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Abstract

While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is
not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the
physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by
the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged
period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels.
While odortaxis requires a Ga subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor
exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the
olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term
adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear
entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that
long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP)
channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels
block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-
term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory
adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA
activation of the TRP channel OSM-9 may dampen the output of the AWC neuron.
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Introduction

Olfactory adaptation may subserve a food-seeking strategy in

C. elegans. Since the sources of many odors that are inherently

attractive to C. elegans do not, in fact, provide a source of nutrition,

the worm may have to discriminate between rewarding and

unrewarding stimuli by adapting to nutritionally profitless odors.

This modification in olfactory behavior, as a function of

experience, represents a finely regulated signaling circuit [1–8].

The AWC cilia contain olfactory receptors that enable the

nematode to sense inherently attractive volatile odors [9,10].

These olfactory receptors are coupled intracellularly to Ga
subunits [11,12]. Presentation of an odor results in decreased

intracellular calcium levels [13] which is likely mediated by closing

of the cGMP-gated channels, TAX-2 and TAX-4 [14,15]. cGMP

is produced by the guanylyl cyclases, ODR-1 and DAF-11 [16,17].

A schematic of the signal transduction cascade is presented in

Figure 1A. Following this schema, odor sensation by the AWC

neurons is likely to mirror light sensation by vertebrate rod cells in

that both utilize a GPCR and cGMP as the second messenger

[18,19]. Both light in the rod cell and odor in the AWC decrease

intracellular calcium levels to hyperpolarize the cells when

stimulated and both cell types tonically release neurotransmitter

to the downstream interneurons [13,18,19].

The genetics of olfactory adaptation were first investigated in

C. elegans by Colbert and Bargmann [1]. At that time, the authors

defined parameters of the olfactory adaptation paradigm, which they

used to design a genetic screen to isolate mutants defective in their

ability to adapt to volatile odors sensed by the AWC sensory

neurons. Mutants identified were the as yet uncloned adp-1(ky20),

which fails to adapt to the AWC sensed odors benzaldehyde and

butanone, and the TRPV channel mutant osm-9(ky10), which is

defective in adaptation to the AWC sensed odors butanone and

isoamyl alcohol. The Bargmann group and other laboratories have

since identified additional mutants that are unable to adapt to AWC-

sensed odors; these mutants include: the arrestin arr-1 [5], the T-box

transcription factor tbx-2 [20], the calcium dependent calcineurin A

phosphatase subunit tax-6, which actually down regulates adaptation

[21], the RNA binding PUF protein FBF-1 [8] which increases local

translation of EGL-4, the calsyntenin/alcadein ortholog CASY-1
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[22], the Ras-MAPK pathway which functions at the interneuron

AIY [23], the GPC-1 c subunit which regulates a rapid form of

adaptation termed ‘’’early adaptation’’ [24], the guanylyl cyclase

GCY-28 which regulates odor preference and odor-exposure

induced avoidance of butanone [25], and the Goa/Gqa DAG

signaling mutants [4]. The cGMP-dependent protein kinase (PKG)

EGL-4 has also been shown to be necessary at the time of odor

exposure for adaptation to all AWC-sensed odors [3,8,26].

Examination of the temporal sequence of events leading up to

long-term adaptation revealed that it occurs in at least two phases:

an initial ‘‘early’’ adaptation within the first 10 minutes of exposure

[23], then a rapidly reversible phase that results after 30 minutes of

odor exposure (referred to as short-term adaptation) and subse-

quently, a longer, more enduring phase that results after 60 minutes

of exposure (called long-term adaptation) [3,26]. In the wildtype

animal, EGL-4 acts within the cytoplasm to promote short-term

adaptation [3] and in the nucleus to promote long-term adaptation

to AWC sensed odors [26]. Further, we showed in Lee et al. [26]

that in the wildtype animal under normal laboratory conditions,

nuclear accumulation of EGL-4 is both necessary and sufficient to

evoke long-term olfactory adaptation. Though changes within the

whole olfactory circuit, including the interneurons AIY and AIB,

are likely to occur during each phase of the process of adaptation,

this work will focus on long-term adaptation and the events that take

place within the AWC sensory neuron.

To determine which step along the olfactory signal transduction

pathway is integrated over time to evoke long-term adaptation, we

examined olfactory behavior as well as nuclear accumulation of a

GFP-tagged form of EGL-4 (GFP::EGL-4) (Figure 1D and [26]) in

genetic backgrounds where either signal transduction or adapta-

tion is perturbed (Table S1 and Figure S1). Thus, we used the

visible accumulation of GFP::EGL-4 within the AWC nucleus as a

hallmark of one aspect of long-term adaptation. Using this

approach, we found that nuclear accumulation of GFP::EGL-4

is independent of calcium levels but dependent on Ga protein

activity. Our visible readout for this important aspect of long-term

odor adaptation also allowed us to place novel as well as previously

identified olfactory adaptation-defective mutants either down-

stream of EGL-4 nuclear entry or into a parallel genetic pathway

that works with EGL-4 to promote adaptation. For example, we

show that the Polyunsaturated Fatty Acids (PUFAs) are novel

regulators of olfactory adaptation that may act downstream of

EGL-4’s nuclear entry along with the TRP channel, OSM-9.

Results

Mutants with morphologically defective sensory cilia
exhibit constitutively nuclear EGL-4

Signal transduction in the primary sensory neuron AWC begins

at the most distal portion of the dendrite, in the sensory cilia

(arrowhead in Figure 1B). Since signaling molecules such as

GPCRs [10,27] , guanylyl cyclases [16] and the G-protein a
subunits [11,28] localize to the sensory cilia, it is likely that sensory

signaling requires an intact cilia structure. Thus, we asked how the

structural integrity of the AWC cilia might affect EGL-4’s

localization.

In the naı̈ve animal, GFP::EGL-4 is evenly distributed

throughout the cytosol of the AWC and after prolonged odor

exposure it redistributes to the nucleus (Figure 1C and 1D and

[26]). We examined the distribution of GFP::EGL-4 in mutants

with highly transmitted ciliopathies: che-2(e1033) and che-11(e1810)

[29,30]. CHE-2 is a WD-40 intraflagellar transport (IFT) complex

B protein [30] and CHE-11 is a homolog of the Chlamydomonas IFT

complex A protein [29,31]. Both IFT complex A and B genes are

necessary for ciliogenesis in C. elegans [31]. The e1033 allele of che-2

is a predicted null [30]. Cilia defects were identified by examining

the integrity of AWC structure using the transcriptional reporter,

(p)odr-1::RFP, which expresses soluble RFP throughout AWC

(Figure 1E–1J). The che-2(e1033) and che-11(e1810) mutants

displayed AWC cilia defects in nearly all animals examined

(Figure 1F and 1G). We found that EGL-4 was in the AWC nuclei

of close to 100% of either naı̈ve che-2(e1033) or naı̈ve che-11(e1810)

mutant animals (Figure 1K). Each and every cilia-defective animal

of either genotype displayed nuclear EGL-4 while cytoplasmic

EGL-4 was only observed in animals with wildtype cilia.

We also observed nuclear EGL-4 in naive animals with

mutations in genes encoding: rgs-3(vs19) – a regulator of G protein

signaling protein [32]; tax-4(p678) – a cyclic nucleotide gated

channel alpha subunit [15] and tax-2(p671) – a cyclic nucleotide

gated channel beta subunit [14]. When we examined the

morphology of the AWCs in these mutant animals we found that

they displayed severe defects at the distal portion of the dendrite

and cilia as indicated by white dotted boxes (Figure 1H–1J). These

defects were similar to those observed in the che-2(e1033) and che-

11(e1810) mutants (Figure 1F–1G). The penetrance of these

defects is shown in Figure 1K. We asked whether there was a

correlation between cilia defects and the incidence of nuclear

EGL-4 in naı̈ve che-2(e1033), che-11(e1810), rgs-3(vs19), tax-2(p671)

or tax-4(p678) mutant worms. We found a strong correlation

(Pearson’s correlation coefficient, r = 0.99, with a p value of

,0.0001) between the penetrance of the cilia defects and the

incidence of nuclear GFP::EGL-4, regardless of the genotype

(Figure 1L).

