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Abstract

We investigate two non-iterative estimation procedures for Rasch models, the pair-
wise estimation procedure (PAIR) and the Eigenvector method (EVM), and identify
theoretical issues with EVM for rating scale model (RSM) threshold estimation. We
develop a new procedure to resolve these issues—the conditional pairwise adjacent
thresholds procedure (CPAT)—and test the methods using a large number of simu-
lated datasets to compare the estimates against known generating parameters. We
find support for our hypotheses, in particular that EVM threshold estimates suffer
from theoretical issues which lead to biased estimates and that CPAT represents a
means of resolving these issues. These findings are both statistically significant
(p \ .001) and of a large effect size. We conclude that CPAT deserves serious con-
sideration as a conditional, computationally efficient approach to Rasch parameter
estimation for the RSM. CPAT has particular potential for use in contexts where
computational load may be an issue, such as systems with multiple online algorithms
and large test banks with sparse data designs.
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Introduction

While modern computing speeds mean that most estimation procedures are fast

enough for a standard, offline Rasch analysis to be run, there are contexts where

computational expense is an important consideration, for example larger scale
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automated systems where repeated calibration runs may be required alongside other

processes, and large adaptive testing banks with hundreds or even thousands of

items. For such contexts, some procedures such as conditional maximum likelihood

estimation (CMLE) (Andersen, 1970, 1973) may still prove too computationally

expensive for practical use. In this context, non-iterative procedures, which do not

require repeated runs, possess an advantage.

Another desirable property of a Rasch estimation procedure is that it takes advan-

tage of the Rasch property of the existence of sufficient statistics to condition out per-

son parameters (Andrich & Luo, 2003), resulting in consistent estimates (Andersen,

1973), unlike the unconditional joint maximum likelihood estimation procedure

(JMLE; Wright & Masters, 1982; Wright & Panchapakesan, 1969), which simultane-

ously estimates person and item parameters and suffers from the incidental parameter

problem (Ghosh, 1994; Lancaster, 2000; Neyman & Scott, 1948) as a result, since

the number of parameters to be estimated increases with the sample size. Conditional

estimation methods also avoid the need for distributional assumptions as with mar-

ginal approaches, which can lead to estimation bias where person abilities are not

normally distributed (Zwinderman & van den Wollenberg, 1990). The only estab-

lished methods which are both conditional and non-iterative are PAIR (Choppin,

1968, 1985; Wright & Masters, 1982), a procedure based on pairwise comparisons of

response data for dichotomous items, and the closely related eigenvector method

(EVM; Garner & Engelhard, 2009; Garner, 2002), which also extends the PAIR

approach fully to the rating scale model (RSM; Andrich, 1978) and many-facet

Rasch models (MFRM; Linacre, 1994).

Our focus in this study is on the RSM; we will begin by reviewing the formulation

of the RSM, PAIR, and EVM, before discussing theoretical issues, proposing solu-

tions and formulating and testing hypotheses using simulated datasets.

Rating Scale Model

The RSM is a specific formulation of a polytomous Rasch model suitable for tests

which are marked on an ordinal scale with three or more categories according to a

set of rating criteria (items henceforth), for example an essay marked on a 0 to 5

scale for grammar, vocabulary, organization, and content. The model is also used for

questionnaires using Likert scales. The RSM is formally identical to the partial credit

model (PCM; Masters, 1982), except that the threshold structure is constrained to be

the same across all items. Mathematically, the RSM formulation giving the probabil-

ity Pnik of person n achieving a score of k on item i with a shared maximum avail-

able score of m is given, in probability ratio form, by:

ln (
Pnik

Pni(k�1)

) = bn � di � tk ð1Þ

As Equation 1 indicates, the overall item location parameter fdig and the thresh-

olds ftkg are independent of each other.
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PAIR

Choppin (1968, 1985) developed the conditional pairwise PAIR algorithm, focusing

on the dichotomous Rasch model, or simple logistic model (SLM; Rasch, 1960,

1961). The SLM is a further restricted form of the RSM, with one threshold (with

location 0) for each item, with the corresponding simplified equation:

ln (
Pni1

Pni0

) = bn � di ð2Þ

If we consider a person n responding to a pair of items i, jð Þ, Equation 2 gives:

ln (
Pni1

Pni0

Pnj0

Pnj1

) = (bn � di)� (bn � dj) = dj � di ð3Þ

Assuming that the requirement for local item independence is met, this is equiva-

lent to:

ln (
Pni1^ nj0

Pni0^ nj1

) = dj � di ð4Þ

This result means that, in the case where a person responds to only one of a pair

of items i, jð Þ correctly, the probability that the correctly answered item is i or j is a

function only of the difference in the difficulty of the two items: person ability has

been conditioned out.

Choppin (1968, 1985) developed methods to produce a vector of item difficulties

from Equation 4 in both iterative and non-iterative ways. The non-iterative method,

PAIR, is based on substituting the observed counts of ni1 ^ nj0 and ni0 ^ nj1 for

Pni1^ nj0 and Pni0^ nj1 in Equation 4 to provide an estimate of edj�di for each pair of

items (i, j) in a process involving several steps:

1. Create a matrix C of conditional category response frequencies ni1 ^ nj0 for

all possible pairs of items i, jð Þ.
2. From this matrix C, dividing Cij by Cji provides an estimate of edj�di based on

the responses to items i and j. However, C contains zero values – the leading

diagonal is comprised of zeros and there may also be cases where ni1 ^ nj0

returns a zero value. Choppin (1985) showed algebraically that raising C to

successive integer powers will eventually remove all zero values provided C

is well-conditioned (Fischer, 1981), and that the underlying structure of the

resulting matrix is maintained—in effect, direct comparisons between a pair

of items i and j are supplemented by additional comparisons mediated by

another item k in the case of C2, and further mediations are added with suc-

cessive powers.

3. From the resulting matrix Cn, generate a new matrix D such that Dij = Cn
ji=Cn

ij.

D is a positive pairwise reciprocal matrix: Dij = 1=Dji, where Dij . 0. Matrix
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D is a matrix of pairwise comparisons of item difficulties once the person

parameters have been conditioned out, which is identical to the pairwise com-

parison model developed by Zermelo (1929) to determine relative player

strength from a chess tournament where there may be missing data, the values

in the columns of which relate to item difficulties on the ratio scale form of

the Rasch model. Bradley and Terry (1952) independently developed an inter-

val scale version of the same model, which is directly equivalent to the stan-

dard log-odds form of the Rasch model with person parameters conditioned

out.

4. From the matrix D, take the arithmetic mean of each row to create a vector of

item difficulty estimates; these represent the item difficulty estimates on the

ratio scale version of the Rasch model (Rasch, 1960).

5. To convert to the interval scale Rasch model, take the natural logarithm of

each element of the difficulty vector and, for convention, subtract the mean

difficulty so that
P

i di = 0.

The primary motivation for Choppin’s (1985) work was the sensitivity of previous

methods to missing data, and a weakness which extends to CML: since CML is predi-

cated on the probability of complete response vectors across a set of items, and the

studies have indicated that it may be sensitive to missing data (Eggen & Verhelst,

2006; Heine & Tarnai, 2015), whereas PAIR is derived purely from the minimal data

required to compare a pair of items; missing data only has an effect to the extent that

it reduces the number of comparisons available between a pair of items. Heine and

Tarnai (2015) compare the estimates (using the PCM) with randomly removed data

to the estimates obtained from complete datasets using PAIR, CML, and MML.

