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Abstract

The binding and catalytic functions of proteins are generally mediated by a small number of 

functional residues held in place by the overall protein structure. We describe deep learning 

approaches for scaffolding such functional sites without needing to pre-specify the fold or 

secondary structure of the scaffold. The first approach, “constrained hallucination”, optimizes 

sequences such that their predicted structures contain the desired functional site. The second 

approach, “inpainting”, starts from the functional site and fills in additional sequence and 

structure to create a viable protein scaffold in a single forward pass through a specifically 

trained RosettaFold network. We use the methods to design candidate immunogens, receptor 

traps, metalloproteins, enzymes, and protein-binding proteins, and validate the designs using a 

combination of in silico and experimental tests.

The biochemical functions of proteins are often carried out by a subset of residues which 

constitute a functional site--for example, an enzyme active site or a protein or small 

molecule binding site--and hence the design of proteins with new functions can be divided 

into two steps. The first step is to identify functional site geometries and amino acid 

identities which produce the desired activity--for enzymes this can be done using quantum 

chemistry calculations (1–3) and for protein binders by fragment docking calculations (4, 

5); alternatively, functional sites can be extracted from a native protein having the desired 

activity (6, 7). In this paper, we focus on the second step: given a functional site description 

from any source, design an amino acid sequence which folds up to a three dimensional 

structure containing the site. Previous methods can scaffold functional sites made up of one 

or two contiguous chain segments (6–10), but with the exception of helical bundles (8) these 

do not extend readily to more complex sites composed of three or more chain segments, and 

the generated backbones are not guaranteed to be designable (encodable by some amino acid 

sequence).

An ideal method for functional de novo protein design would 1) embed the functional 

site with minimal distortion in a designable scaffold protein; 2) be applicable to arbitrary 

site geometries, searching over all possible scaffold topologies and secondary structure 

compositions for those optimal for harboring the specified site, and 3) jointly generate 

backbone structure and amino acid sequence. We previously demonstrated that the 

trRosetta structure-prediction neural network (11) can be used to generate new proteins 

by maximizing the trRosetta output probability that a sequence folds to some (unspecified) 

three dimensional structure during Monte Carlo sampling in sequence space (12). We refer 

to this process as “hallucination” as it produces solutions that the network considers ideal 

proteins but do not correspond to any known natural protein; crystal and NMR structures 

confirm that the hallucinated sequences fold to the hallucinated structures (12). trRosetta can 

also be used to design sequences that fold into a target backbone structure by carrying out 

sequence optimization using a structure recapitulation loss function that rewards similarity 
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of the predicted structure to the target structure (13). Given this ability to design both 

sequence and structure, we reasoned that trRosetta could be adapted to tackle the functional 

site scaffolding problem.

Partially constrained hallucination using a multi-objective loss function

To extend existing trRosetta-based design methods to scaffold functional sites (Fig. 1A), we 

optimized amino acid sequences for folding to a structure containing the desired functional 

site using a composite loss function that combines the previously used hallucination loss 

with a motif reconstruction loss over the functional motif (rather than the entire structure as 

in (13) (Fig. 1B; Methods). While we succeeded in generating structures with segments 

closely recapitulating functional sites, Rosetta structure predictions suggested that the 

sequences poorly encoded the structures (Fig. S1A), and hence we used Rosetta design 

calculations to generate more-optimal sequences (14). Several designs targeting PD-L1 

generated by constrained hallucination with binding motifs derived from PD-1 (Table S1) 

(15), followed by Rosetta design, were found to have binding affinities in the mid-nanomolar 

range (Fig. S1B–E). While this experimental validation is encouraging, the requirement for 

sequence design using Rosetta is inconsistent with the aim of jointly designing sequence and 

structure.

Following the development of RosettaFold (RF) (16) we found that it performed better than 

trRosetta in guiding protein design by functional-site-constrained hallucination (Fig. S1G), 

likely reflecting the better overall modeling of protein sequence-structure relationships (16). 

Constrained hallucination with RosettaFold has the further advantages that because 3D 

coordinates are explicitly modeled (trRosetta only generates residue-residue distances and 

orientations), site recapitulation can be assessed at the coordinate level, and additional 

problem-specific loss terms can be implemented in coordinate space that assess interactions 

with a target (Fig. S2; Materials and Methods).

