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Abstract

Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAISs)
and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health
Organization Collaborating Centres for Reference and Research on Influenza during two periods
(May 2018-May 2019 and May 2019-May 2020). Combined phenotypic and NA sequence-based
analysis revealed that the global frequency of viruses displaying reduced or highly reduced
inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045)

and 0.6% (159/26010) for the 2018-2019 and 2019-2020 periods, respectively. The most common
amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and
peramivir in A(HIN1)pdmO09 viruses. Combined phenotypic and PA sequence-based analysis
showed that the global frequency of viruses showing reduced susceptibility to baloxavir or
carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1%
(18/15692) for the 2018-2019 and 2019-2020 periods, respectively. Most (n = 61) of these viruses
had 138—T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest,
the rate was 4.5% (41/919) in the 2018-2019 period and most of the viruses (n = 32) had

PA-138T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain
substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual
substitution PA-138V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAls
and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close
monitoring of antiviral susceptibility is warranted.

Keywords

Antiviral; Neuraminidase inhibitor; Polymerase inhibitor; Baloxavir; Reduced susceptibility;
Influenza

1. Introduction

Antivirals known as neuraminidase (NA) inhibitors (NAIs) and polymerase acidic (PA)
inhibitor (PAI) have been approved in many countries for controlling influenza infections.
The four NAls in current use are oral oseltamivir, inhaled zanamivir, intravenous peramivir,
and inhaled laninamivir (approved only in Japan). The orally administered PAI baloxavir
marboxil (baloxavir) is the first in a new class of drugs targeting the cap-dependent
endonuclease activity of the influenza PA protein. This antiviral was approved in Japan

and the United States in 2018 and is now approved in several countries (Beigel and Hayden,
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2021; Ison et al., 2021). Antiviral usage against influenza differs among countries, with the
highest usage per capita being reported in Japan (Table S1). Oseltamivir remains the most
widely used influenza antiviral and is now available as a generic drug.

The emergence and spread of viruses with reduced susceptibility to antivirals can diminish
the usefulness of these drugs for controlling influenza infections. This necessitates
continuous monitoring of antiviral susceptibility among circulating viruses. Antiviral testing
has become an integral part of influenza virologic surveillance conducted by laboratories of
the World Health Organization (WHO) Global Influenza Surveillance and Response System
(GISRS). Members of the WHO GISRS Antiviral Working Group (WHO-AVWG) compile
and review data collected throughout the year and provide regular reports (Gubareva et al.,
2017; Hurt et al., 2016; Lackenby et al., 2018; Meijer et al., 2014; Takashita et al., 2015a,
2020a).

NAI susceptibility is assessed using the MUNANA (4-(methyl-umbelliferyl)-N-
acetylneuraminic acid) fluorescence-based NA enzyme inhibition assay, with minor
modifications in each laboratory, to determine 50% inhibitory concentrations (ICsp).

Tokyo WHO Collaborating Centre (CC) uses a chemiluminescent-based assay (NA-XTD™
Influenza Neuraminidase Assay Kit, Applied Biosystems) to assess a small subset of viruses
with low NA activity. As there are no established cut-offs defining drug resistance, and

to harmonize phenotypic data across WHO CCs, the WHO-AVWG criteria for reporting
NAI susceptibility data are based on comparison to the median ICsg value of the respective
type/subtype/lineage (World Health Organization, 2012). These criteria differ for influenza
A and B viruses: normal inhibition (NI) (<10-fold for type A viruses; <5-fold for type

B viruses), reduced inhibition (RI) (10- to 100-fold for type A viruses; 5- to 50-fold

for type B viruses), and highly reduced inhibition (HRI) (>100-fold for type A viruses;
>50-fold for type B viruses). Rl or HRI phenotypes of influenza viruses are associated with
amino acid substitutions or deletions at conserved residues that form/stabilize the active
site of the NA (Lee and Hurt, 2018). Overall, the frequency of influenza viruses with
RI/HRI in global circulation has been low (<2%). However, during 2007-2009, oseltamivir
resistance rose drastically among A(H1N1) viruses, being conferred by the NA-H275Y
amino acid substitution (Dharan et al., 2009; Hurt et al., 2009; Meijer et al., 2009).
A(HIN1)pdmO09 viruses displaced the oseltamivir-resistant A(HLN1) viruses. Since then,
oseltamivir-resistant A(HLN1)pdmQ9 viruses containing NA-H275Y have been detected
sporadically, sometimes as clusters of cases but with limited circulation in communities
(Hurt et al., 2012; Takashita et al., 2015b). Besides NA-H275Y, numerous other substitutions
have been associated with RI/HRI phenotypes, and these have been summarized by the
WHO-AVWG (NA marker table, https://cdn.who.int/media/docs/default-source/influenza/
nai-reduced-susceptibility-marker-table-who_table-1.pdf).

With the advances in next-generation sequencing (NGS) technologies, there is increased
emphasis on establishing sequence-based virologic surveillance, which can provide a
framework for selecting viruses for phenotypic testing. Several years ago, the Atlanta WHO
CC implemented the sequence-first initiative, whereby all submitted viruses are subjected to
full-genome sequence analysis so that the generated sequences can be screened for various
changes, including potential markers of reduced susceptibility to drugs. Other GISRS
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laboratories are increasing their sequencing capabilities and are sharing their findings via the
Global Initiative on Sharing All Influenza Data (GISAID), thereby bolstering surveillance
data generation.