There are certain exceptions to these findings. The Ga signaling

odr-3 mutant strain was shown to have defective AWC cilia

(odr-3(n1605) allele - [11]) but when we examined the n2150 allele

we found it exhibited wildtype subcellular localization of

GFP::EGL-4 in naive animals (Figure 2B). This may be because

the cilia and distal region of the dendrite in the n2150 allele of

odr-3 are less severely affected than in odr-3(n1605) and the

che-2(e1033), che-11(e1810), rgs-3(vs19), tax-2(p678) and tax-4(p671)

Author Summary

Caenorhabditis elegans is capable of sensing a variety of
attractive volatile compounds. These odors are the worm’s
‘‘best guesses’’ as to how to track down food. Employing
calculated approximations underlies a foraging strategy
that is open to failure. When C. elegans track an odor which
proves unrewarding, they must modify their behavior based
on this experience. They also need to prevent over-
stimulating their neurons. To accomplish this, C. elegans
olfactory sensory neurons adapt to odors after a sustained
exposure to odor in the absence of food. Within the pair of
primary odor-sensory neurons, termed the AWCs, adapta-
tion requires the cGMP-dependent protein kinase G (PKG),
EGL-4. Exposing animals to AWC–sensed odors for approx-
imately 60 minutes results in a long-lasting (,3 hour)
adaptation that requires the nuclear translocation of EGL-
4. To understand how sensory transduction and desensiti-
zation machinery converge to achieve olfactory adaptation,
we asked whether odor-induced EGL-4 nuclear accumula-
tion was affected by gene mutations that abrogate either
odor sensation of or adaptation to AWC–sensed odors. We
find that G-protein signaling represents the integration
point where primary odor sensation and odor adaptation
pathways diverge. PUFA signaling, calcium, and decreased
diacylglycerol all dampen the response of the AWC neuron
to odor downstream of this divergence.

Olfactory Plasticity in C. elegans
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Figure 1. Integrity of AWC cilia structure is critical for proper localization of EGL-4. (A) A model of olfactory signaling and adaptation in
AWC. Odor is thought to bind directly to olfactory G-protein coupled receptors [10,27]. Calcium levels in AWC have been shown to decrease after
ligand binding [13]. This is likely regulated by the cGMP-gated calcium channels TAX-2 and TAX-4 [14,15]. cGMP levels are likely decreased by odor
binding and the activation of the Ga protein, ODR-3. This signal is integrated over time resulting in nuclear localization of the protein kinase G, EGL-4.
The nuclear entry of EGL-4 causes changes in the cellular physiology of AWC and is both necessary and sufficient for AWC adaptation [26]. (B)
Fluorescent confocal image of an AWC neuron highlighting the cell body area captured in images (C) and (D). (C) Deconvolved confocal image of
AWC from a naive GFP::EGL-4 expressing worm with GFP::EGL-4 throughout the AWC cytosol. (D) Deconvolved confocal image of AWC from an
adapted GFP::EGL-4 expressing animal. GFP::EGL-4 can be seen accumulated inside the AWC nucleus. Yellow color in (C) and (D) indicates co-
localization of both GFP and RFP in AWC. Fluorescent confocal images of AWC in (E) wildtype, (F) che-2(e1033), (G) che-11(e1810), (H) rgs-3(vs19), (I)
tax-4(p678) and (J) tax-2(p671). Morphological defects indicated by white dotted boxes are observed along the AWC dendritic process and/or at the
AWC cilia. (K) Percentage of animals exhibiting GFP tagged EGL-4 constitutively in the AWC nucleus of naive animals. ** Indicates p#0.005 and
* indicates p#0.05 significant differences between mutants and wildtype animals. (L) Correlation between cilia defects and nuclear GFP::EGL-4 in
naı̈ve che-2, che-11, rgs-3, tax-4, and tax-2 animals. Pearson correlation coefficient for the cilia defects and percent naı̈ve worms with nuclear GFP::EGL-4
was 0.99 with p,0.0001. Error bars represent the S.E.M. For all images anterior is to the left.
doi:10.1371/journal.pgen.1000761.g001
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strains we examined (Figure S4). We observed severe morphological

defects in both the cilia and the distal region of the dendrite of the

latter mutants. Specifically, we observed misdirected extensions,

which failed to extend as far anteriorly as wildtype cilia. The area

affected is indicated by the white dotted boxes in Figure 1F–1J. The

distal region of the dendrites of odr-3(n2150), however, were intact

and the cilia resembled the more condensed fork-shaped cilia of

AWB (Figure S4). Indeed, electron microscopic analysis of this

allele’s cilia corroborate these findings [9]. Conversely, though the

guanylyl cyclase signaling defective odr-1(n1936) mutant strain has

Figure 2. G-alpha signaling is required both for odor-induced nuclear accumulation of EGL-4 and for adaptation to the AWC–
sensed odor butanone. (A) Chemotaxis responses of odr-3 and rgs-3 mutants to the AWC sensed odors, benzaldehyde and butanone. (B) Percent
of animals displaying nuclear GFP::EGL-4 in AWCs of naive (white bars), benzaldehyde exposed (black bars) or butanone exposed (gray bars)
populations. (C–E) The chemotaxis response of odr-3(n2150), gpb-2(sa603) or gpc-1(pk298) strains to the odor indicated on the y axis. Odor pre-
exposure (‘‘+’’) is unable to adapt the chemotaxis response of either the odr-3(n2150) or gpb-2(sa603) strains: compare odor pre-exposed ‘‘+’’ with
buffer exposed ‘‘2’’ populations. The gpc-1(pk298) strain, however, adapts like wild-type. (F) Chemotaxis responses of wildtype (black bars) or
grk-2(rt97) mutant (gray bars) animals. (G) Percent of wildtype or grk-2(rt97) animals in a population that displayed nuclear GFP::EGL-4 in AWC after
exposure to either buffer alone (unexposed) or the indicated odor. Error bars represent the S.E.M. ** Indicates a p#0.005 and * indicates a p#0.05 for
the differences between mutants and wildtype animals. { Indicates a p#0.05for the difference between unexposed and odor-exposed populations.
p values were calculated using the Student’s t-test.
doi:10.1371/journal.pgen.1000761.g002
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visually intact AWC cilia [16], it exhibited 100% nuclear

GFP::EGL-4 in naive worms (data not shown). One explanation

is that the AWC cilia of odr-1 mutant worms are non-functional,

indeed, Mukhopadhyay et al. [33], showed that the AWB cilia of

odr-1(n1936) mutant worms were not like those of their well-fed

wildtype counterparts; they more closely resembled the cilia of

starved animals. This raises the possibility that the AWC cilia are

also defective in odr-1 mutants, perhaps in a way that specifically

affects EGL-4 cytoplsamic localization. On the whole, the data

suggest that intact cilia/dendrite morphology and perhaps function

is required to keep EGL-4 in the AWC cytoplasm of the naı̈ve

animal.

The G alpha subunit ODR-3 is necessary for odor-induced
nuclear translocation of GFP::EGL-4

To better understand how odor-exposure adapts AWC-

mediated chemotaxis, we asked first how the initial events of

sensory signaling might affect odor-adaptation and GFP::EGL-4

nuclear entry. Since AWC-mediated chemotaxis represents the

behavioral output from a G-protein coupled receptor (GPCR)

initiated signaling pathway (Figure 1A and [10,11,27,28]) we first

examined mutants that lack G-protein signaling components and

their regulators.

Stimulation of a GPCR causes the Ga subunit to dissociate from

the b and c subunits to initiate second messenger cascades often by

activating an adenylyl cyclase to increase or a phosphodiesterase to

decrease second messenger levels [34]. The b and c subunits,

however, often play additional regulatory roles [34], such as

directing the phosphorylation of the GPCR by a G-protein

receptor kinase (grk). This phosphorylation leads to recruitment of

cytosolic arrestin, which then leads to desensitization of the GPCR

by disallowing further Ga binding [5,35]. Likewise, the activity of

the Ga can be inhibited by a regulator of G-protein signaling

(RGS) molecule [32]. Thus, the Ga subunit mutant odr-3(n2150)

[11]; the Gb subunit mutants gpb-2(sa603) and gpb-2(pk751)

[24]; the Gc subunit mutant gpc-1(pk298) [24]; the RGS mu-

tant rgs-3(vs19) [32]; the arrestin mutant arr-1(ok401) [5]; and the

G-protein receptor kinase mutant grk-2(rt97) [35] strains were

examined for their ability to induce nuclear localization of

GFP::EGL-4 in response to odor exposure. The AWC-mediated

chemotaxis responses of odr-3(n2150) and rgs-3(vs19) are shown in

Figure 2A as positive controls that corroborate previous

observations with these mutants [11,32].

We first examined the odr-3(n2150) mutant strain. 80 minute

exposure to benzaldehyde failed to induce nuclear accumulation of

EGL-4 (Figure 2B) as the percent of worms that showed nuclear

EGL-4 after benzaldehyde exposure was statistically indistinguish-

able from either the naı̈ve odr-3 mutant (P = 0.09) or naı̈ve wildtype

worms (Figure 2B). This indicates that ODR-3 is necessary for

benzaldehyde to induce nuclear accumulation of EGL-4. The

small percent of odr-3 mutant animals observed with nuclear

GFP::EGL-4 following butanone exposure (Figure 2B) may reflect

the involvement of another Gá in butanone signaling, as was

suggested previously [11,16]. Likewise, chemotaxis to butanone is

only slightly compromised (Figure 2A and 2C and [11]). In

summary, we find that ODR-3 Gá signaling is necessary for

nuclear accumulation of EGL-4. The odr-3(n2150) mutant strain is

only mildly defective in chemotaxis to butanone and so could be

examined for its ability to adapt to this odor. We found that this

odr-3 mutant strain was unable to adapt to butanone (Figure 2C).

