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All-trans retinoic acid (RA) plays important roles in brain development through regulating
gene transcription. Recently, a novel post-developmental role of RA in mature brain was
proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent
of transcriptional regulation. RA synthesis was induced when excitatory synaptic
transmission was chronically blocked, and RA then activated dendritic protein synthesis
and synaptic insertion of homomeric GluA1 AMPA receptors, thereby compensating for
the loss of neuronal activity in a homeostatic fashion. This action of RA was suggested to
be mediated by its canonical receptor RARα but no genetic evidence was available. Thus,
we here tested the fundamental requirement of RARα in homeostatic plasticity using
conditional RARα knockout (KO) mice, and additionally performed a structure-function
analysis of RARα. We show that acutely deleting RARα in neurons eliminated RA’s effect
on excitatory synaptic transmission, and inhibited activity blockade-induced homeostatic
synaptic plasticity. By expressing various RARα rescue constructs in RARα KO neurons,
we found that the DNA-binding domain of RARα was dispensable for its role in
regulating synaptic strength, further supporting the notion that RA and RARα act in a
non-transcriptional manner in this context. By contrast, the ligand-binding domain (LBD)
and the mRNA-binding domain (F-domain) are both necessary and sufficient for the
function of RARα in homeostatic plasticity. Furthermore, we found that homeostatic
regulation performed by the LBD/F-domains leads to insertion of calcium-permeable
AMPA receptors. Our results confirm with unequivocal genetic approaches that RA and
RARα perform essential non-transcriptional functions in regulating synaptic strength, and
establish a functional link between the various domains of RARα and their involvement
in regulating protein synthesis and excitatory synaptic transmission during homeostatic
plasticity.
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INTRODUCTION
During development, retinoic acid (RA) performs essential func-
tions as a morphogen regulating gene expression. In the nervous
system, RA-signaling is involved in neurogenesis and neuronal
differentiation. However, several recent lines of evidence support
the idea that RA also performs post-developmental functions in
the adult brain. First, RA can be rapidly synthesized in various
regions of the adult brain (Dev et al., 1993). Second, compro-
mised RA-signaling (through either genetic knockout (KO) of
RA receptors or vitamin A deficiency) leads to impaired long-
term synaptic plasticity in the hippocampus (Chiang et al., 1998;
Misner et al., 2001). The involvement of RA in synaptic plastic-
ity was further supported by deficits in learning and memory
tasks observed in mice with a genetic deletion of RA receptors
or with vitamin A deficiency (Chiang et al., 1998; Cocco et al.,
2002). Third, recent evidence established a role of RA in synaptic
signaling in that RA directly potentiates glutamatergic synap-
tic transmission (Aoto et al., 2008). Blocking synaptic glutamate

receptors activates RA synthesis, which in turn promotes local
synthesis of various synaptic proteins, including GluA1 subunit of
AMPA receptors. Synaptic insertion of homomeric GluA1 AMPA
receptors increases synaptic transmission and, therefore, compen-
sates the changes in synaptic activity homeostatically (Aoto et al.,
2008). At least the latter action of RA is different from its role in
development in that it does not require transcriptional activation
(Aoto et al., 2008).

The action of RA is primarily mediated by nuclear retinoid
receptor proteins called retinoic acid receptors (RAR-α, -β, -γ)
and retinoid “X” receptors (RXR-α, -β, -γ). Like other members
of the steroid receptor family, RARs and RXRs are transcription
factors. Although structurally similar, the ligand specificity differs
between RARs and RXRs in that RARs bind RA with high affin-
ity, whereas RXRs exclusively bind 9-cis-retinoic acid (Soprano
et al., 2004). Because 9-cis-RA is undetectable in vivo, the effects
of retinoids on gene transcription are presumed to be mediated
by RA interactions with RARs. In the mammalian brain, RARα
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is found in the cortex and hippocampus, while RARβ is highly
expressed in the basal ganglia, and RARγ is not detectable (Krezel
et al., 1999; Zetterstrom et al., 1999).

The expression and subcellular distribution of RARα in the
hippocampus exhibit interesting developmental changes (Huang
et al., 2008). Specifically, the expression levels of RARα in hip-
pocampal neurons gradually decrease postnatally, and the subcel-
lular localization of RARα protein shifts from the nucleus to the
cytosol. While almost exclusively localized in the nucleus of devel-
oping neurons, at least equal amounts of RARα were detected in
the cytosol and dendrites in mature hippocampal pyramidal and
granule cells (Aoto et al., 2008; Huang et al., 2008; Maghsoodi
et al., 2008). Functionally, dendritic RARα acts as an mRNA-
binding protein that represses translation of target mRNAs, and
thus performs a different role than the transcriptional function
of RARα localized in the nucleus (Poon and Chen, 2008). In the
dendrites, RA binding to RARα reduces RARα binding to mRNA,
and de-represses translation (Poon and Chen, 2008).

The region of RARα that mediates mRNA binding has been
determined (Poon and Chen, 2008), but it is unknown whether
RA binding by RARα and its mRNA-binding ability are required
for its role in regulating synaptic strength. Here, we combine
mouse genetics and electrophysiology to rigorously test the role
of RA and RARα in homeostatic plasticity, and to systematically
examine the contribution of various domains of RARα to synap-
tic signaling by RA. Consistent with earlier results, we found
that RARα is essential for some forms of homeostatic plasticity,
and that the carboxyl terminal half of the RARα, which contains
the ligand-binding domain (LBD) and the RNA-binding domain
(F-domain), are both necessary and sufficient for the function
of RARα in the homeostatic regulation of excitatory synaptic
strength.