Generalized functional motif scaffolding by missing information recovery

While powerful and general, the constrained hallucination approach is compute-intensive, 

as a forward and backward pass through the network is required for each gradient descent 

step during sequence optimization. In the training of recent versions of RosettaFold, a subset 

of positions in the input multiple sequence alignment (MSA) are masked and the network 

is trained to recover this missing sequence information in addition to predicting structure. 

This ability to recover both sequence and structural information provides a second solution 

to the functional site scaffolding problem: given a functional site description, a forward 

pass through the network can be used to complete, or “inpaint”, both protein sequence 

and structure in a missing/masked region of protein (Fig. 1C; Methods). Here, the design 

challenge is formulated as an information recovery problem, analogous to the completion of 

a sentence given its first few words using language models (17) or completion of corrupted 

images using inpainting (18). A wide variety of protein structure prediction and design 

challenges can be similarly formulated as missing information recovery problems (Fig. 1D). 

Although protein inpainting has been explored before (19, 20), here we approach it using the 

power of a pre-trained structure-prediction network.

Wang et al. Page 3

Science. Author manuscript; available in PMC 2022 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We began from a RosettaFold model trained for structure prediction (16) and carried 

out further training on fixed-backbone sequence design in addition to the standard fixed-

sequence structure prediction task (Fig. S3; Materials and Methods). This model, denoted 

RFimplicit, was able to recover small, contiguous regions missing both sequence and structure 

(Fig. S3). Encouraged by this result, we trained a model explicitly on inpainting segments 

with missing sequence and structure given the surrounding protein context, in addition to 

sequence design and structure prediction tasks (Fig. S4A; Materials and Methods; Algorithm 

S1). The resulting model was able to inpaint missing regions with high fidelity (Fig. 1E, S4) 

and performed well at sequence design (32% native sequence recovery during training, Fig. 

S4C) and structure prediction (Fig. S4C). We call this network RFjoint and use it to generate 

all inpainted designs below except otherwise noted.

To evaluate in silico the quality of designs generated by our methods, we use the AlphaFold 

(AF) protein structure prediction network (21) which has high accuracy on de novo 
designed proteins (22) (Fig. S7A). RF and AF have different architectures and were trained 

independently, and hence AF predictions can be regarded as a partially orthogonal in silico 
test of whether RF-designed sequences fold into the intended structures, analogous to 

traditional ab initio folding (13, 24). We used AF to compare the ability of hallucination and 

inpainting to rebuild missing protein regions (Fig. 1F–G, S5). Inpainting yielded solutions 

with more accurately predicted fixed regions (“AF-RMSD”; Fig. 1G, S5B) and structures 

overall more confidently predicted from their amino acid sequences (“AF pLDDT”, Fig. 

1F, S5A), and required only 1–10 seconds per design on an NVIDIA RTX2080 GPU 

(hallucination requires 5–20 minutes per design). However, hallucination gave better results 

when the missing region was large (Fig. S5) and generated greater structural diversity (Fig. 

S8, see below).

In the following sections, we highlight the power of the constrained hallucination and 

inpainting methods by designing proteins containing a wide range of functional motifs (Fig. 

2–5, Table S1). For almost all problems, we obtained designs that are closely recapitulated 

by AF with overall and motif (functional site) RMSD typically <2 Å and <1 Å respectively, 

with high model confidence (pLDDT > 80; Table S2); such recapitulation suggests the 

designed sequences encode the designed structures (although it should be noted that AF has 

limited ability to predict protein stability (25) or mutational effects (26, 27)). More critically, 

we assessed the activities of the designs experimentally (with the exception of those labeled 

“in silico” in Fig. 2–5).

Designing immunogen candidates and receptor traps

The goal of immunogen design is to scaffold a native epitope recognized by a neutralizing 

antibody as accurately as possible, in order to elicit antibodies binding the native protein 

upon immunization. Additional interactions with the antibody are undesirable because the 

goal is to elicit antibodies recognizing only the original antigen, and hence for hallucination 

we add a repulsive loss term to penalize interactions with the antibody beyond those present 

in the scaffolded epitope (Fig. S2; Supplementary Text). As a test case, we focused on 

respiratory syncytial virus F protein (RSV-F), which has several antigenic epitopes for which 

structures with neutralizing antibodies have been determined (7, 9, 10). We scaffolded RSV-
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F site II, a 24-residue helix-loop-helix motif that had previously been grafted successfully 

onto a 3-helix bundle (7), as well as RSV-F site V, a 19-residue helix-loop-strand motif 

that has not yet been scaffolded successfully (28). We were able to hallucinate designs 

recapitulating both epitopes to sub-angstrom backbone RMSD in a variety of folds (Fig. 