Thus, ODR-3 is required both for accumulation GFP::EGL-4 in

the AWC nucleus and adaptation of the butanone seeking

response.

We next examined the contribution of b and c subunits of the

G-protein trimer to odor-induced GFP::EGL-4 nuclear accumula-

tion. There are two known genes encoding the Gb subunits (gpb-1

and gpb-2) and two known genes encoding the Gc subunits (gpc-1

and gpc-2) in the C. elegans genome. Both gpc-2 and gpb-1 mutants

are lethal and could not be assayed. The GPB-2 b subunit was

previously shown to be required for adaptation to the odor

benzaldehyde and we confirmed this result using another predicted

null allele, gpb-2(sa603) (Figure 2D and [4]). When we examined

odor-induced nuclear accumulation of GFP::EGL-4 in this mutant

strain, we found that benzaldehyde exposure increased the

percentage of gpb-2(sa603) animals with nuclear GFP::EGL-4 over

that of the naı̈ve population (naı̈ve = 2.7%, exposed = 47%,

p = 0.030). Though this is significantly different from the percent

of wildtype animals that exhibited nuclear GFP::EGL-4 (wild-

type = 83.7%, p = 0.025), the fact that we saw a significant increase

with odor exposure encouraged us to examine the deletion allele of

gpb-2, pk751 [36]. We found that gpb-2(pk751) did not affect odor-

induced nuclear accumulation of GFP::EGL-4 (Figure 2B – fifth set

of bars). Thus, the Gb could be required for adaptation either

downstream of EGL-4 nuclear entry or in a pathway parallel to it. It

is unlikely, however, to act in the same way as ODR-3. The gpc-1 c
subunit mutant was neither defective for this long-term adaptation

nor defective for odor-induced nuclear accumulation of GFP::EGL-4

(Figure 2E and 2B). This is in contrast to the recent discovery that

GPC-1 is required for a very rapid (less than 10 minute exposure)

adaptation to benzaldehyde [24]. This suggests that short, (10 minute)

and long (80 minute) exposures adapt the AWC olfactory response via

different mechanisms.

The regulator of G-protein signaling, RGS-3 [32]; the sole C.

elegans arrestin, ARR-1 [5] and the G-protein receptor kinase,

GRK-2 [35] were also assayed for involvement in EGL-4’s odor-

induced nuclear accumulation. As was seen previously for the

AWC-sensed odor isoamyl alcohol [32], rgs-3(vs19) mutants also

exhibited reduced chemotaxis to either benzaldehyde or butanone

(Figure 2A) at the concentrations of the odor that elicit a peak

response in wildtype animals [9]. A significantly higher than

wildtype percent of naı̈ve rgs-3(vs19) mutant animals exhibited

nuclear GFP::EGL-4 (43%, Figure 2B, white bar). This increase

could, however, be accounted for by the fact that the animals with

nuclear GFP::EGL-4 also had defective cilia (see Figure 1L for the

correlation between defective cilia and nuclear GFP::EGL-4 in

rgs-3). Prolonged odor-exposure was able to further increase the

percentage of rgs-3 animals that exhibited nuclear GFP::EGL-4

(from 43% to 90%, grey and black bars, Figure 2B). Thus, rgs-3

mutant animals are either more sensitive than, or as sensitive as

wildtype animals to prolonged odor exposure as assessed by the

ability of odor to induce nuclear accumulation of EGL-4.

ARR-1 has previously been shown to be required for adaptation

to AWC-sensed odors [5]. Though the arr-1(ok401) mutant strain

was unable to adapt to either butanone or benzaldehyde in our

hands as well (data not shown), GFP::EGL-4 accumulated within

the nuclei of the same percentage of an arr-1 mutant population of

animals as in a wildtype population (Figure 2B). Thus, ARR-1, like

GPB-2, may function in parallel to, or downstream of, EGL-4’s

translocation to the nucleus.

As previously reported [35], mutations in the G-protein

receptor kinase grk-2 gene caused defects in the animals’ ability

to sense either benzaldehyde (1:100 dilution) or isoamyl alcohol

(1:1000 dilution) (Figure 2F). These mutant animals, however,

were no different in their ability to accumulate GFP::EGL-4

within their nuclei in response to prolonged butanone and

benzaldehyde exposure than wildtype animals (Figure 2G). We

did, however, observe a defect in grk-2 mutants with respect to

Olfactory Plasticity in C. elegans
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isoamyl alcohol’s ability to induce GFP::EGL-4 nuclear accumu-

lation. Whether we soaked the animals in buffer containing dilute

isoamyl alcohol or exposed them to the volatile odor while on an

unseeded plate, the percentage of grk-2 animals that showed

GFP::EGL-4 accumulation in the AWC nucleus was significantly

different from that of the wildtype strain (Figure 2G). That is, after

exposure to isoamyl alcohol dispersed in liquid, 28% of grk-2 and

72.5% of wildtype animals exhibited nuclear GFP::EGL-4

(p = 0.011). Likewise, after prolonged exposure to isoamyl alcohol

dispersed in air, 75% of grk-2 and 92% of wildtype animals

exhibited nuclear GFP::EGL-4 (p = 0.012). Thus, grk-2 animals

would seem to have a lower sensitivity than wildtype animals to

prolonged (Figure 2G), as well as acute (Figure 2F), exposure to

isoamyl alcohol. This is consistent with findings presented

previously that showed that grk-2 mutants have reduced acute

responses in the ASH nociceptive sensory neurons of C. elegans to

high osmolarity and quinine but not to nose touch [35]. Thus, in

AWC as well as in ASH the primary response to certain stimuli

may be reduced in grk-2 mutant animals. Interestingly, nuclear

accumulation of EGL-4, which depends on integration of primary

sensory signaling over time is also blunted in grk-2 mutants.

cGMP and nuclear accumulation of EGL-4
The next step in the signal transduction pathway is regulation of

the second messenger, which, in AWC, is thought to be cGMP.

Since the calcium current is likely to be mediated by opening of

the cGMP-gated TAX-2/4 channel [14,15,37] and calcium

decreases upon odor stimulation [13], it is also likely that cGMP

levels are high in the odor-naive animals and decrease acutely in

response to odor-stimulation. In Lee et al. [26], we showed by

mutating the cGMP-binding sites within EGL-4, that cGMP

binding by EGL-4 is likely required for its ability to accumulate

within the AWC nucleus in response to odor. Thus, some level of

cGMP is also likely to be required for EGL-4 nuclear

accumulation. We asked whether fluxes in cGMP levels were

important for odor to induce nuclear accumulation of EGL-4. To

attempt to raise the cGMP levels within AWC and thereby to

interfere with cGMP fluxes, we exposed worms to the non-

cleavable, membrane permeable cGMP analog, 8-Bromo-cGMP

(8-Br-cGMP). We soaked animals in or grew animals on plates

impregnated with 8-Br-cGMP and asked how this affected the

localization of GFP::EGL-4 in either naive or odor-exposed

animals. This manipulation had no effect on the localization of

EGL-4: it was cytoplasmic in either the 8-Br-cGMP-treated or the

untreated naive animals and nuclear in each cohort of odor-

exposed animals (Figure S1). Thus, either fluxes in cGMP levels do

not affect nuclear accumulation of EGL-4 after prolonged odor-

exposure or we were not able to interfere with these fluxes using

8-Br-cGMP. It is difficult to know whether these manipulations are

achieving our goal since there is currently no way to directly assess

cGMP levels within the AWC neurons of the living animal.

Another approach to interfere with the flux of cGMP is to

overexpress a cGMP-producing guanylyl cyclase. At least two

guanylyl cyclases, DAF-11 and ODR-1, are known to be expressed

in AWC and loss of either cyclase renders the animal unable to

seek AWC-sensed odors [16,17]. Overexpression of ODR-1 is

likely to boost cGMP levels in that it leads to a defect in

discrimination between butanone and benzaldehyde that is

dependent upon an intact cyclase domain [16]. This discrimina-

tion defect is, at least in part, due to the fact that both AWC

neurons respond to butanone [38]. It also causes other potentially

cyclase-independent defects that render animals unable to adapt to

butanone [16]. In our present studies, we found that over-

expression of ODR-1 did not affect GFP::EGL-4 localization:

GFP::EGL-4 was cytoplasmic in the naive animals and nuclear in

the butanone-exposed ones (Figure 2B and Figure S1 – ODR-1[OE]

bars). Importantly, we could confirm that ODR-1 was overexpressed

as the animals were unable to adapt to butanone (Figure S2) and they

showed nuclear GFP::EGL-4 in both AWCs of roughly 50% of the

butanone-exposed animals (data not shown). This is consistent with

the fact that approximately 50% of ODR-1 overexpressing animals

have two STR-2 ‘ON’ (and therefore two butanone-responsive)

AWC neurons [38] and that butanone only sends GFP::EGL-4 into

the STR-2 ‘ON’ AWC neuron [26]. Further, these animals were

insensitive to 2,3 pentanedione (Figure S2A) as would be predicted if

both AWCs were STR-2 ‘ON’ (butanone-responsive) and neither

was STR-2 ‘OFF’ (2,3 pentanedione responsive) [38]. Thus,

potentially interfering with the cGMP fluxes by overexpressing

ODR-1 does not interfere with odor’s ability to send EGL-4 into the

AWC nucleus. This would indicate either that we are not able to

adequately block fluxes in cGMP using these methods or that

cGMP-binding is not sufficient to induce nuclear localization of

EGL-4 in response to odor. EGL-4 might act as a coincident

detector to integrate the presence of cGMP with a second perhaps

Ga derived signal. The potentially cGMP-independent adaptation

defects incurred by overexpressing ODR-1 must occur either

downstream of or in parallel to EGL-4 nuclear entry since the

animals that overexpress ODR-1 fail to adapt to butanone even

though EGL-4 is accumulated within their nuclei.