MATERIALS AND METHODS
MOUSE HUSBANDRY AND GENOTYPING
The RARα floxed mouse (C57BL/6 background) is a generous
gift from Drs. Pierre Chambon and Norbert Ghyselinck (IGBMC,
Strasbourg, France) (Chapellier et al., 2002). Breeding colonies
are maintained in the animal facility at Stanford Medical School.
Genotyping of the mice was achieved by PCR with the following
primers: Primer 1 Fwd 5′-GTGTGTGTGTGTATTCGCGTGC-3′,
Primer 2 Rev 5′-ACAAAGCAAGGCTTGTAGATGC-3′ and com-
pared with wild-type (WT) C57BL/6. Following infection with a
lentiviral vector expressing Cre recombinase or a truncated and
inactive version of Cre, successful lox-P mediated recombina-
tion in neuronal cultures was assayed by PCR with Primer 1 and
Primer 3: 5′-TACACTAACTACCCTTGACC-3′ . Conditions were
30 cycles for 30 s at 92◦C, annealing at decreasing temperatures in
the range from 62◦C to 56◦C to increase product specificity and
elongation for 30 s at 72◦C.

PRIMARY HIPPOCAMPAL CULTURES
Primaryhippocampalcultureswereprepared frommousebrainsat
postnatal day 0 and maintained in serum and Neurobasal medium
supplemented with Gem21 (Gemini Bioproducts, Sacramento,
CA) and Glutamax (GIBCO-Brl, Grand Island, NY) for 2
weeks in vitro (Nam and Chen, 2005). Neurons were infected

with a retroviral vector expressing proteins of interest at 4–7
DIV. Manipulations used to induce synaptic scaling in dis-
sociated cultures include: TTX + APV (1 μM TTX + 100 μM APV,
24 h); TTX + APV + DEAB (1 μM TTX + 100 μM APV + DEAB
10 μM, 24 h); RA (1 μM, 30 min followed by 1 h of washout).

VIRAL VECTORS AND VIRUS PRODUCTION
Lentivirus was produced and purified as described previously
(Aoto et al., 2008). Briefly, human embryonic kidney 293T
(HEK293T) cells were transfected using calcium phosphate with
the transfer vector and three helper plasmids. After 48 h, super-
natants were pooled, spun at 25,000 rpm through a sucrose
cushion for 1.5 h, and resuspended in PBS. Virus expressing Cre-
recombinase or a truncated and inactive version of Cre (�Cre)
[gifts from Dr. Thomas Sudhof ’s lab, (Kaeser et al., 2011)] was
applied overnight to the media of dissociated neuronal cultures
generated from RARα floxed mice and washed out the follow-
ing day. In rescue experiments, Cre-recombinase or �Cre and
RARα were expressed simultaneously from a bicistronic lentivi-
ral transfer vector containing a GFP-Cre 5′ open reading frame
immediately followed by an IRES sequence fused to the RARα

reading frame RARα or truncated versions of RARα expressing
the different domains were inserted in the forward direction into
the unique BstXI site located in the MCS region. Neurons were
infected at 4–7 DIV and recorded from at 14–16 DIV.

ELECTROPHYSIOLOGY
Whole-cell patch-clamp recordings were made at room temper-
ature from 14–16 DIV cultured neurons, with 4–6 M� patch
pipettes filled with an internal solution containing (in mM) 120
CsCl, 2 MgCl2, 5 EGTA, 10 HEPES, 0.3 Na3-GTP, 4 Na2-ATP
(pH 7.35). Cultures were continuously superfused with external
solution (in mM, 100 NaCl, 26 NaHCO3, 2.5 KCl, 11 glucose,
2.5 CaCl2, 1.3 MgSO4, 1.0 NaH2PO4). For mEPSC record-
ing, tetrodotoxin (TTX) (1 μM) and picrotoxin (100 μM) were
included in the external saline. Cells were held at −60 mV. To
test for the presence of calcium permeable AMPA receptors on
the post-synaptic membrane, 10 μM 1-Naphtylacetylspermine
trihydrochloride (NASPM) was bath perfused for 10 min before
recording. mEPSCs were collected using Clampex (Axon labora-
tory) and analyzed with Mini Analysis Program (Synaptosoft).

STATISTICAL ANALYSIS
T-test was used for statistical analysis. Values are presented as
mean ± SEM in the figures.

DRUGS AND CHEMICALS
RA, Picrotoxin, Naphtyl-acetyl-spermine trihydrochloride, and
4-Diethylaminobenzaldehyde were purchased from Sigma-
Aldrich. TTX was purchased from Ascent Scientific (Bristol, UK)
and D-(-)-2-Amino-5-phosphonopentanoic acid was purchased
from Tocris Biosciences (Ellisville, MO).

SUBCELLULAR LOCALIZATION OF RARα DOMAINS
Rat neuronal cultures were co-transfected at 12 DIV using
Lipofectamine 2000 with pmCherry-N1, a plasmid that expresses
high levels of mCherry to allow neuronal visualization, and
pEGFP-N1 expressing various truncated versions of RARα. Cells
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were then fixed at 14 DIV with 4% para-Formaldehyde, washed
with PBS before mounting. Images were acquired using an
Olympus FV1000 BX61WI laser-scanning confocal microscope.