2A, Fig. S9; structures and sequences for all designs below are in Data S1–2 and differ 

considerably from native proteins (Table S2); RF and AF models are in Fig. S9, S11, S17; 

only the AF model is shown in the main figures). Inpainting also generated scaffolds for 

RSV-F site V, with comparable quality but less diversity than the hallucinations (Fig. S8).

We expressed 37 hallucinated RSV-F site V scaffolds with high AF pLDDT and low motif 

AF-RMSD in E. coli and found that three bound the neutralizing antibody hRSV90 (28) 

with Kd’s of 0.9–1.3 uM (Fig. 2C, S11; Methods; Supplementary Text). The Kd for the 

RSVF trimer is lower (23nM), but the interface is larger encompassing both sites II and V 

(28). Mutation of either of two key epitope residues reduced or abolished binding of the 

designs, suggesting that they bind the target through the scaffolded motif (Fig. 2C, S11A), 

and circular dichroism spectra were consistent with the designed scaffold structures for 

designs (Fig. 2D) and their point mutants (Fig. S11C). Four of the inpainted designs bound 

hRSV90 by yeast display, but were poorly expressed in E. coli (Fig. S11C–E). Overall, the 

designs provide a diverse set of promising starting points for further RSV-F epitope-based 

vaccine development.

We next applied hallucination to the in silico design of receptor traps which neutralize 

viruses by mimicking their natural binding targets and thus are inherently robust against 

mutational escape. We again augmented the loss function with a penalty on interactions 

beyond those in the native receptor to avoid opportunities for viral escape. As a test case, 

we scaffolded the helix of human angiotensin-converting enzyme 2 (hACE2) interacting 

with the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) spike protein (29). The hallucinated hACE2 mimetics have a diverse set 

of helical topologies, and AF2 structure predictions recapitulate the binding interface with 

sub-Å accuracy (Fig. 2B, S9C).

Designing metal-coordinating proteins

Di-iron sites are important in biological systems for iron storage (30) and can mediate 

catalysis (31, 32). We were able to recapitulate the di-iron site from E. coli bacterioferritin, 

composed of four parallel helical segments, to sub-angstrom AF-RMSD using both 

inpainting (Fig. 3A–E, S13) and hallucination (Fig. S12; the latter were not tested due to 

buried polar residues; Supplementary Text). The designs had diverse helix connectivities and 

low structural similarity to the parent (Fig. S13B, S12; TM-score 0.55–0.71 to 1BCF_A). 

We chose 96 inpainted designs to test experimentally, and found that 76 had soluble 

expression, at least 8 (Supplementary Text) had a spectroscopic shift indicative of Co2+-

binding (a proxy for iron binding) (33, 34), and 3 (dife_inp_1–3, Fig. 3B, S13E) had CD 

spectra consistent with the designed fold (Fig. 3D, S13F) and were stabilized by metal 

binding (Fig. 3E, S13G). Mutation of the metal binding residues abolished binding (Fig. 

3B, S13E), and titration analysis of dife_inp_1 suggested that both metal binding sites were 

successfully scaffolded (Fig. 3C).
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We next scaffolded the calcium-binding EF-hand motif (35), a 12-residue loop flanked 

by helices. Both constrained hallucination and inpainting readily generated scaffolds 

recapitulating either 1 or 2 EF-hand motifs to within 1.0 Å AF-RMSD of the native motif 

(Fig. 3F, Fig S14A,B, table S2). We chose 20 hallucinations and 55 inpaints to display on 

yeast and screen for calcium binding using tryptophan-enhanced terbium fluorescence (36). 

