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Abstract: This study examined the performance of a flexible polymer/multi-walled carbon nanotube
(MWCNT) composite sensor array as a function of operating temperature. The response magnitudes
of a cost-effective flexible gas sensor array equipped with a heater were measured with respect
to five different operating temperatures (room temperature, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C) via
impedance spectrum measurement and sensing response experiments. The selected polymers that
were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite
sensing films included ethyl cellulose (EC), polyethylene oxide (PEO), and polyvinylpyrrolidone
(PVP). Electrical characterization of impedance, sensing response magnitude, and scanning electron
microscope (SEM) morphology of each type of polymer/MWCNT composite film was performed
at different operating temperatures. With respect to ethanol, the response magnitude of the sensor
decreased with increasing operating temperatures. The results indicated that the higher operating
temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas
sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes
in the porous film after volatile organic compound (VOC) testing.

Keywords: polymer/multi-walled carbon nanotube composites; droplet casting; operating temperature;
impedance spectrum

1. Introduction

Polymer-based sensors are resistive-type gas sensors that are widely used by extant research
for gas and vapor sensing owing to their diverse responses to different gases. Polymer composite
chemiresistor gas sensor arrays comprise different polymers and carbon particles that interact with an
adsorptive analyte and cause electrical property changes. Several previous studies examined the high
response and sensitivity of polymer-based sensors for detection of volatile organic compounds [1–3].
Carbon nanotubes (CNTs) have stimulated great interest due to their distinctive electrical, physical, and
chemical properties that enable the development of sensitive devices in the field of gas sensing [4,5].
Polymer/MWCNT composites have attracted considerable attention due to fast response and high
sensitivity towards environmental gases at room temperature. Recent studies demonstrate feasibility
of polymer/MWCNT composites for detection of toxic chemical agents, inorganic vapors, and volatile
organic compounds [6–14].
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Operating temperature of the sensing layer is a key factor that affects response time, sensitivity,
and the baseline for both metal oxide semiconductor (MOS) gas sensors and polymer-based gas sensors
with different absorbed gases. Specifically, an MOS gas sensor equipped with an oxide-based layer that
operates at high operating temperatures causes a change in charge mobility during chemisorptions of
oxygen [15]. The operating temperature of SnO2-based gas sensors that ranges from 25 ◦C to 500 ◦C
detects various types of low concentration gases [16,17]. Polymer-based gas sensors are characterized
by swelling due to the absorption of a target gas into the polymer layer, and subsequently the variation
of an electric signal results in a charge transfer on the surfaces of the CNTs [8,18]. The operating
temperature of polymer-based gas sensors corresponds to low temperatures below 80 ◦C to guarantee
a stable response to mitigate the influence of ambient temperature [19–21].

Polymer-carbon black composite gas sensor arrays that are operated at low temperatures were
developed and applied in electronic nose systems [19,20]. Extant research has examined resistance
changes with respect to varying ambient temperatures in polymer-carbon black films in detail [21,22].
The results indicated that the ambient temperature could influence the resistance and baseline at
different molecular weights and different carbon loadings [23]. The results of previous studies indicated
that different polymer-carbon black composite gas sensors manipulated at several low operating
temperatures could exhibit a decrease in their response to the target gases as the operating temperature
is increased [24–26]. Many reports on MWCNT/polymer based gas sensors demonstrated high
sensitivity but slow recovery at room temperature to achieve complete desorption of adsorbed gas
molecules from the surface of MWCNTs. Thermal treatment is one of the more efficient methods to
tackle the poor recovery [27–29]. Nevertheless, our preliminary study had shown that the sensing
response of a flexible polymer/MWCNT composite gas sensor was decreased with increasing operating
temperature [30]. Extant studies have not examined the effect of temperature on the polymer-carbon
black composite sensors, with respect to mechanisms of tunneling, hopping, and thermal expansion.
Additionally, it is not fully understood how a variation in temperature affects the electrical properties of
polymer/carbon nanotube composite gas sensors and causes different chemical potentials of polymer
phase and gas phase.

In this study, a two-layer polymer/MWCNT composite sensing film was fabricated by a droplet
casting method, and a flexible printed circuit (FPC) technology was used to fabricate sensing
electrodes with embedded heater gas sensor arrays. The operating temperature dependence of
electrical characterization and sensor response was investigated. The selected polymers used in a
polymer/MWCNT composite sensing film included ethylcellulose (EC), polyethylene oxide (PEO), and
polyvinylpyrrolidone (PVP). The effect of different operating temperatures on the electric properties
and sensing responses of the polymer/MWCNT composite gas sensor array was tested in the device
developed to detect methanol. Furthermore, scanning electron microscopy (SEM) was used to compare
differences in morphologies between the sensors before and after the test.