RESULTS
LENTIVIRUS-MEDIATED CONDITIONAL KNOCKOUT (KO) OF RARα

IN HIPPOCAMPAL NEURONS CULTURED FROM POSTNATAL
RARαfl/fl MICE
We previously investigated the involvement of RARα in activ-
ity blockade-induced homeostatic synaptic plasticity (also called
synaptic scaling) using shRNA-mediated knockdown (Aoto et al.,
2008). However, shRNA-mediated knockdowns suffer from a
number of intrinsic limitations, such as potential off-target effects
and the fact that no knockdown is ever complete. To test whether
the shRNA-dependent results were reliable, we used a previ-
ously described conditional floxed RARα mouse (Chapellier et al.,
2002). The RARαfl/fl mouse contains loxP sites flanking exon 4
(this exon was called exon 8 at the time of publication and was
later corrected; Norbert Ghyselinck, personal communication)
(Figure 1A). Cre-mediated recombination leads to excision of
exon 4 that encodes a significant part of the DNA-binding domain
of RARα (Zelent et al., 1989); after excision of exon 4, the exon 3/5
junction shifts the reading frame, resulting in an RARα null allele

(Chapellier et al., 2002) (Figure 1A). Because exon 4 is the first
common exon shared by all RARα isoforms (Leroy et al., 1991),
its excision leads to a complete deletion of all RARα isoforms.

We confirmed the presence of the loxP sites in conditional
RARα KO mice by PCR analysis of tail DNA (Figure 1B).
To obtain RARα KO neurons, we cultured hippocampal neu-
rons from newborn RARαfl/fl mice and infected the neu-
rons with lentiviruses expressing recently optimized versions of
EGFP-tagged active or inactive Cre-recombinase (Cre or DCre)
(Kaeser et al., 2011). Rescue experiments were performed by co-
expressing various RARα rescue proteins from the same vector as
Cre-recombinase via an IRES sequence (Figures 1C,D).

SYNAPTIC SCALING IS ABSENT IN RARα KO NEURONS
We first tested whether the genetic KO of RARα impairs
homeostatic synaptic plasticity. Under control conditions, Cre-
expressing conditional RARα KO neurons did not show changes
in miniature excitatory post-synaptic current (mEPSC) ampli-
tude or frequency, suggesting that RARα is not required
for the maintenance of basal excitatory synaptic transmis-
sion (Figures 2A–D). To induce synaptic scaling, we applied
a 24 h treatment of TTX and D-2-amino-5-phosphonovalerate
(APV), a well-established activity blockade protocol that activates

FIGURE 1 | Characterization of the RARα conditional allele. (A) Schematic
drawing representing the RARα loxP-flanked allele (RARα fl/fl), as well as the
same allele following Cre-mediated excision of exon 4 (RARα−/−). Black
boxes represent exons 1–10 (E1–E10). White arrowheads represent loxP
sites. The arrows indicate location of primers 1–3 used for characterization of
the loxP -flanked allele and the recombined allele. Schematic is based on
Gene ID: 19401. (B) Tail DNAs extracted from RARαfl/fl and wild-type
C57BL/6 mice were genotyped by PCR using primers number 1 and

number 2. Wild-type: 390 bp; floxed allele: 453 bp. (C) Schematic
representation of the lentiviral transfer vector used to express
Cre-recombinase or �Cre and RARα rescue constructs. (D) DNA from
dissociated hippocampal neuronal cultures infected with either the
active recombinase Cre or the inactive form �Cre was harvested and
genotyped by PCR using primers 1 and 3 to test for successful
recombination indicated by the presence of a recombined allele (316 bp) or of
a floxed allele (1296 bp).
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FIGURE 2 | Retinoic Acid Receptor α is required in synaptic scaling

induced by activity blockade and by retinoic acid (RA). (A) Representative
traces of mEPSCs from RARαfl/fl neurons infected with a lentiviral vector
expressing Cre-recombinase or the inactive �Cre. Neurons have been
treated with TTX and APV for 24 h. Scale bars: 10 pA, 0.5 s. (B) Quantification
of average mEPSC amplitude (no inf/ctrl: 9.29 ± 0.29 pA; no inf/TTX + APV:
11.05 ± 0.46 pA; Cre/ctrl: 9.94 ± 0.39 pA; Cre/TTX + APV: 9.83 ± 0.34 pA;
�Cre/ctrl: 9.46 ± 0.57 pA; �Cre/TTX + APV: 11.43 ± 0.33 pA; n = 12–19 from
three independent experiments; ∗∗p < 0.005) and frequency (no inf/ctrl:
0.63 ± 0.09 Hz; no inf/TTX + APV: 0.68 ± 0.10 Hz; Cre/ctrl: 0.96 ± 0.19 Hz;
Cre/TTX + APV: 0.73 ± 0.17 Hz; �Cre/ctrl: 1.11 ± 0.12 Hz; �Cre/TTX + APV:

0.74 ± 0.15; n = 12–19 from three independent experiments from
experiments; p > 0.5) shown in (A). (C) Representative traces of mEPSCs
from RARα KO neurons treated with RA for 30 min followed by 1 h of wash
out. Scale bars: 10 pA, 0.5 sec. (D) Quantification of mEPSC amplitude (no
inf/ctrl: 8.31 ± 0.86 pA; no inf/RA: 12.60 ± 0.76 pA; Cre/ctrl: 9.37 ± 1.07 pA;
Cre/RA: 9.83 ± 0.34 pA; �Cre/ctrl: 9.72 ± 0.63 pA; �Cre/RA: 13.06 ± 0.59 pA;
n = 12–19, from three independent experiments; ∗∗∗p < 0.001) and
frequency (no inf/ctrl: 0.73 ± 0.10 Hz; no inf/RA: 0.58 ± 0.07 Hz; Cre/ctrl:
1.23 ± 0.22 Hz; Cre/RA: 0.89 ± 0.14 Hz; �Cre/ctrl: 1.00 ± 0.20 Hz; �Cre/RA:
0.94 ± 0.18 Hz; n = 12–19, from three independent experiments; p > 0.5)
from experiments shown in (C).
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homeostatic synaptic plasticity (Ju et al., 2004; Sutton et al.,
2006; Aoto et al., 2008). TTX + APV treatment induced a
robust increase in mEPSC amplitude in uninfected and �Cre-
infected neurons (Figure 2B). Strikingly, deletion of RARα by
Cre-recombinase in RARα conditional KO neurons blocked this
effect (Figure 2B).