Heine and Tarnai find that PAIR outperforms CML, which is often regarded as the

gold standard of estimation methods, in terms of the stability of the resulting esti-

mates; PAIR and MML were similar in terms of stability. One limitation of Heine

and Tarnai’s findings is that, since they are based on authentic data, there is no defini-

tive ground truth of known difficulty values against which to determine performance.

For polytomous responses, PAIR can be extended to the PCM (Masters, 1982) by

treating each item threshold as an individual item and counting the conditional cate-

gory frequencies for pairs of thresholds on different items where persons have scored

in the adjacent categories either side of the two thresholds (Garner, 2002). It cannot,

however, be used in the same manner for the RSM (Andrich, 1978), due to the con-

straints imposed on the threshold structure, which are identical across items; an alter-

native formulation is required.

The EVM

Mainly following Choppin’s approach, (Garner 2002) and Garner and Engelhard

(2009) apply an approach to the derivation of the item difficulty vector which differs

only in the averaging, step, using the eigenvector corresponding to the principal
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eigenvalue of the matrix D rather than the arithmetic means of the rows. This

approach, the EVM, has its foundation in the analytical hierarchy process (AHP;

Saaty, 1994; Saaty & Bennett, 1977). Garner and Engelhard also extend the applic-

ability of EVM from the SLM and the PCM to the RSM (Garner 2002) and further

(Garner and Engelhard 2009) to the MFRM (Linacre, 1994).

For the RSM, we can condition out the person ability and Rasch-Andrich thresh-

olds to obtain a formulation for the estimation of the overall item parameters by con-

sidering probabilities of scoring 1 more on item i than on item j or 1 more on item j

than on item i conditional on the scores being in adjacent categories:

ln (
Pnik

Pni(k�1)

Pnj(k�1)

Pnjk

) = (bn � di � tk)� (bn � dj � tk) = dj � dj ð5Þ

or, using local item independence:

ln (
Pnik^nj(k�1)

Pni(k�1)^njk

) = dj � di ð6Þ

Garner and Engelhard go on to provide a formulation for the estimation of the

Rasch–Andrich thresholds:

ln (
Pnik

Pni(k�1)

Pni(l�1)

Pnil

) = (bn � di � tk)� (bn � di � tl) = tl � tk ð7Þ

or, again using local item independence and taking exponents:

ln (
Pnik^ni(l�1)

Pni(k�1)^nil

) = tl � tk ð8Þ

Garner’s (2002) approach to estimating this is to compare the number of pairs

of persons with the same total score who scored k and l � 1 on item i to the num-

ber of pairs of persons who scored k � 1 and l on the same item (p. 115). This

assumes the presence of a complete data matrix with no missing data, since the

same total score on a different number of items will correspond to a different abil-

ity estimate. In order to extend their approach to datasets with missing data, it is

necessary to subset the sample into sets of persons who responded to the same

items; pairs would then be then counted within each subset and summed across all

subsets.

There are certain theoretical issues caused by features of this approach to generat-

ing threshold estimates, which conditions out both the item difficulties and person

abilities simultaneously in order to generate the conditional category frequency

matrix for the thresholds. Firstly, for estimation purposes the person parameters can-

not be said to have been fully conditioned out, since persons are grouped according

to the same total score, meaning that person ability must be taken into account during

the estimation procedure; this may result in biased estimates due to the incidental
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parameter problem (Ghosh, 1994; Lancaster, 2000; Neyman & Scott, 1948).

Secondly, while two persons with the same total score on the same set of items will

obtain the same ability estimate due to the sufficiency of the raw score statistic for

person parameter estimation, this does not mean that they have the same true

ability—the model considers the raw score to the outcome of a stochastic process

mapping a continuous variable (ability on the latent trait) onto a closed set of discrete

points corresponding to the set of possible raw scores. In reality, the only person

who can be said with certainty to have the same underlying ability as a person is that

same person, and the use of estimates as a proxy for true ability introduces a source

of error. Finally, where there is missing data, the dataset must be subsetted further

according to items responded to, since ability scores on the same number of

responses to different subsets of items will have different ability estimates and there-

fore cannot be grouped together. This means more responses are unused, which will

be detrimental to estimation accuracy. In fact, all persons who have a unique combi-

nation of scores and response patterns are unusable, while others may have small

numbers of persons with whom comparisons can be made. For these reasons, we can

hypothesize that EVM threshold estimates are likely to be more sensitive to missing

data than item difficulty estimates, which do not suffer from the same issues since

they follow the PAIR approach apart from the averaging step. The subsetting process

also adds computational expense.

These observations, particularly the third point, indicate that the a theoretically

correct approach to pairwise estimation should consider the scores obtained by the

same person on two different items, that is, by counting comparisons of pairs of col-

umns, as it is the case for item difficulty estimates—a modified approach is required.

Although it is not possible to condition out both person and item parameters simul-

taneously while counting columns, it is straightforward to condition out the person

ability parameter:

ln (
Pnik

Pni(k�1)

Pnj(l�1)

Pnjl

) = (bn � di � tk)� (bn � dj � tl) = (dj � di) + (tl � tk) ð9Þ

or, using local item independence and re-arranging terms:

tl � tk = ln (
Pnik ^ nj(l�1)

Pni(k�1)^ njl

) + (di � dj) ð10Þ

Equation 10 would constitute a sufficient statistic, except that it contains the dif-

ference between the difficulties, dj � di. However, this can be eliminated by consider-

ing the item pair j, ið Þ instead of i, jð Þ; reversing i and j in Equation 10 while keeping

thresholds k and l in the same order gives:

tl � tk = ln (
Pni(l�1)^ njk

Pnil^ nj(k�1)

) + (dj � di) ð11Þ
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Combining Equations 10 and 11 gives:

tl � tk =
1

2
( ln

Pnik ^ nj(l�1)

Pni(k�1)^ njl)

+ ln
Pni(l�1)^ njk

Pnil^ nj(k�1)

) ð12Þ

Using Equation 12, it is possible to construct an m3m matrix T of threshold dif-

ferences with Tij = ti � tj. This matrix is the equivalent of the element-wise natural

logarithm of the reciprocal pairwise matrix in PAIR/EVM. Taking the arithmetic

mean of row Ti:

T i =
1

m

Xm

j = 1

Tij =
1

m

Xm

j = 1

(ti � tj) =
1

m

Xm

j = 1

ti �
1

m

Xm

j = 1

tj = ti ð13Þ

due to the identity
Pm

j = 1 tj = 0. This means that the vector of arithmetic row

means of T is a set of threshold estimates for thresholds tk , k 2 f1, . . . , mg.
While this modification avoids the theoretical issues with EVM, it brings its own.

Where there are several categories, the distance between categories near opposite

ends of the range becomes large, which in terms of deriving estimates from finite and

particularly small data sets means that there are likely to be many zero or very small

counts, even in both classes, since the probabilities of scoring either ni(l � 1) ^ njk

or nil ^ nj(k � 1) are very small. These uninformative comparisons may lead to

small or even zero results for individual estimators of the intervals between such

pairs of individual thresholds compared to the real value. However, these uninforma-

tive estimators are treated the same as more informative ones, since the procedure

makes no distinction when aggregating individual estimators into the final estimates.

Considering this fact indicates that it would be desirable to account for uninformative

estimators by excluding them or weighting them according to their informativeness.

