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Abstract

The 2.05-Å resolution structure of the aquaglyceroporin from the malarial parasite Plasmodium 

falciparum (PfAQP), a protein important in the parasite’s life cycle, has been solved. The structure 

provides key evidence for the basis of water versus glycerol selectivity in aquaporin family 

members. Unlike its closest homolog of known structure, GlpF, the channel conducts both 

glycerol and water at high rates, framing the question of what determines high water conductance 

in aquaporin channels. The universally conserved arginine in the selectivity filter is constrained by 

only two hydrogen bonds in GlpF, whereas there are three in all water-selective aquaporins and in 

PfAQP. The decreased cost of dehydrating the triply-satisfied arginine cation may provide the 

basis for high water conductance. The two Asn-Pro-Ala (NPA) regions of PfAQP, which bear rare 

substitutions to Asn-Leu-Ala (NLA) and Asn-Pro-Ser (NPS), participate in preserving the 

orientation of the selectivity filter asparagines in the center of the channel.

The single Aquaporin (AQP) of Plasmodium falciparum has the unusual property of 

conducting both glycerol and water, as efficiently as other glycerol channels and water water 

channels, respectively1. Thus, it provides a benchmark for determining what encodes high 

water conductance in the context of an efficient glycerol conductance. Plasmodia also are 

one of the few species known to date with not one, but two, sequence changes in the 

otherwise totally conserved NPA regions near the center of the channel.

Aquaporins fall into two subfamilies. One subfamily conducts water with a range of rates up 

to the diffusion limit for a pore that passes a single file of water. The other, 

aquaglyceroporins, conduct glycerol well at close to diffusion rates for glycerol and have 

low conductance of water. Aquaglyceroporins also pass small, uncharged solutes such as 
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urea. They all accomplish this without leakage of any ions or protons. Whereas Escherichia 

coli has one of each subfamily, the high-conductance water channel AQPZ and the glycerol 

channel GlpF, which conducts water poorly, plasmodia have only one AQP.

We determined the crystal structure of PfAQP at 2.05-Å resolution. Glycerol and water 

molecules alternate in single file along the conduction channel, providing a detailed atomic 

view of the transport mechanism, in which each of the three hydroxyl groups of glycerol 

(CH2OH-CHOH-CH2OH) and each water molecule act both as an acceptor of a hydrogen 

bond and as a hydrogen bond donor. In comparison with GlpF, the structure offers a 

foundation to probe the distinction between a glycerol channel of poor water conductance 

and a glycerol channel of high water conductance. It also provides the atomic structure of an 

important protein in malarial pathology that may be relevant as an antimalarial drug target. 

To our knowledge, this represents the first atomic structure of a membrane protein from the 

malaria parasite and is in the small but growing category of a eukaryotic membrane protein 

structure that is expressed heterologously in fully functional form.

The importance of glycerol in the malarial life cycle was recognized when PfAQP, the sole 

protein from the aquaporin family present in P. falciparum, was cloned and characterized1. 

It was unexpected that there would only be one representative of the aquaporin family in the 

P. falciparum genome. Even E. coli contains two types of aquaporins, at least one specific 

for water transport (termed a canonical aquaporin) and at least one (termed an 

aquaglyceroporin) specific for transporting small, uncharged solutes. Humans have 4 

glycerol channels among 13 AQPs.

Inside the mammalian host, the parasite invades the liver and undergoes asexual 

reproduction. Following rupture of the hepatocytes, the parasite is released back into the 

host’s bloodstream where it invades erythrocytes. The blood stage of P. falciparum is 

marked by rapid metabolism in the course of a 32-fold multiplication that occurs within 2 d 

inside the erythrocyte. The rapid reproduction of Plasmodium in the host red blood cell 

requires massive biogenesis, including the synthesis of lipids for new membranes. The 

parasite accomplishes this by assembly from lipid precursors found in the host serum pool2. 

Glycerol from the host serum is incorporated into the lipids of newly synthesized parasite 

membranes3. Thus, glycerol is a potentially important molecule for the replication of the 

parasite.