Information on molecular changes that affect baloxavir susceptibility is limited. Reduced
susceptibility to baloxavir is most often associated with amino acid substitution at residue
38 in the PA protein, with PA-138T being particularly common (Omoto et al., 2018; Imai

et al., 2020), and frequencies of baloxavir treatment—emergent variants differing between
virus types and subtypes (Hayden et al., 2018; Ince et al., 2020; Ison et al., 2020; Uehara

et al., 2020). PA substitutions associated with reduced susceptibility (PA marker) have

been summarized by the WHO-AVWG (see, https://cdn.who.int/media/docs/default-source/
influenza/summary-of-polymerase-acidic-(pa)-protein-amino-acid-substitutions-analysed-
for-their-effects-on-baloxavir-susceptibility.pdf).

Phenotypic testing enables the detection of viruses with reduced susceptibility to drugs and
combined with gene sequencing, allows identification of known and new markers. Cell
culture—based assays are used to determine the baloxavir susceptibility of influenza viruses
by assessing virus replication in the presence of the drug. Two assays, the high-content
imaging neutralization test (HINT) and the focus reduction assay (FRA), are currently used
by the Atlanta and Tokyo WHO CCs, respectively (Gubareva et al., 2019; Takashita et al.,
2018). These two assays yield different effective concentrations (ECgp) values for a given
virus, but the fold changes are similar (Takashita et al., 2020a). Currently, there are no
criteria for defining resistance or reduced susceptibility to baloxavir. An arbitrary threshold
(cut-off) of a =3-fold increase in the median ECgg is used for reporting viruses with reduced
susceptibility to baloxavir (Gubareva et al., 2019; Takashita et al., 2020a). This cut-off
should capture >95% of viruses with reduced susceptibility to baloxavir (Ince et al., 2020).

National Influenza Centres (NICs) receive influenza virus—positive

clinical specimens collected in their respective countries and perform

initial analyses (https://www.who.int/teams/global-influenza-programme/laboratory-
network/virological-surveillance). Representative numbers of influenza-positive clinical
specimens and/or viruses of each genetic type/subtype/lineage are then shipped to a GISRS
WHO CC for further characterization. The WHO CCs propagate viruses in MDCK, MDCK-
SIAT1, or hCK cells before drug susceptibility testing (Hurt et al., 2012; Takada et al.,
2019).

This is the seventh WHO-AVWG review of antiviral susceptibility, and it primarily
comprises data generated by WHO CCs. It includes influenza antiviral susceptibility data
for two consecutive periods, May (week 21) to May (week 20) of the following year as used
in previous global reports (thereby covering Southern and subsequent Northern Hemisphere
influenza seasons) for 2018-2019 and 2019-2020, with an emphasis on sequence-based
analysis. Antiviral susceptibility results for NAls and baloxavir are analyzed, keeping in
mind the changing algorithms for virus testing employed by the WHO CCs. For the first
time, the report includes antiviral susceptibility analysis of zoonotic viruses detected in
different countries and reported to the WHO. This analysis provides data for evaluating the
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risk posed by viruses with pandemic potential. The emergence of the COVID-19 pandemic
delayed analyses of the data presented in this report.

2. Neuraminidase inhibitors (NAISs)

2.1. Analysis of phenotypic and genotypic NAI susceptibility data from WHO CCs

During 2018-2019 and 2019-2020 periods, a total of 19966 and 15582 viruses, respectively
were assessed for NAI susceptibility by five WHO CCs using phenotypic and/or NA
sequence-based methods (Figs. S1 and S2). Of these respective total numbers, 13536

in 2018-2019 and 9853 in 2019-2020 were tested phenotypically by an NA inhibition
assays. The potential NAI susceptibility of remaining viruses 6430 in 2018-2019, 5729

in 2019-2020, with almost equal proportions of viruses collected in the United States

and other countries were assessed by Atlanta CC based on NA sequence analysis to

ensure that all viruses with previously reported markers were tested phenotypically

(Fig. 1A and Table S2). All these viruses (19966 and 15582, respectively for both

periods) were assessed for susceptibility to oseltamivir and zanamivir (Fig. 1B). Three
WHO CCs (Atlanta, Melbourne, and Tokyo) also assessed viruses for susceptibility to
peramivir and laninamivir using phenotypic and/or NA sequence-based methods. Most
viruses originated from the WHO regions of the Western Pacific (WPRO; 55.4% for 2018—
2019 and 50.1% for 2019-2020) and the Americas (PAHO; 23.9% for 2018-2019 and
28% for 2019-2020) (Fig. 1B). Only 20.7% of viruses for 2018-2019 and 21.9% for
2019-2020, were from the African (AFRO), Eastern Mediterranean (EMRO), European
(EURO), or Southeast Asian regions (SEARO) (Fig. 1B). Based on the WHO GISRS
global web-based tool for influenza virologic surveillance (https://www.who.int/initiatives/
global-influenza-surveillance-and-response-system), totals of 685332 influenza viruses were
detected globally and reported to FluNet for 2018-2019 and 694536 for 2019-2020,
respectively. Therefore, the viruses analyzed for NAI susceptibility by the WHO CCs in
this study represent 2.9% of global influenza detections reported to FluNet for 2018-2019
and 2.2% of those reported for 2019-2020.