Conditional Pairwise Adjacent Thresholds

An alternative approach to threshold estimation which avoids making comparisons

between the extremes of the scale and permits the possibility of weighting estimators

is to consider only pairs of adjacent thresholds. Setting l = k + 1 in Equation 10, we

have:

tk + 1 � tk = ln (
Pnik ^ njk

Pni(k�1)^ nj(k + 1)

) + (di � dj) ð14Þ

This provides an estimator for tk + 1 � tk from any given pair of items i, jð Þ, sub-

ject to eliminating the term (di � dj), which can be done in one of two ways. Firstly,

following the logic employed in the modified EVM method, we can consider the item

pair (j, i) rather than (i, j) and combine the two equations to give:
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tk + 1 � tk =
1

2
½ln (

Pnik ^ njk

Pni(k�1)^ nj(k + 1)

) + ln (
Pnik ^ njk

Pni(k + 1)^ nj(k�1)

)� ð15Þ

The second approach is simply to incorporate the item difficulty estimates,

which can be estimated separately beforehand using PAIR or EVM, directly into

Equation 14.

Once estimators have been derived from each pair of items, it remains to find a

means of combining these estimators across all possible pairs of items in an appropri-

ate way. The simplest approach to combining the estimators is to take the arithmetic

mean, providing a final estimate for tk + 1 � tk . From Equation 15, we have:

tk + 1 � tk =
1

I(I � 1)

X

i\j

½ln (
Pnik ^ njk

Pni(k�1)^ nj(k + 1)

) + ln (
Pnik ^ njk

Pni(k + 1)^ nj(k�1)

)� ð16Þ

Where I is the total number of items. Alternatively, from Equation 14, we have:

tk + 1 � tk =
1

I(I � 1)

X

i6¼j

½ln (
Pnik ^ njk

Pni(k�1)^ nj(k + 1)

) + (di � dj)� ð17Þ

where I is the total number of items/criteria (we only need to consider cases where

i\j in Equation 15 since it is symmetrical in i and j). Where any of the counts are

zero, neither Equation 17 nor Equation 16 will produce a finite estimate, so all such

cases must be discarded (and the estimator count I(I � 1) adjusted accordingly); this

means that cases where all item pairs produce a zero count, the method will fail to

produce an estimate for tk + 1 � tk . This is more likely for Equation 16 since it con-

tains three counts which may be zero, rather than two for Equation 17.

Weighting CPAT Estimators. Combining the set of estimators in the form of a simple

arithmetic mean has certain disadvantages, as discussed for the modified formulation

of EVM. Some estimators will be more stable than others since they contain more

information; for instance, estimators drawn from pairs of items of similar difficulty

are likely to have more observations than for estimators drawn from pairs of items of

very different difficulties since persons are more likely to obtain similar scores on

such pairs of items. However, noting that each estimator is a sufficient statistic in its

own right, it is possible to take a weighted average of estimators rather than a simple

arithmetic mean—in fact, any arbitrary set of weights will theoretically produce a

valid estimate. We therefore have, from Equation 16:

tk + 1 � tk =

P
i\j vij½ln Pnik^ njk

Pni(k�1)^ nj(k + 1)
+ ln

Pnik ^ njk

Pni(k + 1)^ nj(k�1)
�

P
i\j vij

ð18Þ

or, from Equation 17:
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tk + 1 � tk =

P
i 6¼j vij½ln Pnik^ njk

Pni(k�1)^ nj(k + 1)
+ (di � dj)�

P
i 6¼j vij

ð19Þ

where vij is the weight for item pair (i, j).

A standard approach to this weighting problem is to weight estimators by the

inverse of their variance; this approach, known as inverse-variance weighting, draws

its justification from the inequality V ½u� � 1=I ½u� (Silvey, 1975): more information in

an estimator corresponds to less variance. To calculate the inverse-variance weighting

for an estimator, we must naturally calculate its variance. We note that the sufficient

statistic to calculate the estimator is �Xi = p, where Xi = fx1i, :::, xNig, with xn = 1 if

person n scored (k, k) or 0 if person n scored (k – 1, k + 1) among the N persons who

scored either (k, k) or (k � 1, k + 1) on the pair of items (i, j). We must calculate the

variance of g(�X ), where g(Y ) = ln(Y )� ln(1� Y ). We can approximate this by using

the delta method (Doob, 1935 ), which is based on Taylor series expansions:

V ½g(Y )�’g0(E½Y �)2V ½Y � ð20Þ

Here, Y = �X , with V ½Y �= p(1� p)=N and g0(Y ) = 1=Y (1� Y ), so we have:

V ½g(Y )�’1=Np(1� p) ð21Þ

which gives the weighting:

vij = Np(1� p) ð22Þ

There is a direct relationship here with the Fisher information function for the

SLM, where I = p(1� p). Indeed, this observation provides an alternative means of

deriving the weighting function: note that f �1(y) = Ney=(1 + ey), which is identical to

N dichotomous items of difficulty 0, the total Fisher information of which is

Np(1� p). The weights therefore represent weighting each estimator by the Fisher

information of f �1(y).

If we now define nkk as the count of nik ^ njk and n(k�1)(k + 1) as the count of

ni(k�1) ^ nj(k + 1), we have N = nkk + n(k�1)(k + 1) and p = nkk=(nkk + n(k�1)(k + 1)). In terms

of nkk and n(k�1)(k + 1), we have, from Equation 14:

vij =
nkk n(k�1)(k + 1)

nkk + n(k�1)(k + 1)

=
1

2
H(nkk , n(k�1)(k + 1)) ð23Þ

where H(nkk , n(k�1)(k + 1)) is the harmonic mean of nkk and n(k�1)(k + 1). Since we can

multiply the top and bottom of Equations 18 and 19 by any arbitrary constant, we can

simply set:

vij = H(nkk , n(k�1)(k + 1)) ð24Þ

Equation 18 contains a further complication, however: there are two terms, each

with its own weighting, and these two weights must be further combined into a single
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weight. We should note that in doing this, we are combining two estimators which

may be of different quality together via a straightforward arithmetic mean as per

Equation 16, which cannot account for any difference in informativeness. There does

not appear to be a clearly indicated way of combining weights, so following the spirit

of Equation 24, the weighting is calculated by combining the terms into a single term

and taking the harmonic mean of the numerator and denominator of the combined

term as with Equation 24:

ln
Pnik ^ njk

Pni(k�1)^ nj(k + 1)

+ ln
Pnik ^ njk

Pni(k + 1)^ nj(k�1)

= ln
Pnik ^ njk

2

Pni(k + 1)^ nj(k�1)Pni(k�1)^ nj(k + 1)

ð25Þ

Giving:

vij = H(nkk
2, n(k�1)(k + 1)n(k + 1)(k�1)) ð26Þ

We name this Rasch–Andrich threshold estimation approach as the conditional

pairwise adjacent thresholds method (CPAT); in order to distinguish between the two

approaches to conditioning out the item difficulties from Equation 14, for the remain-

der of this paper we will call the first method (based on Equation 18) CPAT 1 and

the second method (based on Equation 19) CPAT 2.

Additive Smoothing. There can be cases where estimation methods fail to produce a

complete set of Rasch-Andrich thresholds since the sample is not large enough and/

or poorly targeted across the range of item/threshold combinations, meaning that

there is insufficient data to generate a full set of estimates—specifically, this is most

likely to occur with estimates for extreme thresholds, that is threshold 1 and threshold

m, where m is the maximum score. It is, however, possible to ensure that a set of esti-

mates is returned for all samples by applying Choppin’s (1985) alternative method

for avoiding zeros in the PAIR conditional category frequency matrix, which is to

add an arbitrary constant to all counts—this constant can be any small positive num-

ber, and does not need to be integer. This approach, called additive smoothing

(Murphy, 2012), is designed to account for the fact that zero counts observed in a

sample do not reflect underlying small but non-zero probabilities and amounts to the

imposition of a weak (depending on the magnitude of the additive constant) uniform

prior distribution. Although Choppin presents additive smoothing as an alternative to

raising the matrix C to successive powers, the two approaches may be combined. An

additive smoothing constant operates as a hyperparameter (Murphy, 2012), with its

effect on estimates depending on the value chosen.