Expression of the protein is limited to the surface of the parasite and is maximal during the 

later stages of the blood-stage parasite, when parasite growth is greatest1. Given the function 

and expression profile of PfAQP, it was speculated that this protein might have an important 

role in malarial biology by providing access to host serum glycerol pools and ensuring 

survival during osmotic stress1,4. Indeed, knocking out the ortholog of PfAQP in the rodent 

parasite Plasmodium berghei (PbAQP) impedes growth of the parasite, decreases 

parasitemia and increases the survival time of mice infected with the PbAQP-null parasites 

relative to mice infected with the wild-type parasite5. The same study also demonstrated that 

the mutant parasites have greatly diminished glycerol uptake when compared to wild-type P. 

berghei. Taken together, the results suggest that the malarial aquaglyceroporin is important 

in Plasmodium biology and pathology.
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Correspondingly, glycerol uptake from the serum into erythrocytes is important for normal 

malarial virulence6. In murine red blood cells, the host membrane protein AQP9 is the 

major pathway for glycerol uptake into the red cell. AQP9 knockout increases the resistance 

of mice when challenged by wild-type P. berghei. After 2 weeks, 50% of infected wilde-

type mice were dead, whereas none of the AQP9-null mice were dead, consistent with a 

requirement for efficient glycerol acquisition.

Plasmodia are pathogenic protozoa, transmitted by the bite of an Anopheles mosquito, that 

cause malaria in humans and mammals. The disease kills 1–3 million people each year and 

causes clinical illness in 300–500 million more. Of this total, P. falciparum accounts for the 

vast majority of death and illness in humans. This global health problem is compounded by 

the continuing emergence of resistance in P. falciparum to current therapeutics. The 

development of new drugs and the improvement of existing treatments rely on a detailed 

understanding of the molecular components involved in the complex malarial life cycle. 

PfAQP may thus be a plausible target for anti-malarial drug cocktails.

RESULTS

PfAQP expression of a synthetic gene in E. coli

A synthetic gene was key to expression of PfAQP. Attempts at heterologous expression of 

the native PfAQP gene in E. coli failed to yield protein detectable by western blot. This was 

not unexpected as expression of Plasmodium genes in heterologous systems is challenging 

because of the high A-T content in the genome of the parasite. The A-T content in the native 

gene encoding PfAQP is more than 70%, in agreement with the overall A-T content of genes 

in P. falciparum7. We designed a synthetic gene to match the codon usage to that of E. coli 

and to moderate the secondary structure from the 5′ end of the transcript that might 

otherwise impede translation of the gene. The gene was designed using GeMS8. Expression 

of the optimized gene in E. coli yielded ~1 mg of purified, correctly folded, tetrameric 

protein from 6 liters of culture.

PfAQP structure and organization

Tetrameric PfAQP crystallized in the I422 space group with one monomer per asymmetric 

unit (Fig. 1a). The tetrameric biological unit is symmetrically disposed around four-fold 

crystallographic symmetry axes (Fig. 1b). Each monomer contains an independent 

conduction pathway surrounded by a right-handed bundle of α-helices (M1–M8), as in all 

AQPs. The angle at which the transmembrane helices are oriented gives rise to funnel-

shaped cytoplasmic and extracellular vestibules connected by the narrow, single file, ~25-Å 

conduction pore. Helices M1–M4 in the structure are related to M5–M8 by quasi two-fold 

symmetry in the plane of the membrane arising from an ancient gene-duplication event 

recognized throughout all aquaporins9 (Fig. 1a).

In PfAQP, the external 25-amino-acid ‘C loop’ connecting helix M4 to M5 tucks into the 

protein core toward the conduction channel. In doing so, it defines a large portion of the 

extracellular vestibule. The C loop has a similar role in the water channel of erythrocytes, 
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AQP1 (refs. 10,11). In PfAQP, the C loop begins with 1.5 turns of α-helix whereas the 

remainder lacks secondary structure, unlike the E. coli aquaglyceroporin, GlpF.