For 2018-2019, influenza A(HIN1)pdmO9 viruses were the most prevalent among the
viruses assessed (10371; 51.9%), followed by A (H3N2) (6060; 30.4%), B/Victoria-lineage
(2364; 11.8%), and B/Yamagata-lineage (1171; 5.9%) viruses (Fig. 2A). For 2019-2020, the
numbers of A(HIN1)pdmO09 (4827; 31.0%), A(H3N2) (5685; 36.5%) and B/Victoria-lineage
(4820; 30.9%) viruses assessed were similar, but B/Yamagata-lineage viruses were notably
less prevalent (250; 1.6%) (Fig. 2A).

Overall, phenotypic testing identified 97/13536 viruses [7392 A (HLN1)pdmO09, 3884
A(H3N2), 1672 B/Victoria-lineage, and 588 B/Yamagata-lineage] viruses from 2018-2019
and 96/9853 [2888 A (HLN1)pdm09, 3871 A(H3N2), 3029 B/Victoria-lineage, and 65 B/
Yamagata-lineage] from 2019-2020 with RI/HRI. Sequence analysis of additional viruses,
6430 [2979 A(HIN1)pdm09, 2176 A(H3N2), 692 B/Victoria-lineage, and 583 B/Yamagata-
lineage] for 2018-2019 and 5729 [1939 A(H1N1)pdm09, 1814 A(H3N2), 1791 B/Victoria-
lineage, and 185 B/Yamagata-lineage] for 2019-2020 identified no NA substitutions
associated with RI/HRI phenotypes. Thus, 97/19966 (0.5%) viruses assessed for 2018-2019
and 96/15582 (0.6%) assessed for 2019-2020 were identified as having RI/HRI by at least
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one NAI; minor decreases compared to the corresponding result (0.8%) for 2017-2018
(Takashita et al., 2020a).

2.2. A(HIN1)pdmoO9 viruses showing RI/HRI

In 2018-2019 and 2019-2020, 69/10371 (0.7%) and 64/4827 (1.3%) viruses, respectively,
exhibited RI/HRI by at least one NAI (Fig. 2A and B), indicating an increase in the
incidence of RI/HRI viruses in 2019-2020. Most viruses with a RI/HRI phenotype contained
the NA-H275Y substitution (n = 101, 76%) and showed the expected increases in ICsg

for oseltamivir and peramivir (Table 1 and Fig. 3A). In addition, six viruses with a NA-
H275Y/H mixture showed elevated 1Cs for oseltamivir and peramivir (Table 1). These NA-
H275Y variants were collected in 15 countries (Table S3). For 71/101 viruses, NA-H275Y
was confirmed in the corresponding clinical specimens; no clinical specimens were available
for the remaining 30 viruses (Tables 1 and S3). Of the 85 patients with available clinical
history, 42 were outpatients and 43 were hospitalized (Table 1). Antiviral treatment history
was available for 60/101 patients, including 29 patients who did not receive an NAI before
specimen collection (Tables 1 and S3). Immunocompromised status was reported for five
patients who shed NA-H275Y viruses (Table 1).

Three viruses with NA-1223K substitution showed RI by oseltamivir, and the substitution
was confirmed in the two corresponding clinical specimens available (Tables 1 and S3).

A new substitution at this residue, NA-1223L, conferring a similar effect was also found

in one clinical specimen/virus pairing. Two viruses recovered from patients with unknown
treatment histories had either NA-1223M or NA-1223R substitution and exhibited RI by
oseltamivir and/or peramivir. One virus from India had the dual substitution NA-H275Y +
NA-G147R/G and displayed a 1376-fold increase in the ICgq for oseltamivir and a 746-fold
increase in the 1Csq for peramivir (Tables 1 and S3). No treatment history was available for
this case, but the same dual substitution was previously reported in connection with NAI
treatment (Takashita et al., 2016). Three viruses had NA-N295S and exhibited RI/HRI by
oseltamivir, with the corresponding change being confirmed in the two clinical specimens
available.

One virus displayed RI by oseltamivir and zanamivir, which was conferred by the
substitution NA-VV116A (clinical specimen not available). This substitution was previously
reported in A(H5N1) virus (Boltz et al., 2010; Hurt et al., 2007). A virus with NA-R152K
showed RI by oseltamivir and zanamivir; the antiviral treatment history of this patient was
unknown.

It is worth noting that several NA substitutions that confer RI/HRI, especially by zanamivir,
have been linked to virus culture (NA marker table; Little et al., 2015). Among these viruses
were those isolates containing NA-Q136R or NA-Q136K substitution or NA-Q136K/Q +
NA-D151E/D or D151N/D mixtures (Table 1). In addition, an isolate with NA-D199G
substitution displayed RI by oseltamivir, two viruses containing NA-E119K substitution

(in one case combined with NA-Q136K) displayed RI by zanamivir, and one virus with
NA-E119G substitution exhibited HRI by zanamivir and RI by peramivir and laninamivir
(Table 1). These substitutions were not found in the matching clinical specimens.
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2.3. A(H3N2) viruses showing RI/HRI

As in previous periods, the frequency of A(H3N2) viruses showing RI/HRI by any NAI
remained very low (Fig. 2B and Table 1). 4/6060 (0.07%) viruses assessed for 2018-2019
and 1/5685 (0.02%) for 2019-2020 exhibited RI by at least one NAI (Tables 1 and S3).