Additive smoothing has two effects on threshold estimates, which act in

opposite directions. Since it imposes a uniform prior, it brings the quotient

Pnik ^ njk=Pni(k�1)^ nj(k + 1) closer to one, which, after taking the logarithm, will reduce

the magnitude of the threshold distance, which will tend toward reduced threshold

distances (indeed, as the additive constant tends to infinity, all threshold distances

will tend to 0). At the same time, additive smoothing leads to the inclusion of
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estimators with zero counts in the final estimates. These estimators, which must be

excluded without additive smoothing, are the result of random error where one result

is unlikely—for example, an estimator with 0 out of 20 cases of (0, 1) rather than 1

out of 20 where the true probability is .05. Excluding these estimators, and only these

estimators, systematically results in bias toward reduced threshold distances since

random error only in one direction is removed—estimators with random error in the

other direction (2 or 3 out of 20 rather than 1 out of 20, which underestimate thresh-

old distances, are included). In this way, additive smoothing removes a source of

reduced threshold distances.

The net effect of these two effects is likely to vary with the value of the additive

smoothing constant: any non-zero value will cause the second effect, although with

information weighting, the effect will small for small additive smoothing constants.

As the additive smoothing constant increases, the first effect will increase, suggesting

that there may be an optimal value, which may vary across datasets.

Hypotheses for Testing

We hypothesize the following:

1. EVM will perform less well for threshold estimates than for overall item loca-

tion estimates due to the issues outlined above.

2. CPAT will perform better than EVM.

3. Weighting CPAT estimators as described above will improve the perfor-

mance of CPAT.

4. The use of an additive smoothing constant will improve performance in gen-

eral up to optimal value, after which performance will worsen.

We do not hold active hypotheses regarding the relative performance of CPAT 1

and CPAT 2, or the relative performance of PAIR and EVM for item estimates; we

leave these as exploratory questions to be answered. We will also compare the per-

formance of CPAT to that of CMLE and JMLE.

Method

In order to evaluate the quality of the estimates against an objective baseline, it is

necessary to use simulated rather than authentic data since it is only with simulated

data that the original item parameters can be known. The recovered estimates can

then be compared against the generating parameters using appropriate metrics, in

which way direct comparisons between different estimation algorithms can be made.

Luecht and Ackerman (2018) outline the broad approach to such simulation studies:

select a model, specify item and person parameters, generate responses from para-

meters according to model, estimate parameters from the generated responses, and
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compare the estimates to generating parameters. All analyses is conducted using code

written by the authors in Python 3.

For this study, 10,000 different datasets were generated with varying numbers of

persons and items and different generating parameters. The simulation parameters

were generated following a seven-step procedure:

1. Generate a number of items from a discrete integer random uniform distribu-

tion in the range ½4, 10�.
2. Generate a maximum score from a discrete integer uniform distribution in the

range ½3, 7� (the number of Rasch–Andrich thresholds to be estimated).

3. Generate a set of item difficulties with a range drawn from a continuous uni-

form distribution in the range ½0:5, 3:5�.
4. Generate a sample size in the range ½100, 10, 000� with a median of 1,000:

from a discrete integer distribution of 10x, where x is drawn from a truncated

normal distribution in the interval [2, 4]. This generates a skewed distribution,

the result of which is illustrated in Figure 1.

5. Generate a set of person abilities following a continuous normal distribution

with a SD drawn from a continuous random uniform distribution in the range

[1, 3.5].

6. Add an offset to the person ability distribution relative to the item difficulties

from a continuous uniform distribution in the range [–0.5, 1].

7. Generate a set of thresholds with a mean category width from a continuous

uniform distribution in the range [0.5, 2], with random perturbations from the

mean. Only allow (but do not force) disordered thresholds in 50% of cases

through the random perturbations, with a maximum disorder from a continu-

ous uniform distribution in the range [0.5, 1].

Figure 1. Sample size distribution.
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The parameters were then used to generate simulated response sets following a

five-step procedure:

1. Generate n person abilities, i items and m Rasch–Andrich thresholds as

described above.

2. Calculate the category response probabilities Pnik for each person n on each

item i for each threshold tk , where k 2 f1, . . . , mg.
3. Calculate the cumulative category response probabilities Pnik =

Pk
j = 0 Pnij for

each person n on each item i for each threshold tk , where k 2 f1, . . . , mg.
4. Generate a table of numbers rni from a continuous uniform distribution in the

range [0, 1].

5. Score the responses xni for each person n on each item i: for successive

k 2 f1, . . . , mg, if rni is in the interval (Pni(k�1), Pnik �, set xni = k � 1.

The data were simulated to fit the RSM without data-model misfit in order to max-

imize the interpretability of comparisons between the generating parameters and the

recovered estimates; the consequences of different kinds of item misfit therefore fall

outside the scope of this study.

Two further datasets were generated from each dataset. Firstly, a reduced dataset

was generated by removing 30% of persons at random. Secondly, a missing data

dataset was generated by removing 30% of individual responses. Missing data can

be classified according to the relationships between missingness and traits (Rubin,

1976); in the context of tests may be a design feature (computer adaptive tests, for

example, always produce missing data). Here we only consider the simplest case of

missing completely at random (MCAR).

The two additional datasets allow comparison between a reduction in the number

of persons and the same reduction in individual responses, which provides an indica-

tion of a procedure’s sensitivity to missing data—an algorithm which is sensitive to

missing data will see a greater deterioration in accuracy under the missing data con-

ditions, even though the datasets contain the same number of responses.

To compare the recovered estimates to generating parameters across a number of

simulations, suitable summary statistics are required. Three summary statistics were

calculated for this study to capture different aspects of the estimation error. Firstly,

the root mean squared error (RMSE) of the point estimates provides a straightfor-

ward measure of the overall amount of error (RMSE is preferred here to MSE due to

the interpretability of the units). Secondly, the SD ratio of the recovered item diffi-

culty estimates to the original difficulty estimates used to generate the simulated data

provides a measure of the relative dispersion of the two sets of estimates:

SD ratio = s1=s2, where s1 and s2 are the SDs of the two sets of estimates. SD ratio

provides a means of investigating estimation bias—systemic error in the estimates.