The dynamic odor-induced nuclear translocation of
EGL-4 is independent of calcium signaling

Calcium levels in AWC are critical for acute odor responses

([1,14,15] and Figure 3A). G-protein signaling in AWC mediates

an odor-induced decrease in calcium [13]. Thus, decreases in

calcium might be predicted to induce adaptation. Calcium,

however, has been shown to be required for olfactory adaptation

by Colbert and Bargmann [1] and is known to be critical for

synaptic vesicle release. Further, in other systems, calcium

increases are a key integrator of signaling events [39–41]. To

understand whether calcium is required for nuclear translocation

of EGL-4, we examined GFP::EGL-4 localization in the mutant

strains that affect different aspects of calcium signaling (Figure 3B).

The calcium signaling proteins surveyed include the cGMP-gated

calcium channel subunits, TAX-4, TAX-2, CNG-1 and CNG-3

[14,15,42,43], the internal calcium store regulator ITR-1 [44], the

calcineurin A protein subunit TAX-6 [21], the voltage gated

calcium channel UNC-2 [45,46] and NCS-1, an AWC-expressed

calcium sensor [47]. None of these calcium-signaling proteins were

required for the nuclear accumulation of GFP::EGL-4 after

prolonged odor exposure (Figure 3B). The cyclic nucleotide gated

channel subunits TAX-2 and TAX-4 are required for AWC-

mediated chemosensation (Figure 3A, [14,15]) and their loss

caused GFP::EGL-4 to localize within the AWC nuclei of naive

animals (Figure 3B – second and third set of white bars, 70% and

50%). However, nuclear GFP::EGL-4 in naı̈ve tax-2/4 mutant

animals was correlated with ciliopathies in the same way that was

observed for rgs-3 (Figure 1L). As with the rgs-3 mutants, the

percentage of tax-2 or tax-4 animals that displayed nuclear

GFP::EGL-4 increased significantly after prolonged odor exposure

(Figure 3B – white bars versus black and grey bars for tax-2 and

tax-4, p,0.05 between unexposed and pre-exposed populations).

This suggests that odor was still able to induce nuclear

accumulation of GFP::EGL-4 even in the absence of TAX-2/

TAX-4 mediated calcium fluctuations. To ask whether the nuclear

accumulation of EGL-4 might be a direct consequence of

decreased calcium, we incubated GFP::EGL-4 expressing animals

with odor and the calcium chelator, ethylene glycol tetraacetic acid

Olfactory Plasticity in C. elegans
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(EGTA). We found that though EGTA was effective enough to blunt

adaptation of the chemotaxis response in wildtype animals (Figure 3C

- p = 0.101 for buffer versus buffer plus odor pre-exposure after

EGTA treatment), it was unable to induce nuclear accumulation of

EGL-4 in odor-naı̈ve animals or perturb the nuclear accumulation of

EGL-4 in odor-exposed animals (Figure 3D - both EGTA- and non

EGTA-treated populations showed significantly different percentag-

es of animals with nuclear GFP::EGL-4 following prolonged odor as

compared with buffer exposure, p,0.005). Taken together, our

analysis of mutants defective in calcium signaling (Figure 3B) along

with the lack of effect of EGTA on EGL-4 localization (Figure 3C

and 3D), suggests that reduction in calcium levels is not the signal

that is integrated over time to trigger EGL-4’s nuclear accumulation.

Further, though nuclear EGL-4 was sufficient to cause adaptation

in untreated animals ([26] and Figure 4H, NLS::GFP::EGL-4 bars),

the EGTA treatment blocked adaptation of the odor-seeking response

(Figure 3C, +EGTA bars) in animals that had nuclear EGL-4

(Figure 3D, +EGTA bars). This indicates that nuclear EGL-4, though

sufficient to induce adaptation of the behavioral response at

physiological calcium concentrations, is unable to promote adaptation

in the absence of calcium. One interpretation of this is that calcium is

required either down-stream of or in parallel to EGL-4 nuclear entry

to induce adaptation of the odor-seeking behavioral response in a

wildtype animal.

EGL-4’s nuclear entry is independent of the TRPV channel
OSM-9

Though the TRPV channel OSM-9 was shown previously to be

required for adaptation to butanone (Figure 4A and [1,48]), its role

in this process has remained obscure. Hints about its function

came from the observation that loss of OSM-9 was able to

suppress the hyperadaptation phenotype of the tax-6 calcineurin

mutant [21], which might place it downstream of calcium

mediated down-modulation of adaptation. Thus, we wanted to

Figure 3. Calcium signaling does not regulate the odor-induced nuclear accumulation of EGL-4. (A) Chemotaxis responses of tax-2 and
tax-4 mutant strains to the AWC–sensed odors benzaldehyde (gray bars) and butanone (black bars). (B) Calcium signaling mutants expressing GFP-
tagged EGL-4 from an integrated array (pyIs500) were exposed to buffer containing either no odor (un-exposed, white bars) or benzaldehyde (black
bars) or butanone (gray bars) for 80 minutes before microscopic examination of localization of GFP::EGL-4 within the AWC neurons of each
population of animals. (C and D, bars on left side of each graph) GFP tagged EGL-4 expressing animals were exposed to either buffer alone (‘‘2’’ black
bars) or buffer plus benzaldehyde (‘‘+’’ gray bars) for 80 minutes. (C and D, bars on the right side of graphs) represent populations of animals that
were treated in a similar way as those on the left except that they had been pre-exposed for 2 hours to 50mM of the calcium chelator, EGTA.
Exposure to EGTA inhibited adaptation of the odor-seeking response (C) but not the nuclear accumulation of GFP::EGL-4 (D). Error bars represent the
S.E.M. ** Indicates p#0.005 and * indicates p#0.05 significant differences between mutants and wildtype animals. { Indicates significant difference at
p#0.05 between unadapted and adapted mutant bars or unadapted and adapted wildtype bars. p values were calculated using the Student’s t-test.
doi:10.1371/journal.pgen.1000761.g003
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Figure 4. Polyunsaturated fatty acid biosynthesis is required for olfactory adaptation of the AWC neurons. (A) The TRPV channel OSM-
9 is required for adaptation to butanone, as previously described [1]. { Indicates a difference with p#0.05 between buffer exposed and buffer plus
odor exposed populations. (B) The lipid signaling mutants osm-9, fat-3 and fat-4 fat-1 do not perturb the nuclear accumulation of GFP::EGL-4 after
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place osm-9 in a pathway relative to odor-induced EGL-4 nuclear

accumulation. When we expressed our GFP::EGL-4 reporter in

the osm-9(ky10) mutant background, we found that though these

animals failed to adapt to the odor butanone (Figure 4A), they

displayed normal nuclear localization of EGL-4 after prolonged

odor exposure (Figure 4B – second set of bars). Thus, the

adaptation defect of the osm-9 strain is not a consequence of the

failure to accumulate EGL-4 in the AWC nucleus. Rather, it could

be a consequence of the loss of a separate parallel pathway or loss

of a process downstream of EGL-4’s nuclear accumulation. It is

nearly impossible to perform the double mutant analysis needed to

ask whether egl-4 and osm-9 are likely to act in the same pathway

since egl-4(n479, null) mutants are so severely defective for

adaptation (Figure 4F and [3]) that one would not be able to

observe enhancement in an osm-9(ky10);egl-4(n479) strain. There-

fore, we examined the role of the possible regulators of TRP

channel function, the Polyunsaturated Fatty Acids (PUFAs).

Polyunsaturated fatty acid synthesis within the AWC
neuron is required for olfactory adaptation

Since PUFAs were shown to function through OSM-9 in

nociceptive neurons [49], we decided to determine if PUFA

biosynthesis is required for adaptation in AWC. The desaturases

FAT-1, FAT-3 and FAT-4 along with the elongases ELO-1 and

ELO-2 are responsible for the production of twenty carbon

PUFAs [49–51]. Loss of both FAT-1 and FAT-4 leads to the build

up of the 20 carbon dihomo-gamma linolenic acid (DGLA) while

the fat-3 mutant accumulates the 18 carbon linoleic acid [50,51].