Tyrosine residues block the central four-fold axis

The symmetry axis in any homooligomeric transmembrane protein is always a potential, if 

not an actual, conducting transmembrane pathway as, in principle, no element of the protein 

can lie on the axis because it is represented symmetrically four times over. The four-fold 

axis of PfAQP is sterically occluded by a unique arrangement of four tyrosine side chains, 

Tyr44, which form a ‘fireman’s grip’ arrangement, in which each ring forms a nearly 90° 

edge to π interaction with its neighbor. The tetrad is sealed by a square planar arrangement 

of ideally oriented hydrogen bonds between each terminal hydroxyl group group of each 

tyrosine, as hydrogen bond donor to the hydroxyl group of its neighbor in the cyclic array 

(Fig. 1c). The axial portal to the four-fold axis of the protein seems more open than that of 

other AQPs and shows density for what could be four ~20-Å aliphatic chains within the 

portal. These four aliphatic chains could possibly represent lipid chains of two 

phospholipids, or fatty acids that presumably collaborate to seal the cytoplasmic side of the 

portal. Thus, overall, the four-fold axis is impenetrably sealed both by tyrosines of the 

protein and potentially by lipid chains.

The extracellular vestibule

There are five glycerol molecules associated with each monomer in the structure. Each 

extracellular vestibule contains two glycerol and seven water molecules, whereas each 

conduction pore contains three glycerol and four water molecules that alternate in lining up 

in single file. The vestibular glycerol molecules interact with the interhelical loops of the 

channel in the vestibule (Supplementary Fig. 1 online). The O2 of glycerol G1 is involved in 

a hydrogen bond (3.0 Å) with the amide backbone of Gly38 located on the loop connecting 

M1 and M2 in the neighboring monomer. Glycerol G2 donates a hydrogen bond through O2 

to the backbone carbonyl of Ser127 (2.8 Å) located on the C loop connecting M4 and M5 

(Supplementary Fig. 1). G2 also comes into close contact with the loop connecting M6 to 

the end of the half-helix M7 that is closest to the quasi two-fold axis. The interaction of the 

channel with the glycerol molecules orients the polar alcohol moieties toward the protein 

surface and the hydrophobic backbones of the molecules toward the axis of the conduction 

channel.

The conduction pore

The conduction pore is ~25 Å long and constricts to ~3 Å at its narrowest region (Fig. 2a). It 

contains three glycerol and four water molecules arranged such that the glycerol molecules 

in the pore are always separated by at least one water molecule, as in GlpF. The hydroxyl 

groups of the molecules in transit are hydrogen bond donors to the eight carbonyls that line 

one stripe throughout the length of the channel, and acceptors of hydrogen bonds from 

Arg196 and from the signature asparagines of the two NPA motifs (NLA at the end of half-

helix M3 and NPS at the end of half-helix M7) at the channel center (Fig. 2b). The pathway 

itself is amphipathic; the hydrophobic backbone of glycerol is oriented so that it contacts the 

hydrophobic side chains that constitute the almost vertical walls of the transmembrane 
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pathway channel. There is a high degree of conservation of the residues constituting the pore 

of PfAQP and GlpF, especially on the hydrophilic face (Fig. 2c). This helps to frame the 

analysis of the difference between these two remarkably similar structures.

The selectivity filter

A single, well-resolved glycerol molecule is found in the selectivity filter (Supplementary 

Fig. 2 online). The hydrophobic backbone of glycerol packs tightly against the V-shaped 

surface formed by the side chains of Trp50 and Phe190, whereas each of two successive 

hydroxyl groups of the glycerol substrate are hydrogen bond acceptors from the εNH (2.80 

Å) and NH2 (3.08 Å) of Arg196, and hydrogen bond donors to the backbone carbonyls of 

Gly189 and Phe190, respectively. The selectivity filter in PfAQP is identical in amino acid 

composition to that of GlpF. Together, these are the only aquaporin structures determined to 

date that have a glycerol molecule bound at the filter region9, although glycerol was often 

present in the crystallization media of AQPZ, for example. The pore size at the selectivity 

filter in PfAQP and GlpF also match closely: 3.28 Å in PfAQP and 3.14 Å in GlpF. This is 

in agreement with conductance measurements showing that PfAQP and GlpF are the only 

aquaporins of known structure to have appreciable rates of glycerol conductance1,12.

The NH1 and NH2 of Arg196, and the backbone carbonyls of Gly189 and Phe190 on the 

opposite polar surface, provide two key oriented donor and two acceptor hydrogen-bonding 

partners that select two adjacent amphipathic hydroxyl groups as essential to passage. 

Glycerol G3 interacts with this arginine in PfAQP exactly as it does with that of GlpF, even 

to the choice of prochiral species at this site. (Supplementary Fig. 2).