6 hallucinations and 4 inpaintings had fluorescence consistent with ion binding (Fig. S14A, 

Materials and Methods; one of these proteins (EFhand_inp_2) was designed using RFimplicit 

(Supplementary Text)). The top hit from yeast, the inpainted EFhand_inp_1, was purified 

from E. coli as a monomer (Fig. S14C), had the expected CD spectrum (Fig. 3G) and a clear 

terbium binding signal (Fig. 3H) which was eliminated by CaCl2 competition (Fig. 3H).

In silico design of enzyme active sites

We next sought to scaffold the active site of carbonic anhydrase II, which catalyzes the 

interconversion of carbon dioxide and bicarbonate and has recently been of interest for 

carbon sequestration (32–34). The active site consists of 3 Zn2+-coordinating histidines 

on two strands and a threonine on a loop which orients the CO2 (Table S1). Despite 

the complexity of the irregular, discontinuous, 3-segment site, hallucination was able to 

generate designs with sub-angstrom motif AF-RMSDs with correct His placement for Zn2+ 

coordination (Fig. 4A, S9D); these are less than 100 residues, significantly smaller than the 

261 residue native protein.

We next scaffolded the catalytic sidechains of Δ5-3-ketosteroid isomerase (Table S1) 

involved in steroid hormone biosynthesis (37). We attempted to use gradient descent by 

backpropagation through AF (Materials and Methods; a sidechain-predicting version of 

RF was not available at the time) but found it difficult to obtain accurate side-chain 

placement; the landscape may be too rugged with the high resolution sidechain-based loss 

(Supplementary Text). Better results were obtained with a two-stage approach using first 

both AF and trRosetta (to smoothen the loss landscape) and a description of the active 

site at the backbone level, followed by a second all-atom AF-only stage once the overall 

backbone was roughly in place. This yielded multiple plausible solutions with nearly exact 

matches to the catalytic sidechain geometry (Fig. 4C–D, S9E). In silico validation with a 

held-out AF model (Materials and Methods) recapitulated the designed active sites. The 

use of stage-specific loss functions illustrates the ready customizability of the hallucination 

approach to specific design challenges without network retraining.

Designing protein-binding proteins

To design binders to the cancer checkpoint protein PD-L1, we scaffolded 2 discontiguous 

segments of the interfacial beta-sheet from a high-affinity mutant of PD-1 (Fig 5A; 

Methods) (15). Inpainting yielded designs with not only good AF predictions of the binder 

monomer (AF pLDDT > 80, motif AF-RMSD < 1.4 Å) but also of the complex between 

the binder and PD-L1, with an inter-chain predicted alignment error (inter-PAE) of <10 

Å (Materials and Methods). Unlike our initial efforts with trRosetta hallucination (Fig. 

S1, Supplementary Text), it was not necessary to redesign the inpainted sequences using 

Rosetta. Of 31 designs selected for experimental testing, one design, pdl1_inp_1, bound 
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PD-L1 with a KD of 326 nM (Fig. 5B–C), worse than HAC PD-1 (KD = 110 pM) (38) but 

better than WT PD-1 (KD = 3.9 μM) (38). pdl1_inp_1 expressed as a monomer (Fig. S15E), 

was thermostable, and had a CD spectrum consistent with that of a mixed alpha-beta fold 

(Fig. S15F). Unlike native PD-1, which has a immunoglobulin family beta-sandwich fold, 

pdl1_inp_1 has 2 helices buttressing the interfacial beta sheet, as well as an additional 5th 

inpainted strand extending the interface (Fig. S15 A,B). The closest PDB hit had a TM-score 

of 0.61 and the closest BLAST NR hit had a sequence identity of 25.4%.

We next used inpainting to design ligands engaging multiple receptor binding sites. The 

nerve growth factor receptor TrkA dimerizes upon ligand binding (39), and starting from the 

TrkA-NGF crystal structure we positioned helical segments derived from two copies of a 

previously designed TrkA binding protein (4) and used hallucination followed by inpainting 

(Materials and Methods) to scaffold them on a single chain (Fig. 5D–E). A design predicted 

to be well-structured (AF pLDDT > 80) and interact with TrkA (inter-PAE < 10 Å) was 

expressed, purified and bound TrkA as assessed by biolayer interferometry (BLI) (Fig. 5F). 

A double mutant that knocked out both designed binding sites abolished TrkA binding, 

while single mutants knocking out either one of the binding sites maintained partial binding 

(Fig. 5F; Fig. S16), suggesting that the protein binds two molecules of TrkA as designed.