We found that the fat-4(wa14) fat-1(wa9) double mutant animals

and fat-3(wa22) single mutant animals displayed defects in

adaptation of AWC-mediated responses (Figure 4C).

To investigate whether PUFA signaling is required in the AWC

neuron itself, we expressed FAT-3 tagged with GFP under the

control of an AWC-specific promoter ((p)ceh-36::FAT-3::GFP see

Materials and Methods for promoter details) in a fat-3(wa22) mutant

background. This transgenic line was able to adapt to benzaldehyde

odor exposure significantly better than the parental fat-3(wa22)

mutant strain (Figure 4C – fourth set of bars; p,0.05 between buffer

and buffer plus odor exposed populations, also p,0.05 for fat-3 odor

exposed population versus fat-3;Ex[pAWC::FAT-3] exposed popula-

tion). This indicates that FAT-3 is likely to act within the AWC

neurons to promote adaptation.

To determine whether PUFAs are required developmentally or

during the process of adaptation, we used dietary supplementation

of the desaturase defective strains to provide PUFAs at defined

periods of the animal’s life. Unlike mammals, C. elegans is capable of

synthesizing all of its required PUFAs by desaturating and

elongating the saturated fats it receives from its microbial diet.

This obviates the necessity of ingesting any essential fatty acids

[50,51]. However, work from Khan-Kirby et al. [49] showed that

dietary supplementation of fat-3(wa22) and fat-4(wa14) fat-1(wa9)

mutant animals with the 20-carbon PUFA eicosapentaenoic acid

(EPA) was able to restore chemosensory behavior. To ask whether

the adaptation defects of the desaturase defective mutants could be

restored by such dietary supplementation either during their

development or in adulthood immediately prior to odor-exposure,

we prepared Nematode growth media (NGM) plates containing

160ı̀M EPA, seeded with OP50 E. coli, then grew C. elegans on these

plates prior to collection for assays. By supplementing their diet with

EPA throughout development, we were able to rescue the

adaptation behavioral defects of fat-3 and fat-4 fat-1 animals

(Figure 4D – dev EPA bars). As a control, wildtype animals were

similarly grown on EPA NGM plates and these animals displayed

normal odortaxis behavior, demonstrating that EPA is not sufficient

to induce adaptation but is necessary for proper adaptation of the

AWC-mediated chemosensory response (Figure 4D).

To determine whether PUFAs are utilized dynamically or

developmentally to allow for normal olfactory adaptation, we grew

PUFA synthesis-defective mutants on plates without EPA and

transferred the animals as young adults to plates with EPA

24 hours prior to assaying for adaptation. In this experiment, fat-3

mutants were able to adapt significantly better than the untreated

fat-3 controls to odor pre-exposure (C.I. of benzaldeyde exposed,

untreated fat-3 was 0.62, while the benzaldeyde exposed adult

EPA-treated fat-3 mutant strain exhibited a C.I. of 0.38, p = 0.011).

Though EPA treatment did not rescue the mutant strain’s adapted

C.I. back to that of wildtype (C.I. wildtype untreated = 0.11 and

C.I. fat-3 dev EPA = 0.35, p = 0.02), the EPA treatment was as

effective in the adult as if the animals had been exposed to EPA for

their entire lives (p = 0.723 comparing adult to developmental EPA

for fat-3 and p = 0.15 for fat-4 fat-1 mutants). These results indicate

prolonged odor exposure. { Indicates a difference with p#0.05 between buffer exposed and buffer plus odor exposed populations. (C) The PUFA
synthesis mutants fat-4(wa14) fat-1(wa9) and fat-3(wa22) displayed defects in their ability to adapt their benzaldehyde (top graph) or butanone
(bottom graph) odor-seeking responses. The adaptation defects of fat-3(wa22) were significantly rescued by expressing FAT-3 encoding cDNA from
an AWC-exclusive promoter (called (p)AWC::FAT-3::GFP. This is a shortened form of the ceh-36 promoter, please see Materials and Methods for details).
* indicates a statistically significant (p,0.05) difference between the odor-prexposed (‘‘+’’) fat-3 mutant population and fat-3;Ex[(p)AWC::FAT-3::GFP]
odor-prexposed (‘‘+’’) population. (D) Dietary supplementation of the PUFA, EPA, throughout development (dev EPA bars) or 24 hours prior to
assaying for adaptation (adult EPA bars) rescued the behavioral adaptation defects of fat-3(wa22) and fat-4(wa14) fat-1(wa9) animals. * (p,0.05) and
** (p,0.005) indicate differences between the chemotaxis indices of odor-prexposed (‘‘+’’) populations with and without EPA treatment. (E) Dietary
supplementation of EPA 24 hours prior to assaying for adaptation (adult EPA bars) rescues the butanone adaptation defect of fat-3(wa22) and
fat-4(wa14) fat-1(wa9) animals but fails to rescue the butanone adaptation defect of osm-9(ky10) null animals. * (p,0.05) and ** (p,0.005) indicate
differences between the chemotaxis indices of odor-prexposed (‘‘+’’) populations with and without EPA treatment. (F) Dietary supplementation of the
PUFA EPA throughout development does not rescue the butanone adaptation defects of egl-4 null mutant animals. ** indicates a difference
(p,0.005) between the chemotaxis indices of odor-prexposed (‘‘+’’) populations with and without EPA treatment. (G) The CREB mutant crh-1 strain
adapted like the wild-type to benzaldehyde and thus served as a negative control for Figure 4H. { indicates difference (p#0.05) between buffer and
buffer plus benzaldehyde exposed populations. (H) A constitutively nuclear gain-of-function allele of egl-4 (NLS::GFP:: EGL-4. The transgene is called
Ex[(p)odr-3::NLS::GFP::EGL-4]) was generated by appending an extra nuclear localization sequence to the N terminus of EGL-4. Animals expressing this
form of EGL-4 responded to odor like odor pre-exposed animals and thus may be constitutively adapted [26]. The CREB mutant crh-1 was used as a
negative control (see 4G). The chemotaxis behavior to benzaldehyde (black) or butanone (gray) of animals expressing the constitutively nuclear
NLS::GFP::EGL-4 in either a wild-type, a fat-3(wa22) or an osm-9(ky10) genetic background is shown. Loss of either FAT-3 (6th bar) or OSM-9 (10th

bar) suppressed the constitutively adapted phenotype of NLS::GFP::EGL-4 animals. * indicates the difference (p,0.05) between wild-type
(N2); Ex[(p)odr-3::NLS::GFP::EGL-4] and fat-3(wa22); Ex[(p)odr-3::NLS::GFP::EGL-4], osm-9(ky10); Ex[(p)odr-3::NLS::GFP::EGL-4] or crh-1(tz2); Ex[(p)odr-
3::NLS::GFP::EGL-4] chemotaxis indices. For all experiments animals were exposed to odor for 80 minutes and then tested for chemotaxis to a point
source of the same odor. ‘‘+’’ bars indicate odor exposed and ‘‘2’’ bars denote buffer exposed animals. Error bars represent the S.E.M. ** Indicates
p#0.005 and * indicates p#0.05 significant differences. p values were calculated using the Students t test.
doi:10.1371/journal.pgen.1000761.g004
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that the PUFA EPA is required dynamically in adult animals for

adaptation of the AWC-mediated olfactory response. Consistent

with this finding, expression from the GPCR, STR-2 promoter

which is down stream of EGL-4 activity [26,52] was unchanged in

either fat-3 or fat-4 fat-1 mutants (Table 1).

We next asked whether odor could induce nuclear accumulation

of GFP::EGL-4 in the PUFA biosynthesis-defective mutants. We

found that, similar to osm-9 mutants, both fat-3(wa22) and fat-4(wa14)

fat-1(wa9) mutant animals displayed normal nuclear localization of

EGL-4 after prolonged odor exposure (Figure 4B – third and fourth

sets of bars). Thus, even though these mutant animals accumulated

GFP::EGL-4 within their nuclei, they were unable to adapt to the

odor since they lacked the ability to produce PUFAs. This indicates

that PUFAs are likely to act downstream of or in a parallel pathway

with EGL-4 nuclear entry to promote adaptation of the AWC

neuron.

To determine if PUFA signaling requires the TRPV channel

OSM-9 to promote adaptation, we asked whether dietary

supplementation with EPA could rescue the adaptation defects

of an osm-9(ky10) mutant strain. When we supplemented the diets

of fat-3(wa22), fat-4(wa14) fat-1(wa9) and osm-9(ky10) mutants

animals with EPA 24 hours prior to assaying adaptation responses,

we found that EPA supplementation could rescue the butanone

adaptation defect of fat-3 and fat-4 fat-1 mutant animals but could

not rescue the adaptation defect of osm-9 mutant animals

(Figure 4E, p = 0.667 for odor-exposed osm-9 populations with

and without EPA treatment). This result suggests that PUFAs

might signal through the TRPV channel OSM-9 to promote

butanone adaptation.