The side chain of Arg196 is a focus of mechanistic concern. The NH1 of Arg 196 donates a 

hydrogen bond back onto its backbone carbonyl and another to the hydroxyl of Ser200 (Fig. 

3). The NH2 of Arg196 donates a hydrogen bond to the backbone carbonyl of Trp124. These 

hydrogen-bonding interactions, and other hydrophobic interactions of the side chain, 

constrain the arginine residue in the selectivity filter. This region of the channel is key to 

determining the chiro- and enantioselectivity of conductance and the preference for water 

versus glycerol9,13–15.

Conductance of PfAQP in proteoliposomes

Water and glycerol conduction through PfAQP were assayed after reconstitution of the 

protein into proteoliposomes. Light-scattering measurements monitor vesicle shrinkage in 

response to either water or glycerol efflux. The rate for glycerol conductance in 

proteoliposomes containing PfAQP is 15.8 ± 0.2 compared to 0.066 ± 0.003 for liposomes. 

The rate for water conductance in proteoliposomes containing PfAQP is 21.5 ± 0.8 

compared to 4.5 ± 0.1 for liposomes. These values are relative rather than absolute numbers, 

depending on the number of channels incorporated per liposome, the sizes of liposomes and 

so on. However, they serve as benchmarks for comparison between different permeants and 

can be compared directly with the ratios of glycerol to water conductance found for GlpF 

(Fig. 4). These assays also demonstrate that the eukaryotic protein heterologously expressed 

in E. coli is fully functional.
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DISCUSSION

Extracellular vestibule recruits solute molecules

Glycerol in the extracellular vestibule increases the local concentration of glycerol at the 

channel opening and begins the process of desolvating the molecules for passage through the 

narrow conduction pore. This role has been proposed for other glycerol-conducting 

aquaglyceroporins9,16. The X-ray structure of the water-specific AQPZ does not have 

glycerol in its extracellular vestibule, despite the presence of a high concentration (~5% 

(v/v)) of the solute in the crystallization condition17. The crystal structure of GlpF has one 

glycerol molecule at the base of the extracellular vestibule above the selectivity filter9. This 

observation is explained and further supported through molecular dynamics studies of GlpF 

and AQPZ, which reveal a deep energy well for glycerol binding in the extracellular 

vestibule of GlpF but not AQPZ14.

Compensatory mutations in the NPA region

Owing to the close interdigitation of the twinned NPA motifs with each other and the 

structural and functional role these motifs have, it would be expected that the tolerance for 

mutations in this region is low. This is reflected in the near-total conservation of the two 

motifs across all other aquaporin family members of known amino acid sequence. The two 

almost totally conserved NPA motifs in AQPs are found at the N-terminal ends of the half 

membrane–spanning helices M3 and M7, which meet at the center of the membrane plane. 

The NPA regions meet in an antiparallel manner such that the proline residues are in van der 

Waals contact with each other and also with the alanine of the opposite NPA motif. The side 

chain residues of the asparagines project toward the conduction channel center, and they are 

maintained in this position by the interactions of NPA motifs with each other and also by a 

hydrogen bond donated from the amide backbone of the alanine to the carbonyl group of the 

asparagine side chain within the same NPA motif.

All aquaglyceroporin sequences (from P. falciparum, P. berghei, P. yoellii, P. vivax and P. 

knowlesi) found on the Plasmodium genome database, PlasmoDB (http://plasmodb.org/

plasmo/) are altered twice, to become NLA at position 70–72 at the end of helix M3 and 

NPS at position 193–195 at the end of helix M7. The only exception to this is the AQP 

sequence from P. knowlesi, which has a phenylalanine instead of a leucine substitution. 

PfAQP provides the first structure of an aquaporin containing this rare divergence in the 

NPA motifs. The loss of van der Waals interaction that occurs with the substitution of Leu71 

for a proline in the NLA region is compensated for by a hydrogen bond donated by the 

amide nitrogen of Leu71 to the hydroxyl group of Ser195 (3.1 Å) in the NPS region (Fig. 

5a). Furthermore, the position of the Ser195 side chain is restricted in its position by steric 

clashes with Asn193 or Leu96 in the two alternate rotamer states. Thus, the unique pair of 

substituents, one in each of the NPA regions, interdigitate against each other and explain the 

double mutation as a covariant alteration.