One virus isolated from a hospitalized peramivir-treated patient displayed RI by oseltamivir
and had NA-N245Y substitution in both the isolate and the matching clinical specimen;
this substitution was not reported previously (Fig. 3B). Another virus showing RI by
oseltamivir was isolated from an immunocompetent patient who had received no NAI
treatment; NA-S331R substitution was found in both the isolate and the clinical specimen.
A(H3NZ2) viruses with this change were reported previously and were characterized by

a borderline NI/RI phenotype (Takashita et al., 2020a). Indeed, it has been shown that
A(H3N2) viruses carrying positively-charged amino acid substitutions at NA positions 329,
331 or 334 can confer an apparent RI phenotype, but this is caused by markedly higher K,s
for MUNANA and K; values for NAIs (Hussain et al., 2021). It is possible that antibody
pressure is responsible for selection of amino acid substitutions at these three positions (Air
et al., 1985). Three viruses exhibiting RI by zanamivir had either NA-D151N/D mixture (in
one case combined with NA-V1651) or NA-M241V/M mixtures (Tables 1 and S3). These
changes are likely to have arisen during virus culture.

2.4. B/Victoria-lineage viruses showing RI/HRI

For B/Victoria-lineage viruses, 17/2364 (0.7%) viruses assessed for 2018-2019 and 31/4820
(0.6%) for 2019-2020 exhibited RI/HRI by at least one NAI (Fig. 2B); minor decreases
compared to the corresponding result (1.1%) for 2017-2018.

These RI/HRI variants were isolated from 14 countries (Table S4), and most displayed
RI/HRI by peramivir (Fig. 3C). A new NA-G145R substitution that conferred a borderline
NI/RI phenotype for zanamivir was found in two viruses and in one of the two
corresponding clinical specimens (Tables 2 and S4). The substitution NA-G243S was
identified in a clinical specimen and its respective isolate, conferring RI/HRI by all NAIs
except laninamivir. A different substitution at this residue, NA-G243D, conferred RI/HRI
by oseltamivir and zanamivir; data not available for the other two NAIs. A virus with dual
substitutions, NA-G247D + NA-I1361V, displayed RI by zanamivir and HRI by peramivir;
both substitutions were present in the clinical specimen. Based on its location, NA-G247D
alone could reduce inhibition by NAIs. Numerous viruses collected in different parts of
the world had previously reported substitutions (NA-D197N, NA-1221T, NA-H273Y and
NA-D432G) and displayed expected changes in inhibition by NAIs.

The substitution NA-E105K or NA-E105K/E mixture was found in 11 viruses, alone or
combined with other changes (i.e., NA-G104R/G mixture, NA-1115 deletion, NA-P139T/P
mixture, or K382R substitution), with some viruses displaying RI/HRI by NAls. Another
substitution at this residue, NA-E105G, combined with NA-P139L substitution, conferred
RI by peramivir. Notably, the majority of corresponding matching clinical specimens did
not have either NA-E105K or NA-E105G. Similarly, substitutions at neighboring residues
(i.e., NA-H101L and NA-G108E) that conferred RI/HRI to peramivir were not confirmed in
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clinical specimens or they were not available. The following substitutions conferred RI/HRI
but were not found in the clinical specimens: NA-T146K or P, NA-Q138K, NA-A245T,
NA-T4601). It appears that certain cell culture and virus propagation conditions favor the
rapid selection of type B virus NA variants, which present challenges for phenotypic testing.

2.5. B/Yamagata-lineage viruses showing RI/HRI

For B/Yamagata-lineage viruses, 7/1171 (0.6%) viruses assessed for 2018-2019 and 0/250
(0%) for 2019-2020 exhibited RI/HRI by at least one NAI (Fig. 2A). These seven RI/HRI
variants were collected in five countries (Table S4). A virus from Japan with an NA-
H273Y substitution showed RI by oseltamivir and HRI by peramivir (Takashita et al.,
2020b), and another virus from the United States with a NA-H273Y/H mixture showed

RI by peramivir only (Tables 2 and S4). NA-H273Y was detected in the corresponding
clinical specimens. Two viruses, one with NA-A200T substitution and one with NA-1221V
substitution, displayed RI by peramivir (Fig. 3D). A virus with NA-S249N substitution (not
previously reported) showed RI by zanamivir, but no clinical specimen was available. A
virus with an NA-D197N substitution showed borderline NI/RI by oseltamivir.

2.6. Frequency of NA amino acid substitutions associated with RI/HRI by NAls in
sequence databases

We analyzed NA sequences of viruses collected during the 2018-2019 (23649 viruses) and
the 2019-2020 periods (21706 viruses) that were deposited in the GISAID. According to
strain designation, 8570 sequences from 2018-2019 and 11278 from 2019-2020 belonged to
viruses submitted by five WHO CCs for NAI susceptibility analysis. For the remaining
15079 viruses [6765 A(H1IN1)pdm09, 7033 A(H3N2), 893 B/Victoria-lineage and 388
B/Yamagata-lineage] from 2018-2019 and 10428 viruses [4195 A(H1N1)pdmO09, 2480
A(H3N2), 3606 B/Victoria and 147 B/Yamagata] from 2019-2020, NA sequences were
analyzed for the presence of substitutions previously associated with RI/HRI. For 2018—
2019, 68 viruses [0.5% of the total; 54 A(H1N1)pdmQ9, six A(H3N2), six B/Victoria-
lineage, and two B/Yamagata-lineage] and, for 2019-2020, 63 viruses [0.6% of the total;
52 A(HIN1)pdmQ9, four A (H3N2) and seven B/Victoria-lineage] were identified with NA
substitutions associated with RI/HRI (Table S5).