Since the adaptation defects seen in PUFA biosynthesis mutants

did not seem to result from a failure to accumulate EGL-4 in the

AWC nucleus subsequent to prolonged odor exposure, we

reasoned that PUFA signaling might, instead, function down-

stream of the nuclear translocation of EGL-4 to promote

adaptation. To address this possibility, we asked whether supplying

EPA to egl-4 null animals would relieve their adaptation defects.

Khan-Kirby et al., [49] found that supplying exogenous EPA could

stimulate ASH-mediated avoidance responses as well as calcium

transients in an OSM-9 dependent manner. Thus, we hypothe-

sized that exogenous EPA might be sufficient to elicit adaptation in

the absence of EGL-4 if, indeed, EPA production was the only

stimulus downstream of nuclear EGL-4. We found, however, that

EPA administration did not rescue the adaptation defects of an

egl-4 null strain (Figure 4F). Thus, PUFA signaling is not sufficient

to promote adaptation after prolonged odor-exposure in the

absence of EGL-4. This may indicate either that PUFA signaling

(rather than just production) is dependent on EGL-4 or that, once

in the nucleus, EGL-4 promotes changes in addition to an increase

in PUFAs in the AWC neuron that dampen the response to odor.

Another way to assess whether PUFA signaling might be

downstream of EGL-4 nuclear entry is to ask whether loss of

PUFA signaling can suppress the gain-of-function phenotype of a

constitutively nuclear form of EGL-4. In Lee et al. [26] we describe

the construction and assessment of this altered form of EGL-4.

Briefly, we appended an extra nuclear localization sequence (NLS)

to the N terminus of GFP within the GFP::EGL-4 fusion construct

(Figure S3). This construct, designated NLS::GFP::EGL-4, was

introduced into both wildtype and egl-4(n479) animals as a

transgene. Strains expressing the NLS::GFP::EGL-4 transgene

displayed GFP::EGL-4 in the AWC nuclei of both naı̈ve and odor-

exposed animals ([26] and Figure S3). The NLS::GFP::EGL-4 was

fully functional, as assessed by its ability to rescue AWA-mediated

chemosensory defects (EGL-4 is required in the AWA neuron for

the animal’s response to the odor diacetyl) [26]. AWC-mediated

chemotaxis, however, was inhibited in both the wildtype and the

egl-4(n479) genetic background (Figure 4H and [26]). One

explanation consistent with our finding that nuclear EGL-4 is

necessary for adaptation of the wildtype animal to odor [26] is that

animals expressing a constitutively nuclear form of EGL-4 are

always odor-adapted. If this is, in fact, the case, then the

chemotaxis defects of the NLS::GFP::EGL-4 expressing worms

should be rescued or ameliorated by removal of factors that

act downstream of EGL-4 nuclear entry and not by loss of

factors that are not required for adaptation. We first examined

NLS::GFP::EGL-4 in an adaptation-proficient mutant back-

ground. We found that the cAMP response element binding

protein (CREB) loss-of-function mutant strain, crh-1(tz2) [53] acts

like wildtype with respect to its ability to adapt to prolonged odor

exposure (Figure 4G). When we expressed NLS::GFP::EGL-4 in

this mutant background, we found that these animals showed the

same chemotaxis index as wildtype siblings expressing the same

transgene (Figure 4H, mean C.I. for NLS::GFP::EGL-4 in

wildtype = 0.17, mean C.I. for NLS::GFP::EGL-4 in crh-1 = 0.09,

p = 0.137). When we examined the behavior of fat-3 mutant

animals that expressed this transgene, however, we found that they

showed significantly higher chemotaxis indexes than their wild-

type siblings that expressed NLS::GFP::EGL-4 (Figure 4H, mean

C.I. for NLS::GFP::EGL-4 in wildtype was 0.03 and the mean C.I.

for NLS::GFP::EGL-4;fat-3(wa22) was 0.40, p = 0.005). In each

case, the transgenic array was introduced by mating into the

mutant background and wildtype siblings were used to derive the

wildtype control lines. Thus, PUFAs are likely to function

downstream of EGL-4’s nuclear accumulation after prolonged

odor exposure.

Finally, as evidence points to the TRP channel OSM-9 acting

downstream of EGL-4 nuclear entry (i.e. it was not required for

the nuclear translocation of EGL-4 after prolonged odor exposure

(Figure 4B) but was required for adaptation of the butanone

chemotaxis response (Figure 4A)), we asked whether loss of

OSM-9 would suppress the NLS::GFP::EGL-4 chemotaxis defects.

We found that the osm-9(ky10) null mutation did suppress the

chemotaxis defects of the NLS::GFP::EGL-4 expressing trans-

genic animals (Figure 4H, mean C.I. for NLS::GFP::EGL-4 in

Table 1. str-2 expression phenotype of adaptation and odor-
induced EGL-4 translocation mutants.

Cells expressing
(p)str-2::RFP 2 AWCON 1 AWCOFF/1 AWCON 2 AWCOFF n

Strain

N2 (wildtype) 0 94 6 102

Mutants

fat-4(wa14) fat-1(wa9) 0 92 8 78

{odr-3(n1605) 0 100 0 150

fat-3(wa22) 0 96 4 110

osm-9(ky10) 0 92 8 73

adp-1(ky20) 0 93 7 70

Animals containing the transgene (p)str-2::RFP were scored for the str-2
expression pattern. The chemoreceptor STR-2 is asymmetrically expressed in
the AWCON and not the AWCOFF cell. Data represents transgenic animals from at
least three independent lines. In each case animals were scored under three
categories for (p)str-2::RFP expression: (p)str-2::RFP expression in both AWC
neurons; (p)str-2::RFP expression in only one AWC neuron; (p)str-2::RFP
expression in neither AWC neuron.
{Data from Troemel et al. 1999 [70].
doi:10.1371/journal.pgen.1000761.t001
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wildtype genetic background was 0.27 and the mean C.I. for

NLS::GFP::EGL-4;osm-9(ky10) was 0.72, p = 0.014). The extent of

the rescue was greater than that of the fat-3 loss-of-function in

the same context. That is, osm-9 loss rescued the C.I. back to 100%

of the wildtype and osm-9 values (first two light gray bars in

Figure 4H, mean C.I. for wildtype = 0.72, mean C.I. for osm-9 = 0.73,

mean C.I. for osm-9;NLS::GFP::EGL-4 = 0.72, p = 0.818), while fat-3

loss increased the C.I. to up to 65% of the fat-3 alone

(C.I. for wildtype alone = 0.78, C.I. for fat-3 alone = 0.62, C.I. for

fat-3;NLS::GFP::EGL-4 = 0.40, p = 0.008).

This suggests that though both OSM-9 and PUFAs are likely to

function downstream of EGL-4’s nuclear translocation, OSM-9

may have additional non-PUFA mediated functions downstream

of nuclear EGL-4.

Diacylglycerol signaling may function downstream of
EGL-4’s odor-induced nuclear entry

One event within the adaptation pathway that could occur

downstream of EGL-4 nuclear entry is modulation of synaptic

vesicle release. A key player in this process is diacylglycerol (DAG)

[54,55]. High DAG levels are thought to both increase the size of

the readily releasable synaptic vesicle pool as well as to facilitate

synaptic vesicle release via the neurotransmitter release regulator

UNC-13 [54]. Likewise, dense core-vesicle release is stimulated by

the DAG-activated protein kinase C (PKC) epsilon/eta, PKC-1

[56]. AWC neurons have been shown to display tonic neurotrans-

mitter release in the absence of odor which is inhibited in the

presence of odor [13]. Adaptation of the AWC neuron to an odor

could result in higher rates of synaptic transmission to override the

repression of synaptic release that accompanies odor signaling [13].

DAG levels are increased by the Gqa protein, EGL-30 and

decreased by the Goa GOA-1 [54]. A gain-of-function allele of

egl-30(js126) stimulates the phospholipase C, EGL-8, to increase

DAG levels [57]. This mutation blocks adaptation to benzalde-

hyde ([4] and Figure 5A). To determine whether DAG inhibits

adaptation by blocking the nuclear translocation of EGL-4, we

examined the effect of mutations in several genes that encode key

DAG-signaling molecules on this process. GFP::EGL-4 localiza-

tion was examined in the AWC neurons of: egl-8(n488) and

egl-8(ok934)mutants, which lack the phospholipase C beta homolog

and, therefore, the ability to make DAG [54,57]; loss-of-function

mutants in egl-30(n686) that would decrease DAG levels and

egl-30(js126) gain-of-function mutants that would increase DAG

levels; the GOA-1 specific RGS, egl-10 mutants which should have

more active GOA-1 and thus lower DAG; and in the pkc-1(ok563)

mutants which should have lower dense core vesicle release. We

found that GFP::EGL-4 nuclear accumulation was not affected by

any of these mutations (Figure 5B).