The same amount of estimation error with an SD ratio far from 1 is indicative of

more estimation bias as opposed to random noise. Finally, to quantify the modeling

error resulting from the combined item and threshold estimates, the parameter-
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estimation residuals (Luecht & Ackerman, 2018) are calculated. Parameter-estima-

tion residuals are a means of separating the residual error due to parameter estima-

tion error from that due to the stochastic noise which is an inherent feature of the

model, and are calculated per response according to the following formula:

e2 = f̂ � f1 = (x� f1)� (x� f̂ ) ð27Þ

where e2 is the parameter-estimation residual, x is the observed score, f1 is the

item response function (IRF) for the generating parameters and f̂ is the IRF for the

estimated parameters; in other words, e2 is the difference between the residual for

the IRF of the generating parameters and the IRF of the estimated parameters. e2

depends on the targeting of the item relative to person ability; a very easy item where

both f1 and f̂ are very high will result in a small value of e2 even when the difference

between f1 and f̂ is relatively large, due the IRFs’ asymptotic properties, whereas this

will not be the case for items close to the person ability. In this way, e2 can be seen

as a measure of how well the estimates model the specific dataset since unlike

RMSE, which does not take into account the lack of information which can lead to

large point estimate errors for items which are poorly targeted for the population, e2

implicitly accounts for this by quantifying the practical effect of estimation error. To

provide a summary statistic for evaluation purposes, the RMSE of all e2 values for

all responses in each simulation was calculated. For descriptive statistics, the primary

reported summary statistic is the median rather than the mean. This is because the

median is not sensitive to outliers, which are likely to be one-sided (RMSE and SD

ratio both have a lower bound of 0 and SD ratio has a reciprocal relationship around

1 rather than a linear one)

To provide a statistical test for differences between distributions of summary sta-

tistics, the Wilcoxon (1945) signed-rank test, a non-parametric equivalent to the

paired sample t-test which tests the null hypothesis that the medians of the two sam-

ples are the same and which does not require any assumptions of normality for the

distributions (an assumption which is not met by the data in this study) was calcu-

lated. The Wilcoxon result is reported; as well as reporting p-values, which are likely

to be trivially significant with such large sample sizes, meaningful interpretation is

provided by effect sizes, which are not sensitive to sample size: firstly, the common

language effect size (CLES; McGraw & Wong, 1992) is reported, which is equiva-

lent to the area under the curve (AUC; Fawcett, 2003) and calculated according to

the simple difference formula (Kerby, 2014). The CLES states the probability that,

from a randomly chosen pair of samples, the result from the sample with the higher

median will be higher than the result from the sample with the lower median. The

standard Cohen’s d effect size (Cohen, 1962) is not calculated directly since it

assumes a normal distribution; instead, an equivalent Cohen’s d value is derived

from the CLES, following Ruscio’s (2008) method of conversion. As a guide,

Sawilowsky’s (2009) expanded rules of thumb for interpretation of effect size are

used: d \0:1 is reported as trivial, 0:1 � d\0:2 as very small, 0:2 � d\0:5 as

small, 0:5 � d\0:8 as medium, 0:8 � d\1:2 as large, 1:2 � d\2 as very large
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and d\2 as huge. Results are compared when appropriate, both for the same method

applied to different data conditions (full vs. reduced, full vs. missing and reduced vs.

missing) and for different methods under the same data conditions (e.g., EVM vs.

CPAT under full data conditions).

In additional to statistics, results are presented graphically, using scatter plots to

compare results per simulation, with the identity line as a point of reference, and box-

plots to compare distributions of results.

For the comparisons between CPAT and CMLE and JMLE, the same procedure is

used, although on a smaller set of 100 simulations. The Winsteps program (Linacre,

2021) is used to generate CMLE and JMLE estimates. JMLE estimates include

Wright’s (1988) bias estimation correction.

Results

Overall Item Location Estimates

Table 1 summarizes the item difficulty estimation results for PAIR and EVM across

the three data conditions. Figure 2 compares the performance of PAIR and EVM on

each of the three data conditions; the Wilcoxon signed-rank test are as shown in

Table 2.

The results suggest that least squares PAIR performs slightly better than EVM,

although the absolute magnitude of the difference is small and EVM appears to be a

viable alternative. All three effects are statistically significant, with p\0:001 in all

three cases, although as previously discussed, this is perhaps a trivial observation for

a study with so many datasets. The effect size is similar and small under full and

reduced data conditions, and medium under the missing data condition, suggesting

that EVM may be slightly more sensitive to missing data than PAIR.

Selecting PAIR as the better performing method, the Wilcoxon signed-rank test

was conducted between the three possible pairs of data conditions, as shown in Table

3. Again p\0:001 in all three cases in Table 3. The effect size is huge in each case,

indicating that although PAIR may be slightly less sensitive to missing data, there is

still an effect—the distribution suggests around 10% more error with the same

amount of data (30% removed) in the missing data pattern.

Figure 3 summarizes the performance of the least squares and EVM methods

across the three data conditions, showing box-and-whisker plots featuring the median

and 25th and 75th percentiles (boxes) and 2.5th and 97.5th percentiles (whiskers);

outliers are not shown for clarity.

EVM Threshold Estimates

The results for the threshold estimates are shown in Table 4. The results are mark-

edly less accurate than the results for the item difficulty estimates—the median

RMSE for the threshold estimates under the full data condition is 0.439 logits, a fig-

ure which is relatively stable for the reduced data condition at 0.467 logits but rises

Elliott and Buttery 1003



as high as 1.166 logits for the missing data condition. A similar picture was observed

for the SD ratio: the median is 1.278 for the full data condition; the figure remains

stable for the reduced data condition at 1.292 but rises to 1.668 for the missing data

condition. Figure 4, which plots the RMSE for each simulation under the three con-

ditions pairwise, shows the deterioration in the quality of the estimates under missing

data conditions graphically. Again, this is supported by the Wilcoxon signed-rank

test, as shown in Table 5, with effect sizes well above 2 (huge) for comparisons

between the missing data condition and both the full and reduced data condition.

Table 1. Item Difficulty Estimation Results.

Least squares EVM

Dataset RMSE SD ratio RMSE SD ratio

Full data 0.056 0.990 0.058 0.992
Reduced data 0.067 0.990 0.069 0.992
Missing data 0.074 0.993 0.077 0.996

Table 2. Wilcoxon Signed-Rank Test: Least Squares Versus EVM, Item Difficulties.

Dataset Wilcoxon p-Value CLES Cohen’s d

Full data 31,138,136 \.001 0.623 0.443
Reduced data 31,278,833 \.001 0.626 0.453
Missing data 32,506,566 \.001 0.650 0.546

Figure 2. Comparison of RMSE of item estimates for PAIR versus EVM methods under full
data, reduced data and missing data conditions.
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CPAT Threshold Estimates

The results from the four CPAT variants on the 10,000 datasets under the three data

conditions are shown in Table 6. It is immediately clear that the results in all four

cases are far more accurate than EVM: in the full data case, the improvement in med-

ian RMSE is between 80.4% and 84.2% of the figure for EVM, falling slightly in the

reduced data case to between 77.8% and 81.9%; in the missing data case they rise

above 90% to between 90.0% and 91.9%. The results of the Wilcoxon tests for the

worst performing CPAT variant (unweighted CPAT 1) versus EVM are shown in

Table 7—effect sizes are all huge (between 4.08 and 6.18), and higher still for other

CPAT variants.

In terms of comparisons between the four CPAT variants, Table 6 suggests that

CPAT 2 performs better than CPAT 1 in both unweighted and weighted cases and

that weighted methods perform better than unweighted methods for both CPAT 1

Table 3. Wilcoxon Signed-Rank Test: Least Squares, Item Difficulties.

Dataset comparison Wilcoxon p-Value CLES Cohen’s d

Full data vs. reduced data 41,177,061 \.001 0.824 1.314
Full data vs. missing data 44,355,857 \.001 0.887 1.714
Reduced data vs. missing data 32,622,770 \.001 0.653 0.555

Figure 3. RMSE of item estimates for last squares (LS) and EVM under full data, reduced
data, and missing data conditions.
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and CPAT 2. This is confirmed by the results of the four relevant pairwise Wilcoxon

tests, which are shown in Table 8. The best performing variant (weighted CPAT 2)

Table 4. EVM Rasch–Andrich Threshold Estimation Results.

Dataset RMSE SD ratio

Full data 0.439 1.278
Reduced data 0.467 1.292
Missing data 1.166 1.668

Table 5. Wilcoxon Signed-Rank Test: EVM, Rasch–Andrich Thresholds.