Of the 10960 A(H1N1)pdmO09 sequences analyzed for both seasons, 89 (0.8%) contained
NA-H275Y (nine had an NA-H275Y/H mixture and one had additional D199N/D
polymorphism). Notably, an increased frequency of A(HLN1)pdmO39 viruses with potential
RI/HRI in 2019-2020 (1.2%, 52/4195) was observed, compared to 2018-2019 (0.8%,
54/6765), based on analysis of sequences available in GISAID which matches frequencies
of A(HIN1)pdmO09 viruses analyzed by WHO CCs displaying RI/HRI (1.3% for 2019-2020
vs 0.7% for 2018-2019) (section 2.2.). Among these, three NA-H275Y viruses belonged

to a cluster of oseltamivir-resistant viruses detected in the United States (Mohan et al.,
2021). Eight NA sequences had substitutions at residue 223 (NA-1223M/K/R/T), and three
had NA-S247G substitutions. Four other sequences showed substitutions at residues 152
(NA-R152K) or 199 (NA-D199E) or 295 (NA-N295S), and two sequences had cell culture—
derived substitutions at residue 136.
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Of the 9513 A(H3N2) sequences analyzed for both seasons, 10 (0.1%) contained NA
substitutions associated with RI/HRI: seven had substitutions at residue 119 (NA-E119V/G),
one had NA-R292K substitution, and two others had substitutions at residues 249 (NA-
K249E) or 391 (NA-Q391K).

Of the 4499 B/Victoria-lineage sequences analyzed for both seasons, 13 (0.3%) had NA
substitutions associated with RI/HRI: five had NA-K360E, four had NA-D197N, two had
NA-1221T and two had either NA-Y142H or NA-G145E. For both seasons, a total of

535 NA sequences were analyzed for B/Yamagata-lineage viruses. Only two (0.4%) of the
sequences from 2018-2019 had either NA-G145E or NA-S246P substitution associated with
RI/HRI.

Overall, a combined analysis using phenotypic and/or sequence-based methods revealed
that the global frequency of influenza viruses either displaying RI/HRI or with potential
to exhibit RI/HRI by NAls was low, being 0.5% (165/35045) and 0.6% (159/26010) for
2018-2019 and 2019-2020, respectively.

3. Cap-dependent endonuclease inhibitor

3.1. Combined analysis of genotypic and phenotypic baloxavir susceptibility data

During the periods covered, PA sequence analysis was the primary tool for baloxavir
susceptibility assessment, as only two WHO CCs (Atlanta and Tokyo) had tested viruses
phenotypically. To this end, PA sequences submitted by WHO CCs and other laboratories to
GISAID were screened for amino acid substitutions associated with reduced susceptibility
to this antiviral (PA marker table). Although not included in the WHO-AVWG table, residue
34 is part of the PA active site and one of the key residues (i.e., residues 20, 24, 34, 37, and
38) to which baloxavir binds (Omoto et al., 2018). Therefore, it was of interest to screen

PA sequences for amino acid changes at this position. When isolates were available, flagged
viruses were subjected to phenotypic testing to confirm the drug susceptibility phenotype.
Also, phenotypic testing of viruses representing different subtypes/lineages was performed
to calculate the median ECsq for each type/subtype/lineage.

For 2018-2019, a total of 15906 influenza viruses [7015 A(H1IN1) pdmQ9, 7117 A(H3N2),
981 B/Victoria-lineage and 793 B/Yamagata-lineage viruses], representing 2.3% of virus
detections on a global basis reported to FluNet, were primarily analyzed for the presence of
substitutions associated with reduced baloxavir susceptibility using sequence-based analysis
supplemented by phenotypic testing of those with known markers (where possible) and
testing of a proportion lacking markers. The proportion of viruses analyzed varied by WHO
region (AFRO: 3.2%; EMRO: 2.2%; EURO: 17.9%; PAHO: 55.6%; SEARO: 3.9%; WPRO:
17.2%).

Most (9994/15505, 64.5%) PA sequences analyzed for this period were deposited in
GISAID by three WHO CCs [Atlanta (n = 8911; 89.2%), Melbourne (n = 460; 4.6%),
and Tokyo (n = 623; 6.2%)], with the remaining 5511 sequences (35.5%) submitted by
other laboratories worldwide. A total of 72 PA sequences were flagged as containing
previously reported (n = 68) or suspected (n = 4) reduced susceptibility markers; the latter
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were PA-K34R and PA-E23K + PA-K34Q (Table S6). A total of 1218 viruses from 2018-
2019 were tested at the Atlanta CC(n = 387; 31.8%) or the Tokyo CC (n = 831; 68.2%).
Baloxavir ECsgqs for the flagged viruses were determined and compared to the median ECs
to calculate a fold-change. The logq transformed baloxavir ECsgg fold-change values were
used to prepare column-scatter plots, as was done for the NAI phenotypic data (Fig. 4). As
expected, viruses without PA markers (n = 1172) showed a <3-fold increase when compared
to the respective median ECsg. PA marker substitutions were present in all viruses showing
a =3-fold increase. However, five viruses with the markers PA-K34R, PA-138F/I, PA-138M/I,
PA-138V/I1, or PA-E199G showed a <3-fold increase in ECsq as compared to the respective
median ECggs (Table 3). Of these five viruses, two with PA-138M/1 and PA-138V/I still
showed a <3-fold increase in ECgg and the one with PA-E199G displayed a =3-fold increase
when compared to the respective PA sequence-matched controls (Table S6).