In addition to disrupting the proline-proline interaction between NPA motifs, the 

substitution of Leu73 for a proline introduces a bulkier hydrophobic residue in this region of 

the protein. The leucine side chain projects away from the channel pore, out toward the 
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surface of the protein that would contact the lipid membrane. A series of mutations in this 

region of the protein compensate for the introduced bulk while maintaining the overall 

hydrophobicity of the surface (Fig. 5b). In particular, Cys228 accommodates for the bulk of 

Leu71 at a position occupied by the large hydrophobic residues of isoleucine, leucine or 

phenylalanine in nearly all other aquaporins. Therefore, the cost of the leucine alteration is 

compensated for by covariant changes not just in the NLA and NPS regions, but throughout 

the protein, reaching all the way out to the periphery.

In view of the rarity of this plasmodial sequence variant, it attracts attention as a source of 

the difference in selectivity from GlpF. However, the covariant mutation provides 

compensatory interactions that serve to maintain the overall structure and orientation of 

helices M3 and M7. Furthermore, other conserved interactions in the NLA and NPS regions 

remain intact despite the covarient changes. As observed in all other aquaporins, the 

carbonyl of Asn70 acts as a hydrogen bond acceptor from the backbone amide of Ala72, and 

Asn193 acts as a hydrogen bond acceptor from the backbone amide of Ser195 (Fig. 5a), 

which would be an alanine in most other aquaporin family members. This maintains the 

presentation of two highly oriented N-H donors from each of the asparagine residues into 

the center of the conduction channel. Therefore, the signature interaction in AQPs that locks 

the N-terminal ends of the M3 and M7 helices together and precisely presents the asparagine 

residues into the channels is preserved despite the sequence variation. Thus, the variants are 

unlikely to provide a rationale for the difference in selectivity.

Selectivity of PfAQP

The dual specificity of PfAQP for glycerol and water separate it from other aquaporin 

family members whose structures have been determined. Although the overall protein 

architecture is highly conserved in all aquaporin family members, there are significant 

selectivity differences between aquaporins and aquaglyceroporins. The narrowest 

constriction of the conduction pore has attracted attention as a possible determinant of water 

versus glycerol selectivity. This region, the selectivity filter, is comprised of amino acid side 

chains and backbone carbonyl groups that project toward the center of the pore. In the 

water-specific aquaporin channels, the exclusion of glycerol and other small solutes can be 

explained by the diameter of the conduction pore at the selectivity filter, which is perhaps 

too small for the passage of solutes, and possibly by the more aliphatic hydrophobic side 

chains, which may provide less ideal contact with hydrophobic solutes (Fig. 2a and 

Supplementary Fig. 2). The mechanism by which aquaglyceroporin channels pass solute 

molecules through a larger-diameter selectivity filter while permitting water passage at 

much lower rates than aquaporins is still unresolved.

PfAQP transports water as efficiently as some water-specific channels, yet also passes 

glycerol well1. To accommodate glycerol molecules, the selectivity filter in PfAQP, as in 

GlpF, has a larger diameter and a more hydrophobic composition than water-specific 

channels. However, the fact that the selectivity filter of PfAQP and GlpF, an 

aquaglyceroporin with lower water conductance than PfAQP, are nearly identical 

(Supplementary Fig. 2) indicates that other factors besides just amino acid composition and 

arrangement influence the water conduction in this family of channels.
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The arginine residue in the selectivity filter is highly conserved in both aquaporin and 

aquaglyceroporin channels. The hydrogen bond network that this arginine is involved in 

provides insight into how the aquaglyceroporin PfAQP might achieve water conductivity 

similar to aquaporin channels. In all of the X-ray structures of water-specific channels, the 

NH1 and NH2 of this arginine together donate at least one hydrogen bond each to a protein 

moiety. In GlpF, only the NH1 is involved in hydrogen-bonding interactions with the protein 

(Fig. 3). The NH2 that is most proximal to the conduction channel is left to interact only 

with solvent molecules and not with any protein moieties. The greater number of hydrogen 

bonds formed between the arginine donors and acceptors on the protein in water-specific 

channels serves to decrease the desolvation energy of arginine, allowing for more transient 

interactions of water molecules with this arginine. In PfAQP, the NH1 and NH2 of the 

selectivity filter arginine donate three hydrogen bonds to the protein, as in most other highly 

water-permeable channels (Fig. 3). Thus, PfAQP has the pore diameter and amino acid 

composition to facilitate passage of glycerol but also establishes a hydrogen-bonding 

network around the conserved arginine, similarly to water-specific channels that decrease 

the desolvation energy of the guanidinium cation, allowing for more rapid passage of water 

compared to GlpF.