2. Materials

The polymer/MWCNT composite sensing film consisted of two membranes, the top layer and
the bottom layer wherein the polymer film and the MWCNT film were deposited, respectively.
Both membranes were fabricated via a droplet casting method to form the two-layer structure for
gas sensing. Polymers selected for deposition on the MWCNT film included ethylcellulose (200679,
Sigma-Aldrich, Saint Louis, MO, USA), polyethylene oxide (43678, Alfa Aesar, Haverhill, MA, USA),
and polyvinylpyrrolidone (PVP 10, Sigma-Aldrich, Saint Louis, MO, USA). The selection was based on
linear solvation energy relationship (LSER) theory and physical absorption bonding [31,32]. Typically,
each of the selected polymers (0.2 g) was dissolved in 20 mL tetrahydrofuran (THF) and was then
prepared by sonication for 6 h in an ultrasonic bath at room temperature. The MWCNT used for the
composite films were few-walled carbon nanotubes (FWNTs) provided by the XinNano Materials, Inc.
(Taoyuan, Taiwan). The approximate dimensions of the MWCNT with 2–5 layers of sidewalls were an
average diameter of 4 nm, 10–12 µm average length, and >86% average purity.
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The fabrication processes of droplet casting a two-layer sensing film are as follows: first, 1 wt %
(2 µL) of MWCNT was deposited on a conductive electrode by a micro jet. The device was then placed
in an oven at 70 ◦C to evaporate THF and furnish the MWCNT film. The selected polymers were then
deposited by adding a droplet of 1 wt % (2 µL) solution (1 mg/mL THF) on the MWCNT layer to form
the film. Finally, the device was dried for 24 h at 60 ◦C, and the solvent was completely evaporated
prior to use. The sensor resistance after each casting step was monitored to limit the value within a
range of 10 kΩ–200 kΩ to guarantee the reproducibility. The morphology of all polymer/MWCNT
composite films was confirmed by the SEM image as shown in Figure 1a–d. The morphology of a
polymer sensing film was examined using an SEM (NOVA NANO SEM 450, FEI Co., Hillsboro, OR,
USA) with 10 kV acceleration voltage. The pore sizes of EC/MWCNT film remained in a range of
0.7–1.1 µm. The pores with the largest diameter were in the range from 1.2 µm to 1.4 µm.
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Figure 1. SEM morphology of polymer/MWCNT composite films before the test (a) MWCNT film;
(b) EC/MWCNT film; (c) PEO/MWCNT film; and (d) PVP/MWCNT film.

3. Design and Fabrication

A cost-effective gas sensor array was fabricated by flexible printed circuit industry technologies.
The flexible gas sensor array was comprised of three different types of polymer/MWCNT composite
sensing films arranged in a 3 × 3 matrix pattern. Each type of the selected polymer was arranged in
one of the rows in the matrix. The fabricated flexible gas sensor array exhibited excellent flexibility, as
shown in Figure 2a. The insets indicate the sensing electrode of a single sensor element and the heater.

The sensing electrode was composed of copper with 35 µm thickness, 220 µm line width, and
220 µm line spacing. The through hole-machined well with 130 µm thickness was positioned and then
adhered to the upper side of the sensing electrode to guarantee a filled polymer composite film placed
in a specific area [33]. The configuration of the fabrication and cross-section view of the flexible gas
sensor array is shown in Figure 2b.
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Figure 2. (a) configuration of the flexible gas sensor array. The inset shows the sensing electrode
(top electrode) and the heater (bottom electrode); and (b) the cross-sectional schematic structure of the
single gas sensor.

The heater had a 50 µm thickness and a geometry corresponding to 20 mm × 20 mm. In contrast,
the width and spacing of the single heater line was 220 µm and 280 µm, respectively. The heater was
made of stainless steel (SUS304) to provide a thermostat operating temperature. These temperatures
included room temperature, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C. The platinum resistance temperature
detector (RTD) was embedded in a polyimide substrate to enable feedback control at the operating
temperature. To prevent heat loss from the substrate, 130 µm polyimide films were adhered to the
bottom side of the sensor substrate. Both the heater as well as the sensing electrode were designed in
double-spiral shapes in a square area [30].

The architecture of the gas sensor array control system was comprised of a flexible gas sensor
array sensor, an interface circuit, a micro control unit, and a human–machine interface. The system
was designed to drive the sensor array and the heater, and to control the operating temperature and
collect response data from each sensor. Figure 3 shows a block diagram of the proposed gas sensor
array control system.