RosettaFold is able to predict the structures of protein complexes (40), and we hypothesized 

that it could generate additional binding interactions between hallucinated or inpainted 

binder and a target beyond the scaffolded motif. We used a “two-chain” hallucination 

protocol (Fig. S17, Methods) to design binders to the Mdm2 oncogene by scaffolding the 

native N-terminal helix of the tumor suppressor protein p53 and obtained diverse designs 

with AF inter-PAE < 7 Å, target-aligned binder RMSD < 5 Å, binder pLDDT > 85, and SAP 

score < 35 (Fig. S17D–E); 3 examples are shown in Fig. 5G.

The above approaches to protein-binder design require starting from a previously known 

binding motif, but hallucination should in principle be able to generate de novo interfaces 

as well. To test this, we used two-chain hallucination to optimize 12-residue peptides for 

binding to 12 targets starting from random sequences, minimizing an inter-chain entropy 

loss (Fig. S17H). Most of the hallucinated peptides bound at native protein interaction sites 

(Fig S18A); the remainder bound in hydrophobic grooves resembling protein binding sites 

(Fig. S18B). We used the same procedure to generate 55–80-residue binders against TrkA 

and PDL-1 without starting motif information, and obtained designs predicted by AF to 

complex with the target, at the native ligand binding site, with a target-aligned binder RMSD 

< 5 Å and an inter-PAE < 10 Å (Fig. S17F,G).

Unlike classical protein design pipelines, which treat backbone generation and sequence 

design as two separate problems, our methods simultaneously generate both sequence 

and structure, taking advantage of the ability of RosettaFold to reason over and jointly 

optimize both data types. This results in excellent performance in both generating protein 

backbones with a geometry capable of hosting a desired site and sequences which strongly 

encode these backbones. Our hallucinated and inpainted backbones accommodate all of 

the tested functional sites much more accurately than any naturally occurring protein in 

the PDB or AF predictions database (Fig. S20; Table S3; Supplementary Text) (41), and 
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our designed structures are predicted more confidently from their (single) sequences than 

most native proteins with known crystal structures, and on par with structurally validated 

de novo designed proteins (Fig. S7A–B). The hallucination and inpainting approaches 

are complementary: hallucination can generate diverse scaffolds for minimalist functional 

sites but is computationally expensive because it requires a forward and backward pass 

through the neural network to calculate gradients for each optimization step (Methods), 

while inpainting usually requires larger input motifs but is much less compute intensive, 

and outperforms the hallucination method when more starting information is provided. 

This difference in performance can be understood by considering the manifold in sequence-

structure space corresponding to folded proteins. The inpainting approach can be viewed as 

projecting an incomplete input sequence-structure pair onto the subset of the manifold of 

folded proteins (as represented by RosettaFold) containing the functional site--if insufficient 

starting information is provided, this projection is not well determined, but with sufficient 

information, it produces protein-like solutions, updating sequence and structure information 

simultaneously. The loss function used in the hallucination approach is constructed with 

the goal that minima lie in the protein manifold, but there will likely not be a perfect 

correspondence, and hence stochastic optimization of the loss function in sequence space 

may not produce solutions that are as protein-like as those from the inpainting approach.

Conclusion

The approaches for scaffolding functional sites presented here require no inputs other than 

the structure and sequence of the desired functional site, and unlike previous methods, 

do not require specifying the secondary structure or topology of the scaffold and can 

simultaneously generate both sequence and structure. Despite a recent surge of interest 

in using machine learning to design protein sequences (42–49), the design of protein 

structure is relatively underexplored, likely due to the difficulty of efficiently representing 

and learning structure (50). Generative adversarial networks (GANs) and variational 

autoencoders (VAEs) have been used to generate protein backbones for specific fold families 

(51–53), whereas our approach leverages the training of RosettaFold on the entire PDB 

to generate an almost unlimited diversity of new structures and enable the scaffolding of 

any desired constellation of functional residues. Our “activation maximization” hallucination 

approach extends related work in this area (54–56) by leveraging its key strength, the 

ability to use arbitrary loss functions tailored to specific problems and design any length 

sequence without retraining. The ability of our inpainting approach to expand from a given 

functional site to generate a coherent sequence-structure pair should find wide application 

in protein design because of its speed and generality. The two approaches individually, and 

the combination of the two, should increase in power as more-accurate protein structure, 

interface, and small molecule binding prediction networks are developed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Methods for protein function design
(A) Applications of functional-site scaffolding. (B-C) Design methods. (B) Constrained 

hallucination. At each iteration, a sequence is passed to the trRosetta or RosettaFold neural 

network, which predicts 3D coordinates and residue-residue distances and orientations 