A glutamate mutant that abrogates water conductance

Previous conduction assays performed on PfAQP mutants support the arginine hypothesis4. 

Glu125 was previously identified as contributing to PfAQP selectivity during mutational 

analysis of residues predicted to be in the vicinity of the extracellular pore. The residue was 

identified as part of an effort to determine amino acids that participate in the conduction of 

water and glycerol through the channel. Predictions were based on a homology model of 

PfAQP using GlpF as a template. The E125S mutation was identified as disrupting water 

conduction, but not glycerol conduction, through the channel4, and is therefore useful in 

probing the basis of selectivity for glycerol versus water in AQPs.

Glu125 is located on the C loop, the long loop that dips into the extracellular vestibule to 

come into close contact with Arg196 in the selectivity filter. Glu125 serves to anchor this 

loop in place through two shorter hydrogen bonds from the donor hydroxyl group of Ser202 

(2.5 Å) and that of Thr212 (2.5 Å) (Fig. 3). The backbone carbonyl group of the residue that 

neighbors Glu125, Trp124, is the acceptor of a hydrogen bond from Arg196 NH2 in the 

selectivity filter. This is a crucial interaction in maintaining the water permeability of the 

channel. The E125S mutation eliminates this stabilization of the C loop and therefore would 

disrupt the hydrogen-bonding of Trp124 with Arg196, resulting in the NH2 of Arg196 

having increased solvent interactions and a higher desolvation penalty, so presenting a 

higher barrier for passage of water. The hydroxyl groups of glycerol, on the other hand, have 

lower polarity than in water, and thus are not held back to the same degree.

METHODS

Protein expression and purification

We cloned a codon-optimized gene (Kosan Biosciences) encoding the PfAQP protein into a 

pET28b expression vector with an N-terminal hexahistidine (His6)-affinity tag and thrombin 
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cleavage site (Novagen). Escherichia coli C43(DE3) cells were transformed and plated on 

LB agar with 15 μg ml−1 kanamycin. All cultures were grown with LB media plus 15 μg 

ml−1 kanamycin at 37 °C in Fernbach flasks shaking at 200–225 r.p.m. For expression, each 

liter of growth was inoculated with 10 ml of an overnight culture started from a freshly 

transformed colony and grown to an optical density at 600 nm (OD600) of 0.4–0.6. Protein 

expression was induced with 1 mM IPTG, and cultures were harvested by centrifugation for 

15 min at 4 °C 5,000g 4 h after induction. Pellets were washed once with 20 mM Tris, pH 8 

at room temperature, 20 mM EDTA (EDTA), 4 mM β-mercaptoethanol and 1 mM PMSF 

and pelleted as described above. Cells were resuspended in 20 mM Tris, pH 7.5 at room 

temperature, 500 mM NaCl, 10 mM EDTA, 4 mM β-mercaptoethanol and 1 mM PMSF, and 

lysed with 3–5 passages at 10,000–15,000 ψ in an EmulsiFlex-C5 high-pressure 

homogenizer (Avestin). Escherichia coli membranes were pelleted at 4 °C and 160,000g for 

1 h. Pellets were resuspended in 20 mM Tris, pH 7.4 at room temperature, 100 mM NaCl, 

20% (v/v) glycerol and 4 mM β-mercaptoethanol (1ml buffer per 0.5g membrane pellet). At 

this point, membranes were either stored at −80 °C or processed. Protein was solubilized by 

adding 270 mM n-octyl-β-D-glucopyranoside (β-OG, Anatrace) to the resuspended 

membranes and stirring at 4 °C for 1 h. Unsolubilized material was pelleted at 4 °C and 

26,500g for 1 h. The supernatant was loaded onto a nickel–nitrilotriacetic acid (Ni-NTA) 

resin (Qiagen), washed consecutively with 20 mM Tris, pH 7.4 at room temperature, 100 

mM NaCl, 5% (v/v) glycerol, 40 mM β-OG, 4 mM β-mercaptoethanol containing 10 mM, 

25 mM, 40 mM and 45 mM imidazole, and then eluted with 300 mM imidazole. Imidazole 

was removed using an Econo-Pac DG10 desalting column (Bio-Rad). The His6 tag was 

removed using 4 units of thrombin (Novagen) per milligram of PfAQP at 4 °C for 12–16 h. 