For 2019-2020, a total of 15692 influenza viruses [5991 A(H1N1) pdm09, 4431

A(H3N2), 4935 B/Victoria-lineage and 335 B/Yamagata-lineage viruses], representing

2.3% of virus detections reported to FluNet were mainly analyzed for the presence of
substitutions associated with reduced baloxavir susceptibility using sequence-based analysis
supplemented by phenotypic testing. Most viruses (51.7%) were from the WHO PAHO
region, followed by EURO (22.7%) and WPRO (16.7%) regions. The proportions for viruses
from the WHO SEARO, AFRO, and EMRO regions were smaller (4.7%, 3.0%, and 1.2%,
respectively).

Most (9821/15623, 62.9%) PA sequences were deposited by four WHO CCs [Atlanta (n
=7981; 81.3%), Beijing (n = 747; 7.6%), Melbourne (n = 279; 2.8%)] and Tokyo (n =

814; 8.3%)], with the remaining 5802 sequences (37.1%) submitted by other laboratories
globally. The Atlanta and Tokyo CCs conducted phenotypic testing on 1110 viruses [Atlanta
(n =290; 26.1%), Tokyo (n = 820; 73.9%)], which included 7/18 PA sequence—flagged
viruses (Fig. 4 and Table S6). All viruses that showed a >3-fold increase in ECsg had

a PA reduced susceptibility marker (PA-138T, PA-138L, or PA-E23K), but not all viruses
with other markers (PA-L28P, PA-M341, or PA-138V) showed a =3-fold increase relative to
the subtype/lineage-specific median ECsgq or the PA sequence—matched control virus ECsg
(Tables 3 and S6).

Overall, combined sequence-based and phenotypic analysis revealed that the global
frequency of influenza viruses with potentially reduced baloxavir susceptibility was low,
being 0.5% (72/15906) and 0.1% (18/15692) for 2018-2019 and 2019-2020, respectively.

3.2. A(HIN1)pdmO9 viruses

For the A(HIN1)pdmO09 subtype, 21/7015 (0.3%) and 2/5991 (0.03%) viruses analyzed

for 2018-2019 and 2019-2020, respectively, had PA reduced susceptibility markers (Table
S6). Most (n = 18) of these viruses had PA-138T/F/S/V substitutions, and substitutions

at three other residues (23, 34, and 199) were detected. Notably, most viruses with a
substitution at residue 38, except those with PA-138V (n = 11), were collected from
baloxavir-treated patients, and all but one (from Republic of Korea) were detected in Japan.
Most variant viruses showed single amino acid substitutions at their reduced susceptibility
marker positions, but a few with PA-138 substitutions showed polymorphism (Table S6).
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Six viruses that contained PA-138F/S/T were tested and displayed 2.5- to 49.5-fold increases
in ECgy compared to the median ECsp. Only three viruses with PA-138V were tested and
they displayed 3.0- to 3.7-fold increases by FRA. The presence of valine at residue 38
represents a natural polymorphism and has not been linked to baloxavir treatment. Viruses
with PA-E23G, PA-E23K (Takashita et al., 2020c) or PA-E199G showed 6.9-, 7.4- and 2.9-
fold increases in ECs, respectively (Table S6); the latter virus showed a 3.7-fold increase
when compared to the PA sequence matched control. Two viruses (one each from Japan and
the United States) had PA-K34R and showed 1.6- and 4.7-fold increases, respectively, in
ECsq (Table S6). The reduced susceptibility of the United States virus was confirmed, with a
4.1-fold increase in the ECsg, by comparing it to a PA sequence matched control.

3.3. A(H3N2) viruses

For the A(H3N2) subtype, 51/7117 (0.7%) and 8/4431 (0.2%) viruses analyzed for 2018-
2019 and 2019-2020, respectively, had PA reduced susceptibility markers (Table S6). These
variants were collected in 13 countries, but most were from Japan (n = 32) or the United
States (n = 16). Of the 59 flagged viruses, 37 were available for phenotypic testing: 33
(including that with substitution at residue 34) displayed >3-fold increases in ECsq and four
(with PA-L28P, PA-138M/I or PA-138V/1) exhibited <3-fold increases (Table S6).

Twenty-one viruses that contained PA-I138T alone showed 64.3- to 614.0-fold increases in
ECsq, and one virus with PA-I138T was not tested (Table 3). Eight viruses with mixtures

at this position (PA-138T/I or PA-138T/M/1) showed 5.6- to 250.0-fold increases in ECsg
(Tables 3 and S6). Two other viruses with PA-138M or PA-138M/I exhibited 23.7- to
91.8-fold increases in ECsp. All these viruses were collected in Japan, and most were

from baloxavir-treated patients <12 years of age (Table S6). The other flagged viruses

had markers associated mainly with less common natural substitutions or polymorphisms:
PA-138L or PA-I38L/V/I (n = 2), PA-138M or PA-I138M/I (n = 3), PA-138V or PA-I38V/I (n
= 3), and PA-L28P (n = 16) (Table S6). In addition, a virus from the Democratic Republic of
the Congo had PA-K34R, one from the UK had PA-E23K + PA-K34Q, and one from Chile
(Talca) had PA-E199G. Viruses with PA-138L or PA-K34R showed 4.1-fold increases in
ECsg. All other available viruses showed fold-changes below the cut-off threshold, including
two with PA-L28P. Notably, placing clinical specimens in culture led to the enrichment of
virus isolates with PA-138-substituted variants in several instances.