(Fig. S2) which are scored by a loss function that rewards certainty of the predicted 

structure along with motif recapitulation and other task-specific functions. (C) Missing 

information recovery (“Inpainting”). Partial sequence and/or structural information is input 

into a modified RosettaFold network (termed RFjoint), and complete sequence and structure 
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are output. (D) Protein design challenges formulated as missing information recovery 

problems. (E) Joint RosettaFold (RFjoint) can simultaneously recover structure and sequence 

of a masked region of protein. 2KL8 was fed into RFjoint with a continuous (length 30) 

window of sequence and structure masked out, with the network tasked with predicting the 

missing region of protein. Outputs (inpainted region in gray) closely resemble the original 

protein (2KL8, left) and are confidently predicted by AlphaFold (pLDDT/Motif RMSD 

of models shown: 91.6/0.91, 92.0/0.69, 90.4/0.82 respectively). (F-G) Motif scaffolding 

benchmarking data comparing RFjoint with constrained hallucination. A set of 28 de novo 
designed proteins, published since RosettaFold was trained, were used. For each protein, 

20 random masks of length 30 were generated, and RFjoint and hallucination were tasked 

with filling in the missing sequence and structure to “scaffold” the unmasked “Motif”. For 

this mask length, RFjoint typically modestly outperforms hallucination, both in terms of the 

RMSD of the unmasked protein (the “motif”) to the original structure (F), and in AlphaFold 

confidence (pLDDT in the replaced region) (G). Circles: Average of 20 outputs for each 

of the benchmarking proteins. Triangle: 2KL8. Colors in all panels: native functional motif 

(orange); hallucinated/inpainted scaffold (gray); constrained motif (purple); binding partner 

(blue); non-masked region (green); masked region (light gray, dotted lines).
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Figure 2. Design of epitope scaffolds and receptor traps.
(A) Design of proteins scaffolding immunogenic epitopes on RSV protein F (site II: PDB 

3IXT chain P residues 254–277; site V: 5TPN chain A residues 163–181). Comparisons 

of the RF hallucinated models to AF2 structure predictions from the design sequence are 

in Fig. S9; here because of space constraints we show only the AF2 model; the two are 

very close in all cases. Here and in the following figures, we assess the extent of success 

in designing sequences which fold to structures harboring the desired motif through two 

metrics computed on the AF2 predictions: prediction confidence (AF pLDDT), and the 

accuracy of recapitulation of the original scaffolded motif (motif RMSD AF versus native). 

For RSV-F designs, these metrics are rsvf_ii_141 (85.0, 0.53 Å), rsvf_ii_158 (82.9, 0.51 Å), 

rsvf_ii_171 (88.4, 0.69 Å); rsvfv_hal_1 (82, 0.7 Å); rsvfv_hal_2 (88, 0.64 Å); rsvfv_hal_3 

(86, 0.65 Å). (B) Design of COVID-19 receptor trap based on ACE2 interface helix (6VW1 

chain A residues 24–42). Design metrics: ace2_76 (89.1, 0.55 Å); ace2_1157 (80.4, 0.47 Å); 

ace2_1007 (83.3, 0.57 Å). Colors: native protein scaffold (light yellow); native functional 

motif (orange); hallucinated scaffold (gray); hallucinated motif (purple); binding partner 

(blue). See Table S2 for additional metrics on each design. (C) Normalized maximum SPR 

signal (response units) of purified RSV-F epitope scaffolds and point mutants at various 

concentrations of hRSV90 antibody, with sigmoid fits. RSV-F refers to purified trimeric 

native F protein. KD values for each design are shown in legend. (D) Mean residue ellipticity 

(MRE) versus wavelength, from CD spectroscopy, for the 3 RSV-F site V hallucinations 

with binding activity.
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Figure 3. Design of metal binding
(A) Di-iron binding site from E. coli cytochrome b1 (1BCF chain A residues 18–25, 

27–54, 94–97, 123–130). Colors: native protein scaffold (light yellow); native functional 

motif (orange); hallucinated scaffold (gray); hallucinated motif (purple); bound metal (blue). 

