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Abstract

Motivation: Allele-specific copy number alterations are commonly used to trace the evolution of tumours. A key
step of the analysis is to segment genomic data into regions of constant copy number. For precise phylogenetic
inference, breakpoints shared between samples need to be aligned to each other.

Results: Here, we present asmultipcf, an algorithm for allele-specific segmentation of multiple samples that
infers private and shared segment boundaries of phylogenetically related samples. The output of this algorithm can
directly be used for allele-specific copy number calling using ASCAT.

Availability and implementation: asmultipcf is available as part of the ASCAT R package (version � 2:5) from
github.com/Crick-CancerGenomics/ascat/.

Contact: florian.markowetz@cruk.cam.ac.uk

1 Introduction

Allele-specific copy number alterations (CNAs) are commonly used
to trace the evolution of tumours. One of the most frequently used
algorithms to infer these copy number changes is ASCAT (Van Loo
et al., 2010), which segments each sample separately. Due to meas-
urement noise, the inferred locations of breakpoints shared between
samples often differ. These differences can impair analyses of phylo-
genetic relationships between the samples, because evolutionary
methods depend on the assumption that shared breakpoints appear
at exactly the same location. Previous approaches to address this
problem include extensive experimental breakpoint validation
(Schwarz et al., 2015), an expensive approach that is not always
feasible, or size-based heuristic filters (Mangiola et al., 2016).
Another approach infers allele and clone-specific CNA from multi-
sample data by binning without segmentation (Zaccaria and
Raphael, 2018).

To rigorously address the problem of multi-sample breakpoint
detection, we have developed asmultipcf (allele-specific multi-
sample piecewise constant fitting), a robust allele-specific multi-
sample segmentation algorithm that is tightly integrated
into the ASCAT framework (Van Loo et al., 2010). The ability
of asmultipcf to improve phylogenetic inference was shown in a
large case study on 181 samples from 10 patients with lethal
metastatic breast cancer (De Mattos-Arruda et al., 2019).

2 Approach

asmultipcf incorporates and extends two copy number segmenta-
tion algorithms previously developed by Nilsen et al. (2012), which
leverage vector operations for efficient implementation: first, aspcf
(an allele-specific segmentation method for single samples), and se-
cond, multipcf (a multi-sample segmentation method, which is
not allele-specific). Additionally, asmultipcf handles missing val-
ues, making extensive data filtering unnecessary.

2.1 Input data
For each sample, the following input data are required across germ-
line heterozygous sites: (i) log ratios (logR), representing log-
transformed copy numbers derived from sequencing depth or single
nucleotide polymorphism (SNP) array data, and (ii) B allele frequen-
cies (BAF), describing the allelic imbalance of SNPs. The algorithm
presented here can handle missing values and thus loci with incom-
plete data across samples do not need to be excluded.

2.2 Pre-processing
asmultipcf uses the same pre-processing steps as the allele-
specific single sample algorithm of Nilsen et al. (2012), including (i)
mirroring BAFs to obtain a single track in regions of allelic imbal-
ance and (ii) removing extreme outliers from logR and BAF data
[see Nilsen et al. (2012) for details]. Given n samples across p SNP
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loci, the pre-processing yields a single matrix Y ¼ ðyijÞ 2 R
2n�p that

contains both logR and BAF values.

2.3 An exact algorithm for weighted segmentation
We evaluate the fit of a segmentation solution to the data with a
weighted least squares function that models missing values in the
data matrix. A weight matrix W ¼ ðwijÞ 2 R

2n�p is derived by assign-
ing wij a weight of 0 if yij is missing and 1 otherwise. Then all missing
values in Y are assigned an arbitrary [non-not assigned (NA)] value.
Our aim is to find a segmentation S ¼ fI1; . . . ; IMg that minimizes
the cost function

LðSjY;W; cÞ ¼
X2n

i¼1
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where the best fit on a given segment I is the weighted average of the
observations on that segment
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and where c is a penalty parameter that controls the number of seg-
ments. Expanding the square in (2) and omitting the term independ-
ent of S:
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To find an optimal solution to the cost function, we adapt the
dynamic programming algorithm of Nilsen et al. (2012) to our
weighted problem. The algorithm iteratively minimizes the total
errors ek at locus k across all samples using the errors ek�1 up to k,
the costs of the current segments, dk, and the penalty c, together
with intermediate variables Ak and Ck:

2.4 A heuristic algorithm for large data sets
Algorithm 1 is of order Oðp2Þ, which means that the segmentation
becomes computationally expensive for long sequences. However,
instead of allowing breakpoints at any of the p positions, we can
pre-select potential breakpoints and thereby reduce the runtime to
Oðq2Þ where q is the number of potential breakpoints. To identify
potential breakpoints, different heuristics can be used. Here, we
apply Algorithm 1 to overlapping subsequences (length 5000 with
an overlap of 1000), combine all of the inferred breakpoints and use
them as input for the subsequent global segmentation. Algorithm 2
describes the fast heuristic version of asmultipcf.

2.5 Post-processing
Both algorithms yield a single segmentation solution S for all sam-
ples. However, we expect that only some of the segments will be
shared between all samples while others will be private. While
ASCAT can be run directly on the global segmentation solution,
removing unnecessary breakpoints on a per-sample base can reduce
noise in the segment average estimates by generating larger seg-
ments. To refine breakpoints individually for each sample, we sim-
ply use the breakpoints inferred from the multi-sample segmentation
and rerun steps 2 and 3 of Algorithm 2 on each sample individually
based on these potential breakpoints.

2.6 Implementation
asmultipcf is part of the ASCAT R package from version 2.5 on-
wards. The asmultipcf function contains a parameter to select
whether the exact or the fast algorithm should be run, as well as an
option to include the per-sample breakpoint refinement.
Furthermore, samples can be weight adjusted to account for quality
differences in the data. The manual contains example use cases,
including a comparison to HATCHet (Zaccaria and Raphael, 2018).

3 Discussion

The independent segmentation of related samples can artificially in-
flate tumour heterogeneity. The algorithm presented here addresses
this problem by joint segmentation. While this approach can poten-
tially underestimate tumour heterogeneity, because CNAs that are
shared by many samples are more likely to be detected than CNAs
that are private or shared by only few samples, in practice, the pen-
alty parameter c can be adjusted to ensure sensitivity. Overall,
asmultipcf substantially improves the analysis of copy number
changes of multiple samples.
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Algorithm 1: asmultipcf

Input: Matrix Y of log-transformed copy numbers and B al-

lele frequencies; weight matrix W; penalty c > 0;

Output: Segment start indices and segment averages

1. Initialize A0 ¼ ½ �; C0 ¼ ½ �; e0 ¼ 0 and iterate for k ¼ 1; . . . ;p
• Ak ¼ ½Ak�10� þw:ky:k
• Ck ¼ ½Ck�10� þw:k

• dk ¼ �1TðAk
�Ak

�C
��1
k Þ where � denotes an element-

wise matrix product and C
��1
k the element-wise inverse

• ek ¼ ½ek�1minðdk þ ek�1 þ cÞ�
storing also the index tk 2 1; . . . ; k at which the min-

imum in the last step is achieved.

2. Find segment start indices from right to left as

s1 ¼ tp; s2 ¼ ts1�1; . . ., sM¼1, where M � 1.

3. Find segment averages

�ym ¼
ðw:sm

y:sm
þ � � � þw:sm�1�1y:sm�1�1Þ

ðw:sm
þ � � � þw:sm�1�1Þ

:

Algorithm 2: Fast asmultipcf

Input: Matrix Y of log-transformed copy numbers and B

allele frequencies; weight matrix W; penalty c > 0;

Output: Segment start indices and segment averages

1. Split data set into overlapping subsequences and apply

steps 1 and 2 of Algorithm 1 to each of them in order to

find potential breakpoints r0, r1, . . ., rq where r0 ¼ 1 and

r1 ¼ pþ 1.

2. Aggregate sequences between breakpoints by setting xik ¼Prk�1
j¼rk�1

wijyij and vik ¼
Prk�1

j¼rk�1
wij.

3. Calculate segmentation solution by using the aggregated

matrices X and V 2 R
2n�q as input to Algorithm 1 instead

of Y and W, respectively.
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