls for the IP) are present in the

total lysate (inputs) of both wt and mdx heart but co-immuno

precipitate with Dys427 only in the wt sample. RhoGDI (used as

negative control for the IP) is present in the inputs but does not co-

IP with dystrophin.

(TIF)

Figure S4 The mRNA level for the SUR2A, SUR2B,
SUR1, Kir6.1, Kir6.2 and CKm genes is unaltered in the
mdx hearts compared to wt controls. Real time PCR

amplification of cDNA obtained from reverse transcription of

mRNA extracted from wt and mdx heart. Note the lack of

significant differences in expression of any of the tested genes

between genotypes.

(TIF)

Table S1 Primers used for real time PCR.

(DOC)

Table S2 I-KATP induced by the application of agonist
(cromakalim 100 mM) and measured at +40 mV. Values

(average and SE are expressed as pA/pF).

(DOC)
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Methods S1 NMR spectroscopy methods.
(DOC)
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