Active site residues shown in boxes for di-iron and EF-hand respectively. (B) Absorbance 

spectra showing of dife_inp_1 (or mutant) in the presence (or not) of an 8-fold molar excess 

of Co2+. Note the peaks at 520 nm, 555 nm and 600 nm, consistent with Co2+ binding to 

the desired scaffolded motif (33). The mutant design was the same sequence but with the 
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6 coordinating residues (sidechains shown in (A)) mutated to alanine [E16A, E55A, H58A, 

E89A, H92A, E115A]). Protein concentration was 200 μM. (C) Titration analysis of Co2+ 

against the design (protein concentration = 200 μM). Quantification of the absorbance at 

550 nm, using a predicted extinction coefficient of 155 for Co2+ binding the motif (33), 

is consistent with both binding sites being recapitulated in the dife_inp_1 design. (D) CD 

spectra of design in the presence and absence of Co2+. Both spectra are consistent with 

the predicted helical structure. (E) CD melt curve in the presence and absence of Co2+. 

Note that the coordination of Co2+ in the protein core significantly stabilizes dife_inp_1 

(protein concentration in CD experiments = 6.7 μM, Co2+ concentration = 53.3 μM). (F) 

AF2 prediction of inpainted design EFhand_inp_1 scaffolding the double EF-hand motif 

with input motif residues in purple, input non-motif residues in green, and overlaid with the 

native motif from 1PRW (orange). (G) Tryptophan-enhanced terbium fluorescence spectra 

of EFhand_inp_1 matches known spectra (57) and suggests the design can bind terbium. (H) 

CD spectra of EFhand_inp_1 incubated with (4X protein concentration) and without CaCl2 

suggest stabilization of the protein upon binding calcium. Design metrics (AF pLDDT, motif 

RMSD AF versus native): dife_inp_1 (92 /0.65 Å), EFhand_inp1 (84, 0.7 Å).
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Figure 4. In silico design of enzyme active sites.
(A-B) Hallucinations using backbone description of site using RF. (C-D) Hallucination 

using sidechain description of site using AF2 augmented with trRosetta (Materials and 

Methods). (A) Carbonic anhydrase II active site (5YUI chain A residues 62–65, 93–97, 

118–120). (B) Δ5-3-ketosteroid Isomerase active site (1QJG chain A residues 14, 38, 99). 

Colors: native protein scaffold (light yellow); native functional motif (orange); hallucinated 

scaffold (gray); hallucinated motif (purple); bound metal (blue). Active site residues shown 

for boxed designs in panel B and for carbonic anhydrase II, and Δ5-3-Ketosteroid Isomerase 

respectively. Design metrics (AF pLDDT, motif RMSD AF versus native): hcA_1 (73, 1.04 

Å), hcA_2 (71, 0.62 Å), KSI_1 (84, 0.30 Å Cb), KSI_2 (72, 0.53 Å Cb)
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Figure 5. Design of protein-binding proteins.
Designs containing target-binding interfaces built around native-complex-derived binding 

motifs. Targets are in blue, native scaffolds in yellow or pink, native motifs in orange, 

designed scaffolds in gray and designed motifs in purple. (A) Crystal structure of high-

affinity consensus (HAC) PD-1 in complex with PD-L1. (B) Inpainted PD-L1 binder 

superimposed on PD-1 interface motif. (C) Max BLI binding signal versus PD-L1 

concentration. (D) Crystal structure of previously designed TrkA minibinder in complex 

with TrkA, superimposed on TrkA receptor dimer. (E) Hallucinated bivalent TrkA binder. 

Protein topologies of (D-E) are shown to the right. (F) Max BLI binding signal versus TrkA 

concentration, showing that both binding sites bind TrkA. (G) Hallucinated Mdm2 binder 

designs superimposed on native p53 helix in complex with Mdm2 (see also Fig. S17D–E). 

New binding interactions (hallucinated residues within 5 Å of the target) are in green. Inset: 

Overlay of mdm2_hal_1 and native p53 helix showing key sidechains for binding.
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