3.4. B/Victoria-lineage viruses

For B/Victoria-lineage viruses, 0/981 and 8/4935 (0.2%) viruses analyzed for 2018-2019
and 2019-2020, respectively, had PA reduced susceptibility markers (Table S6); the latter
viruses were collected in five countries. Three viruses had PA-138V, and the one tested
showed <3-fold change in ECsp. The remaining viruses contained PA-M341 or PA-M34V
(Tables 3 and S6). The one PA-M341 virus tested showed a <3-fold increase in EC5y by FRA
(Table S6).

3.5. Bl/Yamagata-lineage viruses

For B/Yamagata-lineage viruses, 0/793 and 0/335 viruses analyzed for 2018-2019 and
2019-2020, respectively, had PA reduced susceptibility markers.
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4. Zoonotic viruses

Forty-nine cases of human infection with swine-lineage [A(H1N1) pdm09v, A(H1IN2)v,
A(H3N2)v subtypes] or avian-lineage [A(H5N1), A (H5N6), A(H7N9), A(HIN2) subtypes]
influenza A viruses were reported for 2018-2019 and 2019-2020, including six cases of
infection with highly pathogenic viruses (Table S7). The susceptibility of zoonotic influenza
viruses to NAIs and baloxavir was assessed based on analysis of NA and PA sequences
deposited in GISAID. Overall, sequences were available for 32 zoonotic viruses. Those
viruses with an available NA sequence appear to be NAI susceptible, as no NA substitutions
previously associated with RI/HRI phenotypes were found in them. A/Jiangsu/32888/2018
(H5N®6) contained dual PA-138V + PA-E199G substitutions. These substitutions alone have
little or no effect on /n vitro baloxavir susceptibility when present in other subtypes (PA
marker table), but their combined effect has not been determined. Thirteen viruses had
PA-A37S; this substitution did not alter baloxavir susceptibility in a recombinant A(H1N1)
virus (Hashimoto et al., 2021). Of nine A(HLN2)v viruses collected in the United States
during these two periods, three were tested for NAI susceptibility and six were tested for
baloxavir susceptibility; all were susceptible to NAIs and baloxavir.

5. Concluding remarks

Several factors are thought likely to contribute to the detection rate of influenza

viruses showing reduced susceptibility to antivirals. For example, when A(H3N2) viruses
predominate, fewer viruses displaying RI/HRI by oseltamivir are typically detected.
Conversely, higher detection rates are observed when A(HLN1)pdmO9 viruses circulate
widely; this is mainly due to oseltamivir-resistant NA-H275Y viruses. This potentially
reflects the inherent abilities of N1 and N2 NAs to accommodate RI/HRI conferring
substitutions without significantly affecting virus fitness (Collins et al., 2009).

The detection of A(HIN1)pdmO9 viruses in untreated patients is an indicator of community
transmission of resistant NA-H275Y viruses (Hurt et al., 2012; Takashita et al., 2015b),

and this needs to be closely monitored. Notably, a small cluster of NA-H275Y viruses was
detected in the United States in 2020 (Mohan et al., 2021) and the antigenically drifted
hemagglutinin of these viruses may facilitate their spread.

Viruses with RI/HRI phenotypes can emerge as a result of natural amino acid polymorphism
(sequence variance among circulating viruses). For example, natural polymorphism is the
underlying factor in type B viruses displaying a RI/HRI phenotype to peramivir (Leang

et al., 2014; Sleeman et al., 2011). Conversely, A(H3N2) viruses with a RI phenotype to
zanamivir commonly emerge during virus culture, which promotes the selection of NA
substitutions that reduce NA activity towards sialic acid—containing receptors. In addition,
propagating viruses with a mixed population in culture can increase the proportion of
variants with reduced susceptibility to antivirals; this applies to both NAls and baloxavir.

It can be challenging to reconcile the outcomes of sequence-based analysis and phenotypic
testing as both approaches have their limitations. For simplicity, the detection rate was
calculated based on all markers listed in the WHO-AVWG tables, plus newly identified
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markers. However, not all markers conferred the expected drug phenotype. Another caveat is
a border line NI/RI phenotype observed for viruses with certain markers. For example, NA-
D197N was associated with NI/RI by zanamivir. Similarly, PA-L28P and PA-138V conferred
no change in baloxavir susceptibility. Such viruses can be counted as drug susceptible or
displaying reduced susceptibility depending on the reference ECgq value used to calculate
fold-change. As sequence-based analysis becomes a foundation for virologic surveillance,

it would be beneficial to put additional efforts into establishing clear correlates between
identified markers and drug susceptibility phenotype. To this end, recombinant viruses could
be used to delineate the effect of a particular marker on a drug-susceptibility phenotype,

or sequence-matched control viruses (e.g., PA sequence matched viruses) could be used for
comparisons. This is especially important, because sequence-based analysis is the primary
means of assessing the drug susceptibility of zoonotic influenza viruses as such viruses are
often unavailable for phenotypic testing.

Overall, the proportions of viruses displaying reduced susceptibility to at least one antiviral
were low (<1%) for both periods. However, during 2018-2019, there was a striking
difference between Japan and the United States in the detection rate of PA reduced
susceptibility markers. In Japan, the rate was 4.5% (41/919) and most of the detected viruses
(n = 32) had PA-I38T, the principal treatment-emergent marker. Notably, most viruses with
PA-138T belonged to the A(H3N2) subtype and were isolated from young children with
several patients not being exposed to baloxavir. This indicates the probable transmission

of baloxavir-resistant viruses in local communities and/or households. It appears that using
baloxavir to treat children <12 years of age may have contributed to the higher rate of
baloxavir resistance in Japan in 2018-2019. In 2019, two Japanese medical professional
societies issued recommendations to avoid prescribing baloxavir to children <12 years of
age. In 2019-2020, the rate of baloxavir resistance detected in viruses collected in Japan
was much lower at 0.4% (3/708) and only one virus, which was collected from a baloxavir-
treated adult, had PA-138T.