Our previous work established a role of RA in mediating
activity blockade-induced homeostatic plasticity. Specifically, we
found that blocking synaptic activity rapidly induces RA synthesis
in neurons, and that the newly synthesized RA increases excita-
tory synaptic transmission through activation of dendritic protein
synthesis (Aoto et al., 2008; Maghsoodi et al., 2008). Consistent
with this observation, the conditional deletion of RARα elim-
inated the ability of RA to increase the mEPSC amplitude
(Figures 2C,D), thus confirming the role of RARα in synaptic
RA-signaling using a genetic approach.

RARα MUTANTS EXHIBIT DISTINCT SUBCELLULAR LOCALIZATIONS
The absence of synaptic scaling and RA-signaling in conditional
RARα KO neurons provides a basis for a structure-function anal-
ysis of RARα. We, therefore, generated RARα deletion mutants to
investigate the contribution of various protein domains to RARα

function. Similar to other members of the nuclear receptor super-
family, RARα protein has a modular domain structure, which is
comprised of six regions: the N-terminal trans-activation domain
(A/B region), the DNA binding domain (DBD or C region), a
hinge region (D region), a LBD (or E region) (Evans, 1988; Green
and Chambon, 1988; Tora et al., 1988a,b; Tasset et al., 1990), and
a C-terminal F-domain whose function is unclear but that we
previously implicated in mRNA binding (Poon and Chen, 2008)
(Figure 3A).

We generated three deletion mutants of RARα: RARα DBD,
RARα LBD/F (LBD and F-domain), and RARα F (F-domain con-
taining the terminal α-helix of LBD-H12) (Figure 3A). When
expressed in cultured neurons as GFP-tagged proteins, the dif-
ferent RARα proteins exhibited distinct subcellular distributions.
Compared to full-length RARα which was present in both the
nucleus and the cytosol, RARα DBD was confined to the nucleus,
presumably because of its two nuclear localization signals (NLS)
(Hamy et al., 1991) (Figure 3B). By contrast, significant amounts
of both the RARα LBD/F and the F-domain protein were present
outside of the nucleus and present at high levels in dendrites
(Figure 3B).

RESCUE OF SYNAPTIC SCALING IN RARα KO NEURONS
Individual domains of RARα are associated with different func-
tions. The two most important domains for mediating RA’s
effect on protein translation are the LBD and the F-domain—the
F-domain is required for RARα’s ability to bind to mRNA and to
repress translation, while the LBD binds to RA and acts as a switch
to allow translational activation (or de-repression) by RA (Poon
and Chen, 2008). To directly examine the role of various RARα

domains in synaptic scaling, we expressed RARα mutant proteins
in neurons with RARα deletion. To achieve this, the various RARα

mutants were expressed by inserting their coding sequences after
the IRES sequence into the same lentiviral vector that we used for
generating RARα KO neurons (Figure 1C). Co-expression of Cre

and RARα in the same neurons allows us to examine the effect
of rescue by the various RARα deletion mutants in the RARα KO
background.

We examined the ability of various RARα mutants to
restore RA-induced increase in synaptic strength and to res-
cue TTX + APV-induced synaptic scaling in RARα KO neu-
rons by co-expressing RARα with Cre in RARαfl/fl neurons. As
expected, expression of RARα FL completely rescued synap-
tic scaling, induced by RA or TTX + APV, in RARα KO
neurons (Figures 4B,C). Expression of RARα DBD failed to
rescue synaptic scaling by either RA or TTX + APV, which
is consistent with its role in DNA- but not RNA-binding
(Figures 4B,C). Importantly, RARα LBD/F fully restored synap-
tic scaling (Figures 4A,B,C). This indicates that the LBD and
F-domain, which convey the ligand-binding and RNA-binding
ability, respectively, works independently from the DBD in medi-
ating RA’s effect at the synapses and is sufficient to restore
synaptic scaling when expressed at appropriate levels. This result
also confirms the notion that RA and RARα function in a
transcription-independent manner in synaptic scaling as the
RARα LBD/F lacks the ability to bind DNA. Not surprisingly,
when only the F-domain is expressed in RARα KO neurons,
RA failed to increase synaptic strength (Figures 4A,B). Likewise,
synaptic scaling induced by TTX + APV was absent when only F-
domain is expressed (Figure 4C), demonstrating that activation
of RARα by RA is a required step in synaptic scaling. Moreover,
when RA synthesis is blocked by 4-diethylamino-benzaldehyde
(DEAB), an inhibitor for RALDH (Russo et al., 1988), TTX +
APV-induced synaptic scaling was completely blocked in RARα

LBD/F-expressing neurons (Figures 5A,B).
Results from above establish that two RARα activities primar-

ily mediate synaptic scaling: the RNA binding by the F-domain,
and RA binding by the LBD. While the former interaction silences
translation of target mRNAs, the latter interaction acts as a switch
to turn on translation of substrate mRNAs in neuronal dendrites
(Poon and Chen, 2008). Our previous work demonstrated that
one of the essential targets of RA/RARα regulation of protein
translation in the context of synaptic scaling is the AMPA recep-
tor subunit GluA1 (Poon and Chen, 2008). As a result, the newly
inserted synaptic AMPA receptors after TTX + APV treatment are
calcium-permeable GluA1 homomeric receptors that are sensitive
to polyamine blockers (Aoto et al., 2008). We, therefore, asked
whether synaptic scaling rescued in RARα LBD/F-expressing neu-
rons is also mediated by synaptic insertion of GluA1 homomeric
receptors. 1-naphthyl acetyl spermine (NASPM), a synthetic ana-
log of Joro Spider toxin in the polyamine toxin family, completely
reversed the increase in mEPSC amplitude in TTX + APV-treated
neurons (Figures 5A,B), indicating that RARα LBD/F likely acti-
vates the signaling pathway identical to that of full-length RARα

upon activity blockade and is fully capable of mediating RA-
signaling in the context of synaptic scaling.