Thrombin was removed with benzamidine Sepharose resin (GE Healthcare), before the final 

protein-purification step achieved by size-exclusion chromatography on a TSK3000 column 

(Tosoh Biosciences) in 20 mM HEPES, pH 7.4, 100 mM NaCl, 10% (v/v) glycerol and 2 

mM DTT.

Crystallization

Purified protein was concentrated in a 50,000 molecular weight cutoff Amicon Ultra 

Centrifugal Filter Device (Millipore) to 6 mg ml−1 and crystallized in 17% (w/v) 

polyethylene glycol monomethyl ether 2000 (PEG2000MME), 100 mM sodium citrate, pH 

5.8, 15% (v/v) glycerol, 40 mM β-OG, 10 mM nickel sulfate and 10 mM DTT in hanging-

drop plates (Nextal Biotechnologies) by vapor diffusion at 18 °C. Crystals grew to ~100 μm 

in the longest axis within 2 d and were harvested within 1 week. An initial crystal-

dehydration solution was made by mixing 80 μL of the mother liquor with 20 μL of 50% 

(v/v) glycerol. After soaking for 15 min, crystals were transferred to a solution with a 2% 

increase in PEG2000MME. This was repeated up to 27% (w/v) PEG2000MME. Crystals 

were flash frozen from this solution and stored in liquid nitrogen.

Data collection and model building

Diffraction data were collected at 1.11587 Å under cryoconditions at Beamline 8.3.1 

(Lawrence Berkeley National Laboratory). Data were processed using DENZO/

SCALEPACK18. Molecular replacement was performed with Phaser19 using the 

transmembrane portions of GlpF9 as a search model. Initial automatic model building was 
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done with ARP/wARP20. Incomplete portions of the model were subsequently built with 

iterative cycles of manual building using Coot21 and restrained refinement with translation, 

libration and screw-rotation displacement (TLS)22 using Refmac5 (ref. 23) in the CCP4 suit 

of programs24. In the Ramachandran plot, 96.7%, 3.3% and 0% of the residues fell in 

favored, allowed and outlier regions according to MolProbity25. Data collection and 

refinement statistics are summarized in Table 1.

Proteoliposome assay

Escherichia coli polar lipid extracts acetone/ether preparation (Avanti Polar Lipids) were 

used to generate liposomes for assays of conductivity. All buffers were purged with argon. 

Lipid stocks were made at 50 mg ml−1 in water plus 4 mM β-mercaptoethanol and stored at 

−80 °C. Before the assay, stocks were thawed and 300 μL lipid and 100 μL water were 

aliquoted into 16 × 125 mm glass culture tubes (VWR), overlaid with argon and sonicated to 

clarity in a bath sonicator (Laboratory Supplies Company, Inc.). Cocktails for reconstitution 

were formed by mixing (in order): 100 mM MOPS (pH 7.5), 43 mM β-OG, protein (final 

concentration 125 μg ml−1) and sonicated lipids (final concentration 125 μg ml−1). The total 

volume of the mixture was 1.5 ml. The cocktails were dialyzed against assay buffer (20 mM 

HEPES, pH 7.4) in a 25,000 molecular weight cut off Spectra/Por Float-a-lyzer (Spectrum 

Laboratories, Inc.) for 24–72 h. Liposomes were then harvested by centrifugation at 75,000g 

and 4 °C for 1 h. Liposomes for water conduction assays were resuspended into 1 ml of 

assay buffer. Liposomes for glycerol conduction assays were resuspended into 1 ml of 20 

mM HEPES, pH 7.3, and glycerol. The concentration of glycerol was adjusted to make the 

solution match the osmolarity of a 20 mM HEPES, 570 mM sucrose solution. Vesicle 

shrinkage in either the water of the glycerol conduction assays was induced by mixing 100 

μl of liposome solutions and 100 μl of the sucrose solution in a stopped-flow apparatus. 