To further examine the potential ability of DAG to regulate

EGL-4’s nuclear entry we asked whether exogenous application of

the DAG analog, phorbol myristate acetate (PMA) could affect

EGL-4 nuclear accumulation. As was previously described (Matsuki

et al. [4], PMA was able to block adaptation (Figure 5C). When we

examined GFP::EGL-4 expressing animals that had been incubated

with both odor and PMA, we found that GFP::EGL-4 accumulated

in the AWC nucleus at the same rate in these animals as the control

animals that had been incubated with just buffer and odor

(Figure 5D). Importantly, the same starting populations that were

used in the behavioral assays were also examined microscopically

for GFP::EGL-4. Thus, high DAG levels were able to block

behavioral adaptation even in populations that showed nuclear

EGL-4 and would have been adapted had they not been exposed to

PMA. This suggests that in order for nuclear EGL-4 to promote

adaptation, DAG levels might need to be regulated. It is also

possible that ectopically increasing DAG levels blocked adaptation

via a parallel pathway.

To test the hypothesis that DAG acts downstream of nuclear

EGL-4, we asked whether the chemotaxis defects of the

constitutively nuclear allele of egl-4 (Figure S3 and [26]) could be

suppressed by excess DAG. The NLS::GFP::EGL-4 was expressed

in the gain-of-function egl-30(js126) mutant background that is

proposed to have high DAG levels within the AWC neuron [4].

We found that the egl-30(js126) mutation did indeed suppress the

chemotaxis defects of NLS::GFP::EGL-4 animals (Figure 5E,

mean C.I. for NLS::GFP::EGL-4 in wildtype = 0.24 and the mean

C.I. for NLS::GFP::EGL-4;egl-30(js126) = 0.6, p = 0.003). This

implies that high DAG may act downstream of EGL-4’s nuclear

entry to block adaptation and thus, the ability of the cell, perhaps

via EGL-4, to regulate DAG levels is important for appropriate

down-regulation of chemotaxis in response to odor stimulation. It

is also possible that the high DAG levels produced in the egl-30

gain-of-function block adaptation by another process that is

independent of, rather than down stream of nuclear EGL-4.

Discussion

Integration of G-protein signaling over time to promote
adaptation

The mechanisms of AWC olfaction and vertebrate phototrans-

duction appear to be quite similar. In the absence of light,

photoreceptor cells exhibit an inward ‘‘dark current’’ of calcium

through cGMP-gated channels. Upon absorbing a photon, the

receptor rhodopsin becomes enzymatically active and catalyzes the

activation of the G-protein, transducin, which activates a

phosphodiesterase (PDE). The PDE then hydrolyzes cGMP

causing the closure of the cGMP-gated channels resulting in a

decrease in calcium influx [58]. Similarly, in AWC, odor has been

shown to decrease calcium levels [13] probably by closing cGMP-

gated channels (TAX-2 and TAX-4 - [14,15]). It is postulated that

the closing of the cyclic nucleotide gated channel results from

activation of a Ga such as ODR-3, which may in turn inhibit a

guanylyl cyclase or stimulate a phosphodiesterase thereby lowering

cGMP levels within AWC in response to odor.

The rapid adaptation of the vertebrate visual response is

primarily regulated by the dampening of the Ga by the regulator

of G protein signaling RGS9 [59]. Since physiological examina-

tion of the AWC neurons is still in its infancy, we know little about

the rapid events (in the timescale of seconds to minutes) that are

required for odor adaptation of the AWC neurons. Using

behavioral, genetic and cell biological assays though, we have

been able to examine how adaptation develops over the timescale

of tens of minutes to hours and we have gained some insight into

the molecular nature of these changes.

After 30 minutes of exposure to odor, the attractiveness of the

odor, as measured by the chemotaxis index, (CI) falls to about

75% of the initial value and, as the exposure time is lengthened,

the odor’s attractiveness is further diminished so that by

80 minutes of exposure, the odor may be completely ignored

(the CI is close to 0). The short-term adapted state is labile in that

it can be reversed after only 30 minutes of recovery in the absence

of odor [26]. As exposure time is lengthened, however, the initial,

easily reversed adaptation develops into an enduring form that can

persist for more than three hours. The progression from short- to

long-term adaptation might be attributed to the change in EGL-

4’s targets as it relocalizes from the cytoplasm of the naive animal

into the nucleus of the 60-plus minute exposed worm. In short-

term adaptation, we have evidence that EGL-4 phosphorylates the

odor responsive cyclic nucleotide gated channel [3]. In general,
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Figure 5. DAG signaling does not regulate the odor-induced nuclear entry of EGL-4. (A) A gain-of-function mutation in the Gaq protein
EGL-30 causes defects in AWC adaptation behavior as previously described by Matsuki et al. [4]. (B) DAG signaling mutants containing a GFP-tagged
EGL-4 transgene were exposed to benzaldehyde adaptation mix for 80 minutes. The nuclear translocation of EGL-4 does not require the DAG
signaling molecules EGL-30, EGL-8, EGL-10 or PKC-1. (C,D) GFP-tagged EGL-4 expressing wild-type animals (pyIs500) were exposed for 80 minutes to
benzaldehyde adaptation mix containing the DAG analog; phorbol myristate acetate (PMA). Exposure to PMA inhibits the adaptation response at the
behavioral level (C) but not the nuclear translocation of GFP::EGL-4 (D). (E) Animals with a constitutively nuclear gain-of-function allele of egl-4
(NLS::GFP::EGL-4) are constitutively adapted. Assaying the chemotaxis behavior of this line in an egl-30(js126) mutant background suppressed the
constitutively adapted phenotype of NLS::GFP::EGL-4 expressing animals suggesting that DAG functions downstream of EGL-4’s nuclear entry.
‘‘+’’ bars indicate adapted animals and ‘‘2’’ bars denote unadapted animals. Error bars represent the S.E.M. ** indicates statistical significance at
p,0.005. { indicates significant difference at p#0.05 between unadapted and adapted mutant bars or unadapted and adapted wildtype bars.
P values calculated using the Student’s t-test.
doi:10.1371/journal.pgen.1000761.g005
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phosphorylation is a labile modification and most sites are

dephosphorylated within tens of minutes [60]. The transience of

phosphorylation would allow for rapid recovery from short-term

adaptation. In long-term adaptation, EGL-4 becomes concentrat-

ed in the AWC nucleus where it alters transcription of at least one

G-protein coupled receptor (STR-2) [26] and probably other

genes. Transcriptional changes are usually long lasting as the

length of the altered state endures for as long as the newly

synthesized protein products persist.

Using odor-induced nuclear accumulation as a cell-specific

biological tool to probe this one part in the process of olfactory

adaptation, we examined players in the pathways that are required

for generating the odor signal such as: the G-protein and its

modulators; the guanylyl cyclase; the calcium channels and

calcium based modulators; the PUFA pathway and finally the

diacylglycerol pathway that may be involved in synaptic

transmission. From this analysis, the Ga protein ODR-3 emerged

as the only signal transduction molecule that was required to

integrate odor signaling over time to allow adaptation of AWC-

mediated olfactory responses (Figure 2B – second set of bars).

Another factor that affected GFP::EGL-4 nuclear accumulation

was GRK-2 (Figure 2G). This is in accord with the finding that

GRK-2 is required to boost the signal from ODR-3 [35]. The role

of cGMP in this process is, at present, unclear. So far, we have

shown that it is required for EGL-4’s ability to enter the nucleus

[26] but we have not been able to demonstrate that changes in its

levels affect nuclear translocation of EGL-4. Once we can actually

monitor the levels of cGMP within AWC, this may be a more

tractable task. The next set of factors in the proposed signaling

pathway, the cGMP gated calcium channels, did not affect odor-

induced GFP::EGL-4 nuclear accumulation as mutants lacking

either channel subunit were able to respond to odor exposure in

our paradigm (Figure 3B). Thus, we have been able to show that

events downstream of Ga signaling do not affect odor’s ability to

induce GFP::EGL-4 nuclear accumulation. This indicates that the

odor signaling pathway feeds into EGL-4-mediated adaptation at

the point of, or downstream of, Ga signaling but before calcium

levels change (Figure 6) and that some of the long-lasting changes

could include up regulation of the PUFA pathway; increased

expression of the TRP V channel, OSM-9; lowered expression of

the DAG pathway and EGL-30. Though the AWC neuron and

vertebrate rods share signaling properties and downstream

circuitry, it is an open question as to whether long-term adaptation

of the retinal cells might also involve nuclear accumulation of the

rod’s PKG.

PUFA signaling downstream of adaptation of AWC
Studies by Kahn-Kirby et al. into the nociceptive neuron pair,

the ASH, have provided much insight into TRP channel function

within sensory neurons of C. elegans [49]. OSM-9 is required in

conjunction with a second TRP channel subunit, OCR-2, to

mediate the primary sensory response in the ASH sensory neuron

but in the AWC neuron, it is required only for adaptation

[1,48,61]. In ASH, the PUFAs directly activate the heteromeric

TRP channel [49]. This work indicates that PUFAs may also

activate the monomeric OSM-9 channel to allow for adaptation

since the loss of either OSM-9 or FAT-3 leads to butanone

adaptation defects. Interestingly, we have found that PUFAs are

required for adaptation to a wider range of odors than OSM-9.