Dataset comparison Wilcoxon p-Value CLES Cohen’s d

Full data vs. reduced data 28,774,124 \.001 0.772 1.056
Full data vs. missing data 37,217,155 \.001 0.999 4.406
Reduced data vs. missing data 37,133,334 \.001 0.997 3.860

Figure 4. Comparison of RMSE of EVM Rasch–Andrich threshold estimates methods under
full data, reduced data and missing data conditions.

Table 6. CPAT Rasch–Andrich Threshold Estimation Results.

CPAT 1, unweighted CPAT 1, weighted CPAT 2, unweighted CPAT 2, weighted

Dataset RMSE SD ratio RMSE SD ratio RMSE SD ratio RMSE SD ratio

Full data 0.086 1.000 0.076 0.985 0.083 1.001 0.069 0.988
Reduced data 0.104 0.993 0.094 0.976 0.099 0.996 0.085 0.981
Missing data 0.117 0.982 0.110 0.964 0.108 0.988 0.095 0.975
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outperforms the worst performing variant (unweighted CPAT 1)with a large effect

size across all three data conditions in both unweighted and weighted cases—in both

cases, the effect size increases for the missing data case, suggesting that CPAT 2 is

less sensitive to missing data than CPAT 1. Weighted variants outperform their

unweighted variants with a small effect size across all three data conditions for both

CPAT 1 and CPAT 2. The cumulative effect from unweighted CPAT 1 to weighted

CPAT 2 results in medium (bordering on large), effect sizes of between 0.768 and

0.779 which remain stable across the data.

Figure 5 shows the relative performance of weighted CPAT 2—which, as the best

performing variant we shall henceforth focus on and refer to simply as CPAT - versus

Table 7. Wilcoxon Signed-Rank Test: EVM Versus Unweighted CPAT 1 and, Rasch–Andrich
Thresholds.

Dataset Wilcoxon p-Value CLES Cohen’s d

Full data 37,227,572 \.001 0.999 4.555
Reduced data 37,178,813 \.001 0.998 4.082
Missing data 37,251,163 \.001 1.000 6.178

Table 8. Wilcoxon Signed-Rank Test: Rasch-Andrich Thresholds.

Wilcoxon p-Value CLES Cohen’s d

Full
CPAT 1 unwtd vs. CPAT 2 unwtd 25,975,853 \.001 0.697 0.731
CPAT 1 wtd vs. CPAT 2 wtd 23,714,007 \.001 0.637 0.494
CPAT 1 unwtd vs. CPAT 1 wtd 24,075,947 \.001 0.646 0.531
CPAT 2 unwtd vs. CPAT 2 wtd 25,281,707 \.001 0.679 0.656
CPAT 1 unwtd vs. CPAT 2 wtd 26,373,912 \.001 0.708 0.774

Reduced
CPAT 1 unwtd vs. CPAT 2 unwtd 26,520,789.5 \.001 0.712 0.791
CPAT 1 wtd vs. CPAT 2 wtd 24,544,767 \.001 0.659 0.579
CPAT 1 unwtd vs. CPAT 1 wtd 22,970,900 \.001 0.617 0.420
CPAT 2 unwtd vs. CPAT 2 wtd 24,600,318 \.001 0.660 0.585
CPAT 1 unwtd vs. CPAT 2 wtd 26,313,886 \.001 0.706 0.768

Missing
CPAT 1 unwtd vs. CPAT 2 unwtd 28,165,640.5 \.001 0.756 0.981
CPAT 1 wtd vs. CPAT 2 wtd 25,419,824 \.001 0.682 0.671
CPAT 1 unwtd vs. CPAT 1 wtd 21,961,703 \.001 0.590 0.320
CPAT 2 unwtd vs. CPAT 2 wtd 23,095,453 \.001 0.620 0.432
CPAT 1 unwtd vs. CPAT 2 wtd 26,418,621 \.001 0.709 0.779

Note. Unwtd = unweighted; wtd = weighted.
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EVM on the three datasets, with the clearly superior performance of CPAT evident in

all cases.

Figure 6 summarizes the performance of weighted CPAT against EVM across the

three data conditions, showing box-and-whisker plots as for the item estimates in

Figure 3. The 97.5th percentile for CPAT is considerably below the 25th percentile

for EVM in all three cases.

Additive Smoothing

The percentages of cases where estimation failed to produce a complete set of

Rasch–Andrich thresholds are described in Table 9. CPAT 2 has the lowest failure

rate for all three data conditions. EVM has a lower failure rate than CPAT 1 for both

the full and reduced data conditions (0.99% and 1.38% vs. 3.02% and 4.49%, but

there is a marked deterioration in the performance of EVM for the missing data con-

dition, with a failure rate of 11.13% compared to 6.3% for CPAT 1, further underly-

ing EVM’s sensitivity to missing data; CPAT 2 remains relatively unaffected by

missing data, with the failure rate rising from 0.74% to 1.29%.

In order to investigate the consequences of applying this approach, the simulation

study was repeated four times, with different additive smoothing constants: 0.01, 0.1,

and 1. The distributions of the RMSE and SD ratios are shown in Figure 7 together

with the original CPAT distribution (shown as an additive smoothing constant of 0),

for those cases where CPAT returned estimates. The additive smoothing constant

functions as a hyperparameter (Murphy, 2012) of the algorithm.

The results follow the hypothesized pattern—as well as ensuring that estimates

are produced, additive smoothing appears to lead to better estimates up to a point, in

particular by reducing estimation bias (SD ratio closer to 1). As Figure 7 shows, the

median SD ratio approaches 1 as the additive smoothing constant increases, although

the interquartile range and 95% ranges increase as the additive constant increases

beyond 0.1, at which point RMSE also increases. A Wilcoxon test between the origi-

nal CPAT estimates and those with the best-performing additive smoothing constant

of + 0.1 returns p\0:001 and d = 0:595 (medium effect size).

Figure 8 shows the distributions of RMSE and SD ratio with a 0.1 additive con-

stant, comparing the cases where CPAT failed to return an estimate without the addi-

tive constant with those where it was successful for the full data case. It is clear that

the error of the estimates for the failed standard CPAT estimations is still large—this

should perhaps be unsurprising given that these are all cases where the sample was

poor for estimation purposes in size and/or targeting.

Parameter-Estimation Residuals

The RMS parameter-estimation residual for the combined item and threshold para-

meter set for EVM and CPAT, both with no additive smoothing and with an additive

smoothing constant of 0.1, are shown in Table 10. For the full data and reduced data
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Figure 5. Comparisons of RMSE of Rasch–Andrich threshold estimates for EVM and CPAT
under full data, reduced data, and missing data conditions.

Figure 6. RMSE of Rasch–Andrich threshold estimates for EVM and CPAT under full data,
reduced data, and missing data conditions.

Table 9. Estimation Failure Rate, Rasch–Andrich Thresholds.

EVM (%) CPAT 1 (%) CPAT 2 (%)

Full 0.99 3.02 0.74
Reduced 1.38 4.49 0.91
Missing 11.13 6.3 1.29
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conditions, CPAT performs almost identically with or without additive smoothing,

and considerably better than EVM, which has a median RMS residual between 2.8

and 3.2 times larger. This disparity grows for the missing data condition between 5.7

and 6 times due to EVM’s sensitivity to missing data; there is also a very marginal

difference here in the performance of CPAT, although the median reduction in

parameter-estimation residuals is only 0.25% for the full data condition, rising to

0.81% for the missing data condition.