Light scattering at 440 nm was monitored over time. The resulting curves were fitted to a 

single exponential and the rate was extracted from these curves.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Channel architecture. Ribbon representations of the tetramer and monomer view of PfAQP. 

N- and C-terminal pseudo two-fold related portions of the channel are gold and maroon, 

respectively. (a) The PfAQP monomer constituting the asymmetric unit as viewed parallel to 

the membrane. Helices are labeled M1–M8. The pseudo two-fold axis protrudes from the 

page at the center of the membrane where helices M3 and M7 meet. The conduction 

pathway of glycerol is shown by sphere representations of the molecules observed in the 

crystal structure. (b) PfAQP tetramer viewed normal to the membrane down the 

crystallographic four-fold symmetry axis. Glycerol molecules contained in each conduction 

pore are shown in CPK representation. (c) Side view of the tetramer. Helices from two 

adjacent monomers are gray. Tyr44 residues from all four monomers are shown in stick 

representation. Fo – Fc density around the four-fold axis is contoured at 3 σ and shown in 

orange mesh. The solid diagonal line represents the length of the density in the figure. All 

structural renderings were done with PyMOL (http://www.pymol.org).
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Figure 2. 
Details of the PfAQP conduction channel. (a) Plot of channel radius versus position along 

the conduction pore for the water-specific AQP1 and the aquaglyceroporins AQPM, GlpF 

and PfAQP. The regions of the channel comprising the extracellular vestibule, intracellular 

vestibule, selectivity filter (SF) and NPA motif region are labeled below. All calculations of 

pore dimensions were done with the program Hole2 (ref. 26). (b) Schematic of protein 

interactions with channel contents. Generated with ChemDraw Ultra (CambridgeSoft). (c) 

PfAQP is represented by a surface representation of two opened halves that contribute the 

predominantly hydrophobic (right) or hydrophilic (left) interactions to the conduction 

channel. The blue surface indicates residues that are identical to GlpF. Nonidentical residues 

are gray. Stick representations of the three glycerol molecules in the conduction channel are 

shown. The boundaries of the conduction channel are roughly defined by dashed lines.
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Figure 3. 
Selectivity in aquaporin channels. Ribbon representations of PfAQP, GlpF and AQP1. 

Residues comprising the selectivity filter of each channel are shown in stick representation. 

Glycerols are drawn as yellow sticks and waters as red spheres. The hydrogen bond network 

around each arginine residue is shown with measurements in angstroms. Helices M1 and M4 

have been removed for easier viewing of the selectivity filter region.
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Figure 4. 
Water and glycerol conduction assay. Water (left) and glycerol (right) flux measurements in 

liposomes with PfAQP. Control measurements were made in empty liposomes containing no 

protein. Rates were determined from a fitting of a single exponential curve to the data ± s.d. 

from seven replicate measurements. The inset in the glycerol conduction plot is an 

expansion of the initial kinetics for glycerol conduction.
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Figure 5. 
Alterations to the conserved NPA motif in PfAQP. (a) Ribbon representation of PfAQP 

showing the NLA and NPS regions of PfAQP in stick representation. Hydrogen bonds are 

indicated with dashed lines. (b) Structural alignment of PfAQP (gold) and AQP1 (silver). 

For both proteins, helices are shown in ribbon representation and residues around the Leu71 

of PfAQP and corresponding proline in AQP1 are shown in stick representation.
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Table 1

Data collection and refinement statistics

PfAQP

Data collection

Space group I422

Cell dimensions

 a, b, c (Å) 92.4, 92.4, 193.2

Resolution (Å) 2.05 (2.11–2.05)

Rsym 8.4 (12.1)a

I/σI 28.8 (2.3)

Completeness (%) 95.7 (69.9)

Redundancy 15.0 (8.1)

Refinement

Resolution (Å) 46.2–2.05

No. reflections 24,179

Rwork/Rfree
b 18.1/19.8

No. atoms

 Protein 1,880

 Glycerol 30

 Water 56

B-factors, Å2

 Protein 36

 Glycerol 68

 Water 57

R.m.s. deviations

 Bond lengths (Å) 0.018

 Bond Angles (°) 1.63

Diffraction data from two crystals were used to determine the structure.

a
Values in parentheses are for the highest resolution shell.

b
Rfree is calculated from 5% of reflections chosen randomly.
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