VALIDATION OF shRNA-BASED KNOCKDOWN AND RESCUE APPROACH
TO STUDY RARα FUNCTION
We previously suggested a critical involvement of RARα in home-
ostatic synaptic plasticity by using a shRNA-based knockdown
approach (Aoto et al., 2008). Although accepted as a useful and
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FIGURE 3 | Subcellular localization of RARα and its deletion mutants.

(A) Schematic of RARα deletion constructs. Recombinant full-length and
truncated RARα domains were encoded as N-Terminal eGFP fusion proteins
(FL, Full-length; DBD, N-terminal DNA Binding Domain; LBD; F, C-Terminal

F-domain). NLS, Nuclear Localization Signal; NES, Nuclear Export Signal.
(B) Subcellular distribution of full-length or truncated RARα proteins (green).
mCherry (red) was co-expressed to visualize neuronal morphology. Scale bar:
10 μm.

less time-consuming method in understanding the function(s)
of a particular protein, the RNAi method also faced skepticism
given the potential off-target effects inherent to the approach.
We, therefore, decided to go back to this system and compare the

results obtained with the knockdown-rescue approach with that
of the genetic approach. We performed standard knockdown-
rescue experiments by transfecting cultured hippocampal neu-
rons with plasmids expressing both a shRNA against RARα
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FIGURE 4 | Functional rescue of synaptic scaling in RARα KO neurons

RARα expression. (A) Representative traces of mEPSCs from RARαfl/fl

hippocampal neurons infected with a bicistronic lentiviral vector coding for
Cre-recombinase and either FL RARα or truncated RARα proteins. Neurons
were treated with RA or with DMSO as control. Scale bars: 10 pA, 0.5 s.
(B) mEPSCs amplitude and frequency were quantified showing rescue of
RA-induced synaptic scaling in neurons expressing FL or LBD/F RARα.
Amplitude: no inf/DMSO: 9.94 ± 0.56 pA; no inf/RA: 11.58 ± 0.45 pA;
Cre + FL/DMSO: 9.34 ± 0.50 pA; Cre + FL/RA: 12.15 ± 0.70 pA;
Cre + DBD/DMSO: 9.55 ± 0.57 pA; Cre + DBD/RA: 9.75 ± 0.4 pA;
Cre + LBD-F/DMSO: 9.15 ± 0.52 pA; Cre + LBD-F/RA: 11.15 ± 0.50 pA;
Cre + F/DMSO: 9.34 ± 0.34 pA; Cre + F/RA: 9.30 ± 0.62 pA; n = 12–19, from
three independent experiments; ∗p < 0.05; ∗∗p < 0.005; ∗∗∗p < 0.001.
Frequency: no inf/DMSO: 1.00 ± 0.17 Hz; no inf/RA: 1.28 ± 0.20 Hz;
Cre + FL/DMSO: 0.89 ± 0.11 Hz; Cre + FL/RA: 1.04 ± 0.18 Hz;
Cre + DBD/DMSO: 0.90 ± 0.16 Hz; Cre + DBD/RA: 1.15 ± 0.25 Hz;
Cre + LBD-F/DMSO: 1.00 ± 0.14 Hz; Cre + LBD-F/RA: 0.76 ± 0.12 Hz;

Cre + F/DMSO: 1.01 ± 0.13 Hz; Cre + F/RA: 0.82 ± 0.09 Hz; n = 12–19,
from three independent experiments; p > 0.5. (C) Synaptic scaling
induced by activity blockade is rescued by LBD/F-domain
expression in neurons treated with TTX and APV for 24 h. Amplitude:
no inf/ctrl: 9.83 ± 0.45 pA; no inf/TTX + APV: 12.69 ± 0.65 pA;
Cre + FL/ctrl: 9.79 ± 0.39 pA; Cre + FL/TTX + APV: 11.55 ± 0.43 pA;
Cre + DBD/ctrl: 9.78 ± 0.30 pA; Cre + DBD/TTX + APV: 9.63 ± 0.44 pA;
Cre + LBD-F/ctrl: 9.33 ± 0.35 pA; Cre + LBD-F/TTX + APV: 11.67 ± 0.48 pA;
Cre + F/ctrl: 9.64 ± 0.40 pA; Cre + F/TTX + APV: 9.36 ± 0.50 pA;
n = 12–19, from three independent experiments; ∗p < 0.05; ∗∗p < 0.005;
∗∗∗p < 0.001. Frequency: no inf/ctrl: 1.09 ± 0.12 Hz; no inf/TTX + APV:
1.32 ± 0.17 Hz; Cre + FL/ctrl: 0.85 ± 0.25 Hz; Cre + FL/TTX + APV:
1.41 ± 0.25 Hz; Cre + DBD/ctrl: 1.28 ± 0.17 Hz; Cre + DBD/TTX + APV:
1.03 ± 0.18 Hz; Cre + LBD-F/ctrl: 1.46 ± 0.16 Hz; Cre + LBD-F/TTX + APV:
1.1 ± 0.18 Hz; Cre + F/ctrl: 1.28 ± 0.21 Hz; Cre + F/TTX + APV:
0.88 ± 0.15 Hz; n = 12–19, from three independent experiments;
p > 0.5.
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FIGURE 5 | Synaptic scaling mediated by LBD/F-domain depends on RA