Wilcoxon tests, shown in Table 11 support this, showing very large effect sizes

between EVM and CPAT for full and reduced data conditions, and huge effect sizes

for the missing data condition. The use of additive smoothing with CPAT causes a

small effect for full and reduced data conditions and a medium effect size for the

missing data condition, although it should be noted that practically the difference in

the case of CPAT is almost trivial.

Figure 7. RMSE and SD ratio distributions for Rasch–Andrich threshold estimates using
different additive smoothing constants.

Figure 8. Comparison of distributions using additive smoothing ( + 0.1) between estimations
which were successful and unsuccessful using CPATwith no additive smoothing.
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Table 12 shows the results of Wilcoxon tests on the parameter-estimation residuals

using the same method under different data conditions. The sensitivity of EVM to

missing data is highlighted here; the effect size (Cohen’s d equivalent) between the

reduced data and missing data conditions, with the same total number of responses, is

2.617 (huge), which compares to 0.611 (no additive smoothing, medium) and 0.550

(additive smoothing medium). The effect sizes between full and reduced data condi-

tions are fairy similar across all three methods, with EVM slightly lower (1.041) than

CPAT (1.217 and 1.180); all three effect sizes are large.

CPAT versus CMLE and JMLE

Table 13 shows the median RMSE and SD ratio of the item and threshold estimates

for CPAT (with a + 0.1 additive smoothing constant), CMLE and JMLE (with esti-

mation bias correction) under full, reduced, and missing data conditions. It is imme-

diately clear that the results for both CPAT and CMLE are better than those for

Table 10. Median Parameter-Estimation Residuals.

Full Reduced Missing

EVM 0.165 0.177 0.417
CPAT, no AS 0.053 0.063 0.073
CPAT, AS 0.052 0.062 0.069

Note. AS = additive smoothing.

Table 11. Wilcoxon Signed-Rank Test: Parameter-Estimation Residuals and Method
Comparisons.

Wilcoxon p-Value CLES Cohen’s d

Full
EVM vs. CPAT, no AS 35,554,603 \.001 0.916 1.950
EVM vs. CPAT, AS 35,681,605 \.001 0.919 1.981
CPAT, no AS vs. CPAT, AS 25,100,968 \.001 0.647 0.532

Reduced
EVM vs. CPAT, no AS 35,332,685 \.001 0.910 1.899
EVM vs. CPAT, AS 35,523,590 \.001 0.915 1.943
CPAT, no AS vs. CPAT, AS 26,181,113 \.001 0.675 0.640

Missing
EVM vs. CPAT, no AS 37,339,310 \.001 0.962 2.510
EVM vs. CPAT, AS 37,415,428 \.001 0.964 2.544
CPAT, no AS vs. CPAT, AS 27,268,753 \.001 0.703 0.752

Note. AS = additive smoothing.
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JMLE across all datasets, with the difference being more pronounced for threshold

estimation and under missing data conditions. The JMLE estimates for both items

and thresholds generally display bias, in opposite directions: item estimates are

stretched, while threshold estimates are compressed. Comparing CPAT with CMLE,

we see that CMLE estimates are generally more accurate, although the differences

are small—the largest difference between median RMSEs is for items under full data

conditions and thresholds under missing data conditions, at 0.012 logits.

To consider the combined effect of item and threshold estimates, Table 14 shows

the median parameter-estimation residuals for the three procedures under the three

data conditions, with the distribution illustrated in boxplot form in Figure 9. We see

the same distinction, with CPAT and CMLE performing similarly, particularly under

reduced data conditions, with slightly better performance for CMLE, while the

JMLE estimates are significantly less accurate. This is borne out by Wilcoxon tests,

shown in Table 15: all tests between CPAT or CMLE and JMLE have a huge effect

size, while those between CPAT and CMLE return medium to large effect sizes. All

results are significant at p\0:001 except for CPAT versus CMLE on reduced data,

where p = 0:007.

Discussion

Both PAIR and EVM showed good performance for the estimation of item difficul-

ties. Their performance was similar enough to suggest that practically there is little

difference, although the evidence suggests that the least-squares PAIR method mar-

ginally outperforms EVM. Both methods have some sensitivity to missing data, with

results for the missing data condition containing significantly more error than under

Table 12. Wilcoxon Signed-Rank Test: Parameter-Estimation Residuals, Data Condition
Comparisons.

Wilcoxon p-Value CLES Cohen’s d

EVM
Full vs. reduced 29,851,520.0 \.001 0.769 1.041
Full vs. missing 37,796,202.0 \.001 0.974 2.744
Reduced vs. missing 37,565,222.0 \.001 0.968 2.617

CPAT, no AS
Full vs. reduced 31,252,939.0 \.001 0.805 1.217
Full vs. missing 33,864,186.0 \.001 0.873 1.610
Reduced vs. missing 25,894,124.0 \.001 0.667 0.611

CPAT, AS
Full vs. reduced 30,969,200.0 \.001 0.798 1.180
Full vs. missing 33,421,124.0 \.001 0.861 1.535
Reduced vs. missing 25,279,800.0 \.001 0.651 0.550

Note. AS = additive smoothing.
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the reduced data condition, although this is relative, and from a low base (median

RMSE rises from 0.056 logits to 0.074 for PAIR and 0.058 to 0.077 for EVM). This

is to be expected from methods based on pairwise comparisons, since removing

Table 13. Median Estimation RMSE and SD Ratio: CPAT, CMLE, and JMLE.

RMSE SD ratio

CPAT CMLE JMLE CPAT CMLE JMLE

Items
Full 0.057 0.045 0.101 1.004 1.021 1.129
Reduced 0.062 0.053 0.106 1.003 1.022 1.128
Missing 0.063 0.066 0.160 1.012 1.033 1.232

Thresholds
Full 0.075 0.071 0.324 1.015 0.979 0.850
Reduced 0.092 0.085 0.331 1.017 0.979 0.842
Missing 0.094 0.082 0.503 1.022 0.976 0.782

Table 14. Median Parameter-Estimation Residuals: CPAT, CMLE, and JMLE.

CPAT CMLE JMLE

Full 0.048 0.036 0.110
Reduced 0.048 0.041 0.114
Missing 0.055 0.052 0.175

Table 15. Wilcoxon Signed-Rank Test: Parameter-Estimation Residuals: CPAT, CMLE, and
JMLE.

Wilcoxon p-Value CLES Cohen’s d

Full
CPAT vs. CMLE 3,973.0 \.001 0.787 1.124
CPAT vs. JMLE 4,912.0 \.001 0.973 2.718
CMLE vs. JMLE 5,047.0 \.001 0.999 4.584

Reduced
CPAT vs. CMLE 3,247.0 .007 0.643 0.518
CPAT vs. JMLE 4,978.0 \.001 0.986 3.097
CMLE vs. JMLE 5,048.0 \.001 1.000 4.745

Missing
CPAT vs. CMLE 3,520.0 \.001 0.697 0.730
CPAT vs. JMLE 4,917.0 \.001 0.974 2.740
CMLE vs. JMLE 5,000.0 \.001 0.990 3.295
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individual data points from different response strings reduces the number of available

comparisons by more than removing the same number of responses in whole strings:

for example, removing a string of n responses removes n(n� 1)=2 comparisons,

while removing one response from each of n rows removes n(n� 1) comparisons—

twice as many, with other missing patterns falling between these two extremes.

There are other methods of deriving the final difficulty vector, such as using a

cosine maximization approach as described by Kou and Lin (2014), who also catalo-

gue a variety of further methods developed for Saaty and Bennett (1977) and Saaty’s

(1994) AHP, or Choppin’s (1985) iterative approach using higher matrix powers to

add additional indirect comparisons until convergence. The evaluation of these fur-

ther methods falls outside the scope of this study, but may be an avenue for further

research both in terms of their performance and relative computational cost. It is

worth noting in this regard that the least-squares approach is perhaps the simplest

possible computationally as it requires only taking the arithmetic means of matrix

rows.