It is worth noting that in the United States, baloxavir was approved only for treating people
aged 12 years or older. The detection rate was low in both periods: 0.3% (23/7024) in
2018-2019 and 0.1% (7/6509) in 2019-2020. None of the analyzed viruses had PA-138T
substitution. Also, samples submitted to the United States national surveillance program are
typically collected before treatment is initiated. These factors may explain the low detection
rate, which is consistent with the low circulation of PA variants with naturally reduced
susceptibility to baloxavir (Gubareva et al., 2019).

Overall, the detection rate of viruses that either showed, or possessed markers predictive
of reduced susceptibility to NAIs and/or the PAI baloxavir was low regardless of the usage
of these antivirals. However, the data reported here indicate the need to continue the close
monitoring and elucidation of factors contributing to reduced susceptibility to antivirals in
influenza viruses.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

In?luenza viruses collected and assessed for NAI susceptibility during 2018-2019 and 2019—
2020 periods. For each period viruses were collected between week 21 and week 20 of

the following year. (A) Week of specimen collection and virus type/subtype/lineage for
specimens assessed in the 2018-2019 and 2019-2020 periods. Typically, week 21 to week
39 of a year covers the Southern Hemisphere influenza season, while week 40 of a year to
week 20 of the following year covers the Northern Hemisphere influenza season. (B) The
number of viruses assessed for susceptibility to the four NAIs using NA inhibition assays
and/or sequence-based analysis, by WHO Region for the 2018-2019 and the 2019-2020
periods.
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Comparison of NAI susceptibility surveillance over eight periods. (A) Number of viruses
tested. For the 2012-2018 period testing was reported based on NA inhibition assays only.
For the 2018-2020 period results of assessment by NA inhibition assays and/or sequence-
based analysis were included. (B) The proportion of viruses showing RI/HRI by NAIs over
the 2012-2020 period. Data were compiled from the global studies of viruses isolated during
the 2012-2013 (Meijer et al., 2014), 2013-2014 (Takashita et al., 2015a, 2015h), 2014-2015
(Hurt et al., 2016), 2015-2016 (Gubareva et al., 2017), 2016-2017 (Lackenby et al., 2018),

2017-2018 (Takashita et al., 2020a), and 2018-2020 (current study) periods.
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Fig. 3.

Column-scatter plots of log-transformed 50% inhibitory concentration (ICsg) fold-change
values for NAls. Overall, 13536/19966 and 9853/15582 viruses were tested phenotypically
for 2018-2019 and 2019-2020, respectively. Data are presented by virus subtype or lineage
[(A) A(HIN1)pdmO09; (B) A(H3N2); (C) B/Victoria-lineage; and (D) B/Yamagata-lineage]
and NAI (labelled on the x-axis: oseltamivir, zanamivir, peramivir and laninamivir). The
boxes indicate the 25th—75th percentiles, and the whiskers stretch to the lowest and highest
values within 1.5 times the interquartile region (IQR) value from both the 25th and 75th
percentile values, respectively (Tukey’s definition). The y-axes have been split into three
compartments according to the thresholds recommended by the World Health Organization
Expert Working Group of GISRS for normal inhibition (NI) (<10-fold for type A viruses;
<5-fold for type B viruses), reduced inhibition (RI) (10- to 100-fold for type A viruses; 5-
to 50-fold for type B viruses), and highly reduced inhibition (HRI) (>100-fold for type A
viruses; >50-fold for type B viruses). NA amino acid substitutions are shown for viruses
displaying RI or HRI phenotypes that have been sequenced. Viruses showing NI but carrying
amino acid substitutions previously associated with Rl or HRI by one or more NAI or
showing an RI or HRI phenotype for another NAI are indicated in grey in the NI area above
1.5 times the IQR from the 75th percentile border and below the RI threshold value. Full
details about these viruses are given in Tables S3 and S4. Amino acid position numbering is
specific to A subtype and B type. Most viruses were tested for susceptibility to oseltamivir
and zanamivir; only a subset was tested for susceptibility to peramivir and laninamivir.
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Column-scatter plots of log-transformed 50% effective concentration (ECsgp) fold-change
values for the PAI baloxavir. The phenotypic susceptibility of influenza viruses to baloxavir
was determined with cell culture—based assays, focus-reduction assay (FRA) or high-
content imaging neutralization test (HINT). Overall, 1218 and 1110 viruses were tested
phenotypically for 2018-2019 and 2019-2020, respectively. Data are presented by virus
subtype or lineage [labelled on the x-axis: A(H1N1)pdm09; A(H3N2); B/Victoria-lineage;
and B/Yamagata-lineage] and log-transformed ECsgqs on the y-axis. The boxes and whiskers
are as defined in Fig. 3. An arbitrary cut-off of >3-fold increase from the median ECsgg

was used for reporting viruses with reduced susceptibility to baloxavir. Viruses without

PA reduced susceptibility markers showed a <3-fold increase in ECsgg, as compared

to the respective median ECsggs for the two periods. PA markers were present in all
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viruses that showed a =3-fold increase in ECsg, but not all viruses with markers showed
>3-fold increases. PA amino acid substitutions are shown for viruses displaying reduced
susceptibility. Amino acid position numbering is specific to type A and B viruses.
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