synthesis and leads to synaptic insertion of calcium permeable AMPA

receptors. (A) Representative traces from RARα KO neurons expressing the
LBD/F-domain. To verify the dependence of synaptic scaling mediated by the
LBD/F-domain on RA synthesis, neurons were co-treated for 24 h with TTX,
APV and DEAB. In addition, to test whether synaptic scaling mediated by the
LBD/F-domain manifests as the insertion of calcium permeable AMPA
receptors, neurons were pretreated with TTX and APV for 24 h and NASPM

was bath applied during mEPSCs recording. Scale bars: 10 pA, 0.5 s.
(B) mEPSCs amplitude and frequency analysis of (A). Amplitude: ctrl:
9.65 ± 0.40 pA; TTX + APV: 11.29 ± 0.45 pA; TTX + APV + DEAB:
9.18 ± 0.32 pA; TTX + APV + NASPM: 8.74 ± 0.27 pA (n = 16–18, from three
independent experiments; ∗p < 0.05). Frequency: ctrl: 1.08 ± 0.22 Hz; TTX +
APV: 1.09 ± 0.14 Hz; TTX + APV + DEAB: 1.02 ± 0.13 Hz; TTX + APV +
NASPM: 1.04 ± 0.14 Hz (n = 16–18, from three independent experiments,
p > 0.5).

and a truncated version of the RARα that is also resistant to
the shRNA (rescue), and subject these neurons to 24 h TTX +
APV treatment. The results thus obtained completely corrob-
orate those obtained with the genetic KO-rescue experiments
(Figures 6A–C), demonstrating that the shRNA approach is a
valid approach for studying RARα functions in mature neurons.

SYNAPTIC SCALING IN NEURONS OVEREXPRESSING VARIOUS
RARα MUTANTS
Results from the rescue experiments done in RARα KO or KD
neurons provided important functional information regarding
the contribution of different RARα domains to synaptic RA-
signaling. We were curious whether any of the RARα deletion
mutants could act dominant negatively in neurons expressing
normal levels of endogenous RARα. To achieve this, we sim-
ply co-expressed �Cre with various RARα fragments, using the
same lentiviral vector that delivered Cre and RARα in the rescue
experiments.

Interestingly, when challenged with RA treatment, neurons
overexpressing RARα full-length protein failed to up-regulate
mEPSC amplitude to a similar level as the uninfected neurons
(Figures 7A,B), suggesting that increasing expression levels of
RARα compromises a neuron’s ability to undergo up-regulation
of synaptic strength by RA. This result is somewhat unexpected as
it cannot be explained by a simple dominant negative scenario,

and is not likely due to general side effects associated with
viral infection because RARα FL rescued synaptic scaling when
expressed in RARα KO neurons.

We then examined RA-induced scaling in neurons overex-
pressing the RARα DBD. The RARα DBD localizes primarily
to the nucleus and does not participate in RNA binding or
RA binding. Overexpression of RARα DBD did not affect RA-
induced synaptic scaling because endogenous RARα is sufficient
to mediate RA’s action (Figures 7A,B). This again rules out the
possibility of viral infection-induced side effects in general, and
suggests instead that the expression levels of RARα affect its
function in synaptic signaling. Indeed, similar to RARα full-
length overexpression result, overexpression of RARα LBD/F also
impaired synaptic scaling by RA (Figures 7A,B), although this
mutant RARα is able to bind to mRNA and respond to RA (Poon
and Chen, 2008). Interestingly, overexpression of F-domain in
neurons also prevented the increase in mEPSC amplitude after
RA treatment (Figures 7A,B). Because F-domain mediates RNA-
binding, but does not mediate RA-induced translational switch,
it can act dominant negatively when expressed alone to com-
pete with endogenous RARα in RNA-binding and sequester RNA
substrates.

Given the critical role of RA in activity blockade-induced
synaptic scaling, we next examined the effect of overexpression of
various RARα mutants in TTX + APV-induced synaptic scaling
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FIGURE 6 | LDB/F-domain is required for activity blockade induced

synaptic scaling. Rat primary hippocampal cultures were co-transfected
with shRNA against RARα and three different truncated forms of RARα

spanning (A) the DBD, (B) the F-domain, and (C) the LBD/F-domains.
Synaptic scaling induced by activity blockade with TTX and APV for 24 h was
rescued by co-expression of an RNAi resistant form of the LBD/F-domain as
shown by quantitative analysis of mEPSCs amplitude (A: ctrl/no treatment:

8.85 ± 0.32 pA; ctrl/TTX + APV: 10.60 ± 0.29 pA; shRNA + DBD/no treatment:
9.20 ± 0.47 pA; shRNA + DBD/TTX + APV: 9.70 ± 0.40 pA. B: ctrl/no
treatment: 9.11 ± 0.40 pA; ctrl/TTX + APV: 11.40 ± 0.61 pA; shRNA + F/no
treatment: 8.80 ± 0.22 pA; shRNA + F/TTX + APV: 9.43 ± 0.40 pA. C:
ctrl/no treatment: 8.90 ± 0.28 pA; ctrl/TTX + APV: 10.75 ± 0.25 pA; shRNA +
LBD-F/no treatment: 9.24 ± 0.32 pA; shRNA + LBD-F/TTX + APV:
10.70 ± 0.62 pA. n = 9–12, from two independent experiments; ∗p < 0.05).

with the prediction that those mediate by normal RA-induced
synaptic scaling should also support TTX + APV-induced synap-
tic scaling. Indeed, neurons overexpressing RARα DBD did not
interfere with the function of endogenous RARα in TTX + APV-
induced synaptic scaling, but overexpression of RARα FL, LBD/F,
and F-domain blocked synaptic scaling (Figure 7C). These results
suggest that RARα expression levels in neurons are tightly coupled
to its function, and may be strictly regulated in both developing
and mature neurons.