The results showed support for hypothesis 1 in that the performance of EVM was

markedly worse for threshold estimation than for item difficulty estimation, with a

high degree of estimation bias, due to the formulation used to condition out person

abilities and item difficulties simultaneously and the use of person raw scores to

group persons, which introduces two issues: the use of person abilities in the estima-

tion procedure introduces the incidental parameter problem, and additional error is

introduced since the raw scores used for this are only proxies for person abilities, not

the true underlying abilities. The performance of EVM was found to be particularly

sensitive to missing data patterns.

Figure 9. RMS parameter-estimation residuals: CPAT, CMLE, and JMLE.
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The results showed support for hypothesis 2 in that CPAT in all its formulations

significantly outperformed EVM. Compared to EVM, CPAT produced a median

reduction in RMSE of between 84% and 92%, and a median reduction in parameter-

estimation residuals of between 58% and 77%, with threshold estimation perfor-

mance close to that for overall item locations. The CPAT formulation defined by

Equation 16, where the overall item difficult estimates are eliminated entirely without

inputting item estimates, appears to perform less well than that defined by Equation

17, where the overall item location estimates, with their own error of estimation, are

used. The explanation for this likely resides in the issues around combining two esti-

mators of different quality into a single estimator and how to weight these combined

estimators, issues which do not arise in the case of CPAT 2.

The results showed support for hypothesis 3 in that weighting estimators produced

an improvement in performance, with a median reduction of around 10% to 15% in

RMSE. It is perhaps worthy of note that although weighting estimators results in a

lower RMSE, the SD ratio is slightly farther from 1 in all cases; this suggestion of

bias merits investigation. The weighting process interacts with random error dis-

tinctly in different directions—when random error leads to a reduced estimate of

threshold distance, that is, overestimating the smaller count, this coincides with

increased weighting; the converse is true for underestimates of smaller counts. In this

way, there will typically be a slight bias in the estimates—specifically, threshold dis-

tances will be underestimated, although this particular source of bias should disap-

pear asymptotically as sample size increases. In typical sample sizes, however, a

small degree of systemic bias is introduced at the same time as reducing random

error, although the trade-off appears to result in a net benefit.

The results also showed support for hypothesis 4 in that the use of additive

smoothing produced a small improvement in performance, with a best median reduc-

tion of around 3% to 7% in RMSE for an additive smoothing constant of 0.1

(although the median reduction in parameter-estimation residuals was marginal, at

less than 1%), as well as avoiding algorithm failure where data is sparse. Here it is

worth noting that where no additive smoothing would have resulted in estimation

failure, the estimates produced using additive smoothing were typically poor, which

is perhaps unsurprising since this situation only occurred where the data were poor

for estimation purposes. There may be scope for further gains from more sophisti-

cated approaches to smoothing, although this falls outside the scope of this paper.

At this point, it may be worth reflecting beyond the immediate context on some

general implications for pairwise comparison methods in general, and indeed any

methods where observed counts are substituted directly for theoretical probabilities

for estimation purposes. The superior performance of CPAT, despite using less data

than EVM—only comparisons between adjacent thresholds are used, rather than

comparisons across all pairs of thresholds—highlights the differences between theo-

retical probabilities, relating to infinite universes, and estimates of those probabilities

drawn from finite sets of observations. In particular, where probabilities are small

and zero observed counts can become a source of bias, even in larger datasets; the
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CPAT approach, which involves discarding those comparisons where such counts are

likely to occur, indicates that the quality of data can in some cases be more important

than the quantity. The further use of additive smoothing can also, somewhat para-

doxically, prevent compression of the set of estimates, despite its being the imposi-

tion of a uniform prior.

When comparing CPAT estimates with those obtained from CMLE and JMLE,

CPAT comfortably outperformed JMLE in almost all cases, while CMLE estimates

were more accurate than CPAT, although not by a large amount. There are, however,

cases where this is not clear-cut, particularly as the amount of data is reduced; the

item estimates under reduced data conditions were marginally more accurate than

those from CMLE, and the CPAT parameter-estimation residuals under reduced data

conditions were smaller than those for CMLE in 35.7% of cases. It is worth noting

that the results do not support the hypothesis that CMLE estimates are sensitive to

missing data (Eggen & Verhelst, 2006; Heine & Tarnai, 2015); rather, they suggest

that it is JMLE estimates which display such sensitivity. Further research is required

to determine whether the relative improvement in CPAT estimates on smaller data-

sets (reduced data conditions here) is indicative of a strong tendency for CPAT to

perform better relative to CMLE as sample size decreases, or whether missingness is

a meaningful factor on the relative performance of CPAT and CMLE.

The findings from this limited investigation suggest that the accuracy of CPAT is

close to that of CMLE, and that there may be data designs where CPAT matches or

even outperforms CMLE, while the trade-off in terms of computational speed versus

a small performance penalty makes CPAT an attractive alternative in many contexts.

We have not reported speed comparisons as part of this research since, although

CPAT was considerably faster (the mean time for this study to load a dataset and

compute PAIR item difficulty estimates and CPAT Rasch–Andrich threshold esti-

mates was as little as 23.6 milliseconds), there are confounding factors which make

direct numerical comparisons problematic—different software was used, written in

different languages and run on different machines, with Winsteps also running addi-

tional analyses such as item fit as part of the estimation process.

Since all data for this study was generated to fit the model, further research is

required to investigate the effect of misfitting data. Likewise, further research is

required to investigate the effect of missing data which is not MCAR. The analytic

framework presented in this study, with its evaluation of sensitivity to missing data

(as opposed to reduced sample sizes) together with these further strands of enquiry,

could constitute the basis of a comprehensive framework for the validation of estima-

tion methods.

CPAT builds on the work of Choppin (1968, 1985) and Garner and Engelhard

(2009) on non-iterative pairwise Rasch estimation procedures, combining the PAIR

approach to overall item location estimation with a procedure which builds on the

EVM approach to threshold estimation but does not simultaneously condition out per-

son and item thresholds, instead using previously generated item estimates to create a

chain of estimates for distances between adjacent threshold pairs. CPAT appears to
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constitute a highly computationally efficient approach to RSM parameter estimation

that generates high quality estimates. One particular attraction of CPAT is its compu-

tational efficiency, since it is non-iterative and based on transformations of simple

frequency counts. The results of this study provide evidence for CPAT as a fast esti-

mation algorithm which approaches CMLE in its accuracy and represents an alterna-

tive to other more established procedures. CPAT would be particularly attractive in

contexts where computational efficiency is at a premium, such as continuous item

bank monitoring (e.g., tests at scale involving essays drawn from a large pool) and

online systems with multiple simultaneous processes, and for the analysis of large

datasets such as computer adaptive test banks. It also appears to have high applicabil-

ity at the other end of the logistical scale where sample sizes may be small, such as

preliminary validation studies of new essay questions and Likert-scale questionnaires,

since the results of this study indicate that CPAT produces estimates of a comparable

quality to those of CMLE, or sometimes even better, for such sample sizes. CPAT

may also be attractive for contexts which involve missing data designs, since the esti-

mates are not very sensitive to missing data, and these results suggest that they may

be considerably less sensitive than JMLE estimates in particular. As such, there are a

wide range of practical contexts where CPAT could be seen as a viable alternative to

other established estimation procedures.
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