When a flexible gas sensor array was operated at a specific temperature for target gas detection,
the varied resistance of each sensor was obtained through a multiplexer (MUX). The resistance was
then converted to voltage signals by a sensor interface circuit (SIC). The multichannel signals were
recorded through a micro control unit (MCU, C8051F120, Silicon Laboratories, Inc., Austin, TX, USA)
and then synchronized display was obtained on the human–machine interface (HMI, see Figure 3b).
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Figure 3. (a) system block of the gas sensor array control system; and (b) human–machine interface software.

The driver and feedback control circuit of the heater are shown in Figure 4a. The operational
amplifier was connected to a voltage source and operated a bipolar junction transistor that functioned
as a switch for the current to the heater [34,35]. The 1 kΩ platinum RTD sensor that measured the
change in the operating temperature of the heater was driven by a constant current source. The signal
of the RTD sensor was obtained by a voltage follower and was then connected to one of the inputs
in the differential amplifier in the compensator circuit. This output signal was compared to the
reference temperature set-point voltage for driving the heater. This feedback control system for
the heater was used to obtain the steady-state electrical power consumption curves of the heater
under 500 mL/min airflow conditions given the existence of the composite-sensing layer, as shown in
Figure 4b. The electrical power consumption of the heater was a function of the operating temperature
range (35.36–84.03 ◦C) in a flexible gas sensor array.
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Figure 4. (a) temperature control circuit of the heater; and (b) power consumption vs. operating
temperature of the microheater for the flexible gas sensor array.

4. Experiments and Discussion

4.1. Transient Response of the Polymer/MWCNT Composite Film

The transient response experiment included four separate heating stages to operate the
microheater by heating the flexible gas sensor array to temperatures of 40 ◦C, 50 ◦C, 60 ◦C, and
70 ◦C under a 500 mL/min airflow condition. In each stage, the flexible gas sensor array was first
maintained at room temperature to obtain the recovery baseline for 10 min. The heater was then used
to heat the sensor array to the specific operating temperature for 10 min. Figure 5a shows the transient
response of the heater to the relative operating temperature. The profile display indicated that the time
taken to heat the array to the operating temperature range (±0.5 ◦C) using the heater was less than
2 min.

The transient responses of three different polymer/MWCNT composite films are shown in
Figure 5b. Evidently, the recovery baselines of the EC/MWCNT and PEO/MWCNT composite films
were slightly shifted and PVP/MWCNT was heavily shifted. Three different polymer/MWCNT
composite films exhibited a negative temperature coefficient resistance (NTC) inclination as the
operating temperature increased.
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Figure 5. Cyclical heating to operating temperatures of 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C. (a) the transient
response of the heater to the relative operating temperature; and (b) the responses of normalized
resistance of the polymer/MWCNT composite sensor.
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With respect to different operating temperatures, the EC/MWCNT and PEO/MWCNT film
revealed a better immunity to temperature influence with a variation in resistance The PEO/MWCNT
film revealed the widely transient response with respect to the operating temperature that was
considerably more stable than other films. The resistance of the PVP/MWCNT film was stable at 40 ◦C
and 50 ◦C, but unstable at 60 ◦C and 70 ◦C.

4.2. Impedance Spectrum Property

Impedance measurement was performed using an Agilent 4292A impedance analyzer
(Agilent Technologies, Santa Clara, CA, USA)in the frequency range of 100 Hz to 1 MHz using a
modulation voltage of 500 mV (peak to peak) [4,36]. The impedance measurements were measured at
different operating temperatures under the 500 mL/min airflow conditions. The impedance spectrum
of the MWCNT film and three different polymer/MWCNT composite films are shown in Figure 6.
The sensor responses were comparable, as shown in the figure.
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Figure 6. Impedance spectrum of the MWCNT film and polymer/MWCNT composite film at
different operating temperatures. (a) MWCNT film; (b) EC/MWCNT film; (c) PEO/MWCNT; and
(d) PVP/MWCNT.

As the measurements indicate, the resistance behavior of MWCNT film decreased with increases
in operating temperatures at frequencies below 100 kHz, corresponding to the operating temperatures
(the following operating temperatures: room temperature, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C).
The equivalent circuit model of the polymer/MWCNT composite film was examined. It included
two components, namely the resistance and capacitance effects [4]. Significant differences in the
behavior of the impedance spectrum were not observed in the other polymer/MWCNT composite
films. The impedance spectra of the other polymer/MWCNT composite films revealed a circuit model
equivalent to that of the MWCNT film. However, the capacitance effect of each polymer/MWCNT
composite film occurred in a different frequency range. As observed in Figure 6, the resistance effects
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of the EC/MWCNT and PEO/MWCNT composite films were observed below 10 kHz. Additionally,
the resistance effect of the PVP/MWCNT composite film was observed below 100 kHz.