DISCUSSION
The involvement of RARα in RA-mediated homeostatic synap-
tic plasticity was demonstrated previously using a shRNA-based
knockdown method (Aoto et al., 2008). Although rescue exper-
iments with a shRNA-resistant version of full-length RARα was
done in that study, the complexity of RNAi experiments does
not allow us to completely exclude the possibility of an off-target
effect. We intended to achieve two goals in the current study: to
validate the shRNA results using a genetic approach, and to per-
form structure-function analysis of RARα. Indeed, results from
the RARα KO neurons confirmed our previous findings, val-
idating the conclusion that RARα is required for homeostatic
up-regulation of synaptic strength. Importantly, co-expression
of full-length RARα together with the Cre-recombinase success-
fully rescued synaptic scaling, making this an ideal system for
subsequent structure-function analyses.

Our results provide strong evidence for a non-genomic role of
RARα in regulating excitatory synaptic strength. Specifically, we
show that knocking out RARα in mature neurons acutely blocks
homeostatic up-regulation of synaptic strength, a process medi-
ated by RA. The rescue experiments with various forms of mutant
RARα revealed that individual RARα domains perform differen-
tial functions in RA-mediated homeostatic synaptic plasticity—
the DNA-binding activity of RARα was dispensable, while the
RNA-binding activity of the F-domain and the RA-binding
activity of the LBD were both required. The LBD and F-domains

of the receptor do not participate in DNA-binding, and, therefore,
are not known to be directly mediating the transcriptional regula-
tion by RARα. Instead, our previous work demonstrated that the
F-domain has mRNA binding abilities and that binding occurs in
a sequence specific manner. The consensus sequences for binding
are potentially present in many dendritically localized mRNAs, in
particular the ones encoding proteins known to be involved in
synaptic scaling, such as the mRNA coding for the GluA1 sub-
unit of AMPA receptors (Poon and Chen, 2008). In vitro studies
suggested that binding of the LBD/F-domain to mRNA regu-
lates translation in an RA-dependent manner so that addition
of RA leads to translational de-repression and increased GluA1
protein levels (Poon and Chen, 2008). Recent evidence from our
lab and others indicate that RARα protein is not restricted in
the nucleus in mature neurons, but can be found also in neu-
ronal dendrites (Huang et al., 2008; Maghsoodi et al., 2008),
further supporting a possible non-genomic function of RARα in
mature brains. Taken together, we hypothesize that direct bind-
ing of RARα to GluA1 mRNA through the F-domain and the
ability of RARα to localize to dendrites provides a repertoire of
dendritic GluA1 mRNA that is translationally dormant under
basal synaptic activity. Another important piece of the puzzle is
the regulation of RA synthesis by changes in synaptic activity.
We have shown that blocking excitatory synaptic transmission
leads to rapid up-regulation of RA synthesis (Aoto et al., 2008),
a process that is tightly controlled by dendritic calcium levels
(Wang et al., 2011). The RA thus made binds to the LBD domain
of RARα and reduces its mRNA-binding affinity, allowing rapid
increase of dendritic GluA1 synthesis through translational de-
repression (Poon and Chen, 2008). Synaptic insertion of newly
synthesized GluA1 homomeric AMPA receptors compensates the
decrease in excitatory synaptic transmission. Calcium-permeable
AMPA receptors have been implicated in many forms of synaptic
plasticity and diseases (Isaac et al., 2007; Liu and Zukin, 2007).
In this case, the calcium-permeable nature of these receptors
sends a negative feedback signal to reduce and eventually halt RA
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FIGURE 7 | Synaptic scaling in neurons overexpressing RARα domains.

(A) Representative traces from RARαfl/fl hippocampal neurons infected with
lentiviral vectors co-expressing �Cre and either full-length or deletion
mutants of RARα. Neurons were treated with RA or with DMSO as control
and mEPSCs recorded at −60 mV. Scale bars: 10 pA, 0.5 s. (B) Quantitative
analysis of mEPSCs amplitude and frequency in neurons treated with RA.
Amplitude: no inf/DMSO: 9.20 ± 0.25 pA; no inf/RA: 10.70 ± 0.31 pA; �Cre +
FL/DMSO: 9.67 ± 0.51 pA; �Cre + FL/RA: 9.67 ± 0.33 pA; �Cre +
DBD/DMSO: 9.25 ± 0.23 pA; �Cre + DBD/RA: 10.92 ± 0.34 pA; �Cre +
LBD-F/DMSO: 9.71 ± 0.46 pA; �Cre + LBD-F/RA: 9.74 ± 0.34 pA; �Cre +
F/DMSO: 9.36 ± 0.25 pA; �Cre + F/RA: 9.13 ± 0.16 pA; n = 16–18, from
three independent experiments; ∗∗∗p < 0.001. Frequency: no inf/DMSO:
1.17 ± 0.13 Hz; no inf/RA: 0.98 ± 0.18 Hz; �Cre + FL/DMSO: 1.06 ± 0.11 Hz;
�Cre + FL/RA: 1.15 ± 0.11 Hz; �Cre + DBD/DMSO: 0.94 ± 0.11 Hz; �Cre +
DBD/RA: 0.97 ± 0.14 Hz; �Cre + LBD-F/DMSO: 1.20 ± 0.18 Hz; �Cre +
LBD-F/RA: 1.17 ± 0.12 Hz; �Cre + F/DMSO: 1.08 ± 0.13 Hz; �Cre + F/RA:

1.07 ± 0.10 Hz; n = 16–18, from three independent experiments; p > 0.5.
(C) Quantitative analysis of mEPSCs amplitude and frequency recorded in
RARα KO hippocampal neurons upon treatment with TTX and APV for 24 h.
Amplitude: no inf/ctrl: 9.71 ± 0.31 pA; no inf/TTX + APV: 11.27 ± 0.33 pA;
�Cre + FL/ctrl: 9.48 ± 0.31 pA; �Cre + FL/TTX + APV: 9.74 ± 0.28 pA;
�Cre + DBD/ctrl: 9.34 ± 0.25 pA; �Cre + DBD/TTX + APV: 11.19 ± 0.48 pA;
�Cre + LBD-F/ctrl: 9.33 ± 0.35 pA; �Cre + LBD-F/TTX + APV:
9.69 ± 0.46 pA; �Cre + F/ctrl: 9.36 ± 0.33 pA; �Cre + F/TTX + APV:
9.14 ± 0.39 pA; n = 16–18, from three independent experiments;
∗∗p < 0.005. Frequency: no inf/ctrl: 1.04 ± 0.12 Hz; no inf/TTX + APV:
0.97 ± 0.13 Hz; �Cre + FL/ctrl: 1.39 ± 0.11 Hz; �Cre + FL/TTX + APV:
1.20 ± 0.19 Hz; �Cre + DBD/ctrl: 1.23 ± 0.10 Hz; �Cre + DBD/TTX + APV:
1.27 ± 0.14 Hz; �Cre + LBD-F/ctrl: 1.04 ± 0.14 Hz; �Cre + LBD-F/TTX +
APV: 0.98 ± 0.12 Hz; �Cre + F/ctrl: 1.04 ± 0.13 Hz; �Cre + F/TTX + APV:
1.10 ± 0.07 Hz; n = 16–18, from three independent experiments;
p > 0.5.
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synthesis, thus stabilizing synaptic strength. In this context, find-
ings from this study on the critical role of the RARα LBD/F-
domains in synaptic scaling provide an important functional
correlate to the observations previously made in vitro, and also
suggest a basic mechanism for translational regulation that allows
neurons to quickly respond to changes in activity with increased
protein levels.

An unexpected finding of our study is the impact of RARα

expression levels on synaptic scaling—synaptic scaling is fully res-
cued when full-length RARα or the LBD/F-domain of the RARα is
expressed in RARα KO neurons, but is impaired by expression of
full-length RARα or the LBD/F-domains in WT neurons contain-
ing endogenous RARα (Figures 4 and 5). A possible explanation
for this observation is that there may be two limiting factors in
dendrites for synaptic RA-signaling: the amount of RA produced
during activity blockade-induced synthesis, and the amount of
mRNAs in dendrites that serve as RARα substrates. When RARα

is expressed at higher levels, these two factors can limit synap-
tic scaling through two non-mutually exclusive mechanisms. If
the amount of GluA1 mRNA is limiting, there will be a frac-
tion of RARα that is not mRNA-bound. Additionally, a large
part of GluA1 mRNA may fail to localize to dendrites because
of their association with somatically localized RARα due to high
RARα expression levels. If the amount of RA is limiting, on
the other hand, part of dendritic RARα that is GluA1 mRNA-
bound may not be activated by RA produced during activity
blockade. Additionally, the mRNA-free RARα will further exac-
erbate the situation by competing with GluA1-bound RARα for
RA binding. One or both limiting factors could explain the lack
of synaptic scaling upon TTX + APV treatment in the presence
of excess RARα. The fact that synaptic scaling induced by direct
application of exogenous RA is impaired in RARα full-length

and LBD/F-domain expressing WT neurons argues that simply
supplying more RA is not enough, and that dendritically localized
GluA1 mRNA may be the other limiting factor. The developmen-
tally regulated reduction of RARα expression as neurons become
mature (Huang et al., 2008) supports this notion, and suggests
that protein expression levels can be tightly coupled with switches
of function during development.

In summary, we have in the present study pursued two
goals: first, to use rigorous genetic tools to test our hypothe-
sis that RARα, previously only known to function as a nuclear
RA-activated transcription factor, leads a double life as a den-
dritic repressor of protein translation whose repressive activity
is reversed by RA (Aoto et al., 2008); and second, to examine
whether the same protein domains of RARα are required for this
double life, or whether there is a dissociation in domain require-
ments for its two functions. Our data confirm RARα’s double
life, validating that this RA-regulated protein exhibits an amazing
and unexpected versatility in which RA activates transcription of
genes but inactivates repression of protein translation. Moreover,
together with previous studies on the structure/function relation-
ship of RARα as a transcription factor (Evans, 1988; Green and
Chambon, 1988; Tora et al., 1988a,b; Tasset et al., 1990), our
data reveal that the two functional lives of RARα depend on dis-
tinct protein domains, whereby RA-binding to the LBD serves as
the central event that regulates either an N-terminal transcrip-
tion activity (via the DBD that is not needed for the translational
function of RARα ) or a C-terminal translation repression activ-
ity (via the F-domain). Thus, the architecture of RARα exhibits an
exquisite symmetry in which the same central regulatory domain
(the LBD) acts either on a transcriptional or translational control
element, both of which affect gene expression as the final readout
but operate by completely different mechanisms.
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