4.3. The Response of the Sensor Array

The polymer composite film absorbed the target gas when it was introduced into the reaction
chamber. As the gas was introduced, the film swelled up slightly, and this induced the change in the
distance between nanoparticles. The change in the resistance of the film could then be measured by an
instrument [8,18]. The experimental setup used in the measurements is shown in Figure 7.
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Figure 7. Experimental setup of the gas sensing system.

The 1.5% of ethanol gas was controlled by a mass flow controller under a flow rate of 500 mL/min.
Dry air (25 ◦C, 45% relative humidity (RH)) was used as background gas, and the flow rate was set at
500 mL/min. The flexible polymer/MWCNT composite gas sensor array was placed inside a reaction
chamber with 60 mL capacity. The gas sensing response measurement consisted of several steps in
each gas-testing cycle. First, the heater was heated to the operating temperature, and then dry air was
introduced into the reaction chamber for 10 min to obtain a reference resistance baseline. When the
temperature of the heater was stable, the ethanol gas was introduced into the reaction chamber for
5 min. The polymer films were adsorbed and swollen due to gas molecules. Following this, dry air
was introduced for 10 min to enable desorption from the polymer film.

Normalized resistance changes (∆R/R0%) of the polymer/MWCNT composite films were
determined using ∆R/R0% = [(Rmax − R0)/R0] × 100, where R0 denotes the mean value of sensor
resistance from t = 1~100 s when the sensor was exposed to dry air in equilibrium, and Rmax denotes
the maximum resistance when the sensor was exposed to ethanol. In order to obtain sufficient response
information to analysis, the polymer/MWCNT composite sensing film was exposed to 1.5% ethanol
with different operating temperatures. Figure 8 shows the response patterns of the normalized data
when the polymer/MWCNT composite sensing film was exposed to ethanol with different operating
temperatures. The response patterns exhibited that EC/MWCNT and PVP/MWCNT sensors show
a decreased response of sensitivity with an increase in operating temperature. Increasing operating
temperature could result in increased polymer chain mobility to form percolation networks for sensing
response, but simultaneously provide the electrons more energy to overcome the potential barrier
and cause more tunneling contribution to decrease the sensing response [37]. The glass transition
temperature of PEO is very low and an increase in temperature could result in increased polymer
chain mobility at higher operating temperatures [23,37,38]. Hence, the sensitivites of the PEO sensor at
60 ◦C and 70 ◦C have better responses than at 50 ◦C.

All three polymer/MWCNT composite films showed a decrease in sensitivity response with an
increase in the operating temperature. The results indicated that the polymer chain mobility increased
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with an increase in operating temperature with respect to sensing response. A suitable operating
temperature could provide a flat baseline for target gas recognition. The baseline shift was severe in
the PEO/MWCNT film because this film involves a lower glass transition temperature material that
could be sensitive to the operating temperatures.
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4.4. SEM Morphology of Polymer/MWCNT Composite Films

The morphology of each polymer/MWCNT composite film after the aforementioned test was
investigated via SEM and is shown in Figure 9. The significant differences of the porous EC/MWCNT
film indicated that the pores evidently expanded and became larger when compared to the initial pore
sizes. The pore size range corresponded to 2.3–2.8 µm with cavity sizes in the range of 0.3–2.1 µm.
The surface of the PVP/MWCNT film could shrink after the application of a series of thermal cycles.
There were no obvious changes in the other two films after the aforementioned test.
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5. Conclusions

A flexible polymer/MWCNT gas sensor offers several advantages including cost effectiveness,
lower power consumption, reproducibility, lightweight, and flexibility given its potential integration
in electronic noses and portable consumer products. However, the ambient environments of these
applications involve several variables that influence sensor performance. Temperature is one such
variable in which temperature variations pose a critical problem for reducing the sensitivity of the sensor.
To date, extant research has not focused on the effect of operating temperature on a polymer-based gas
sensor. Current studies examine environments with a constant operating temperature.

The gas absorptions and interaction mechanisms of polymer/MWCNT composite films are
dominated by two principles: namely, physisorption and chemisorption. Both of these principles could
change with respect to different operating temperatures. The experiment in this study investigated the
effect of operating temperature on the responses of a flexible polymer/MWCNT gas sensor. The results
indicated that higher operating temperature could mitigate the influence of ambient temperature but
reduce the response. Both of these effects could influence the sensitivity of the polymer/MWCNT gas
sensor array. The morphology after the aforementioned test showed that the pores of EC/MWCNT
expanded, but the surface of PVP/MWCNT film started to shrink. The reusability and the life cycle
of each polymer/MWCNT composite film should be considered at a suitable operating temperature
to prevent thermal expansion and subsequent destruction of the pores. A future study will examine
the effect of other ambient variables and the performance under mechanical strain on the flexible
polymer/MWCNT gas sensor array.
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