That is, the fat-3 and fat-1 fat-4 mutants are defective for their

ability to adapt to benzaldehyde while the osm-9 mutant is able to

adapt to benzaldehyde like wildtype. Loss of either PUFA

Figure 6. Proposed model for adaptation of the AWC neurons to prolonged odor exposure. After prolonged exposure to AWC-sensed
odors, the Ga subunit protein ODR-3 triggers EGL-4 to accumulate within the nucleus of the AWC sensory neuron. This translocation depends on the
ability of EGL-4 to bind cGMP, which is likely to be produced by guanylyl cyclases such as ODR-1 and DAF-11. The dashed arrow for cGMP signaling
indicates that we do not understand how cGMP fluxes fit into the picture. The naı̈ve cytosolic localization of EGL-4 depends on intact dendrite and
cilia structures. Downstream of the accumulation of EGL-4 within the nucleus, fatty acids (PUFAs and DAG), calcium levels, and a transient receptor
potential channel type V (OSM-9) facilitate adaptation of the chemosensory response of AWC. Our data provide a genetic model of adaptation in
AWC that does not rule out the possibility of direct modulation of DAG and calcium levels as indicated by the dashed arrow and question mark.
doi:10.1371/journal.pgen.1000761.g006
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signaling or OSM-9 was able to suppress the gain-of-function

EGL-4 allele (NLS::GFP::EGL-4). This indicates that PUFA

signaling via OSM-9 might act directly downstream of EGL-4

nuclear entry.

Polyunsaturated fatty acid signaling and neuronal
plasticity

Humans require essential PUFAs in their diet [62] to provide

protection against both ischemic stroke and cardiovascular disease

[63]. The mechanisms underlying the contribution of PUFAs to

these medical problems are poorly understood. The nematode

C. elegans, unlike humans, are capable of synthesizing long chain

PUFAs by desaturating and elongating saturated fats obtained

from its bacterial food source [50,51].

Our findings place PUFAs downstream of EGL-4’s odor-

induced nuclear entry. This observation implies a potential role for

PUFAs at the presynaptic site of AWC. Previous studies in C.

elegans have shown that PUFA signaling is required for efficient

synaptic transmission [64]. Lesa et al. [64] have shown that fat-3

mutant animals have a reduction in the number of synaptic

vesicles at release sites and exhibit a concomitant reduction in

neurotransmitter release. Furthermore, Marza et al. [65] demon-

strate that fat-3(wa22) mutant animals exhibit mislocalization of

the presynaptic proteins synaptojanin and synaptobrevin. Synap-

tojanin is a phosphoinositide phosphatase that promotes the

uncoating of presynaptic endocytic vesicles [66] while synapto-

brevin is part of the synaptic vesicle. C. elegans synaptojanin

mutants (unc-26) are defective in synaptic vesicle recycling and

neurotransmitter release due to a reduction in synaptic vesicle

numbers [66]. fat-3 mutant animals phenocopy these defects

demonstrating that PUFAs are required to promote endocytosis at

synapses by regulating synaptojanin localization at sites of release

[66]. The contribution of PUFAs to synaptic transmission is a

conserved mechanism as demonstrated in studies with rats that

have revealed that chronic PUFA deficiency causes a decrease in

synaptic vesicle number at the presynaptic sites of dopaminergic

neurons of the frontal cortex [67].

Synaptic vesicles are produced in cell bodies and transported

along the axon to the nerve terminal. After fusion at the pre-

synaptic plasma membrane, the synaptic vesicle proteins and lipids

are rapidly endocytosed via clathrin mediated mechanisms and are

reused to form new synaptic vesicles. To facilitate olfactory

plasticity, perhaps PUFAs control adaptation responses in AWC

by regulating synaptic vesicle recycling downstream of EGL-4’s

nuclear entry. The fact that the TRP channel OSM-9 is required

for adaptation to two of the three odors the PUFAs are required

for might indicate an odor-specific role for PUFA regulated

processes perhaps in the vicinity of the synapse.

DAG signaling may act in parallel to or downstream of
EGL-4 nuclear entry

DAG may act downstream of EGL-4 nuclear entry since

increasing DAG levels blocks adaptation without affecting EGL-4

nuclear accumulation (Figure 5). Goa/Gqa mediated DAG

signaling has been shown to increase neurotransmitter release in

motor neurons [55]. Since increasing DAG levels either by

application of PMA or the action of a gain-of-function egl-30 allele

blocks adaptation, it is likely that synaptic transmission needs to be

down regulated (or at least tightly regulated) in order for AWC to

adapt to prolonged odor exposure. Once in the nucleus, EGL-4

may down-regulate EGL-30 or another factor responsible for

high DAG levels since the gain-of-function egl-30 suppresses the

constitutively nuclear EGL-4’s chemotaxis defects. Indeed, odor-

induced dampening of synaptic transmission would be a simple

way to silence AWC’s output. This interpretation, however, must

be tempered by the fact that such a gain-of-function could

ectopically or non-specifically suppress this phenotype.

Calcium and DAG signaling act in opposite ways for
olfactory adaptation

We have reproduced the finding that calcium is required for

adaptation but we also show that this requirement is actually

downstream of or in parallel to EGL-4 nuclear accumulation.

Thus, calcium dependent processes must be at work in promoting

adaptation but what they are remains obscure. NCS-1 was an

obvious candidate [47] but we show that its loss does not affect

adaptation of the AWC neuron and calcineurin acts in the

opposite fashion to dampen adaptation. Indeed, increases in

synaptic transmission might require higher calcium levels and

could counteract the odor-induced decreases in calcium and lower

synaptic transmission that accompanies odor exposure [13]. The

finding that both decreased DAG and increased calcium are

required downstream of or in parallel to EGL-4 nuclear

accumulation indicates that we really do not understand where

or how they act. Both DAG and calcium increase synaptic

transmission and it is difficult to see how both could act on this one

process. Thus, it is likely that each acts on a different process and

that one or the other may affect synaptic transmission.

Structural integrity of AWC cilia is critical for proper
localization of EGL-4

Odor-naive wildtype and most mutant animals we examined in

our candidate screen displayed diffusely cytoplasmic GFP::EGL-4

(Figure 1C and Figure S1 Chart 1 - unexposed animals). Animals

with severe structural defects in the cilia and distal region of the

dendrites of AWC, however, exhibited constitutively nuclear

GFP::EGL-4 (Figure 1F–1J). Further, the incidence or penetrance

of nuclear GFP::EGL-4 in the naive animal correlated strongly

with the penetrance of the strain’s structural defects (Figure 1L).

Since odor exposure was able to induce significant increases in the

percent of animals with nuclear GFP::EGL-4, even in the

structurally defective signaling mutant strains (Figure 2B - rgs-3

and Figure 3B - tax-2, tax-4 butanone and benzaldehyde exposed

bars versus unexposed bars; p = 0.005 for rgs-3 and p = 0.05 for

tax-2 and tax-4), this suggests that the mutations that cause severely

deformed cilia and distal region of dendrites do not affect the

dynamic translocation of EGL-4 to the nucleus.

There are several explanations for the constitutively nuclear

EGL-4 phenotype of severely AWC cilia/dendrite defective

mutants. One explanation is that EGL-4 may be tethered in the

cytosol of the cilia/dendrite in the AWC by association with other

proteins. These tethering proteins may be sensitive to cilia

morphology and be unable to correctly retain EGL-4 in the

cytosol when this region of the cell is deformed. This tether model

suggests that EGL-4 may have a propensity to enter the nucleus

and that dissociation of the link between certain tethering proteins

and EGL-4 may be a key step in the translocation of EGL-4.

Indeed, as Mukhopadhyay et al. [33] showed, sensory signaling is

required to maintain wildtype cilia morphology. In this work,

Mukhopadhyay et al. demonstrated that continual signaling by

molecules including TAX-2 and TAX-4 is required to maintain

proper AWB cilia architecture. In tax-2 and tax-4 mutants

Mukhopadhyay et al., [33] observed severe cilia defects in the

AWB neuron. Similarly, our data show that both TAX-2 and

TAX-4 are required to maintain appropriate AWC cilia structure

(Figure 1I and 1J) and in these mutant strains, EGL-4 is
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constitutively nuclear in each cilia defective animal (Figure 1L).

Another, not mutually exclusive, explanation is that, in keeping

with observations by Mukhopadhyay et al., perhaps baseline and

continuous sensory signaling in AWC is required to both maintain

cilia structure and also to keep EGL-4 in the cytosol. Thus, a

certain level of continuous sensory signaling may be responsible for

the localization of EGL-4 in a naive animal.

The reason that we failed to see aberrant nuclear localization of

GFP::EGL-4 in the signaling-impaired naive odr-3(n2150) mutant

strain might be because there is just enough signaling in these

animals to preserve both cilia structure and normal localization of

GFP::EGL-4 (see Figure S4). In fact, the odr-3(n2150) allele that we

examined was not significantly different from the wildtype strain in

its ability to respond to butanone [11]. This is in contrast to the

odr-3(1605) allele that was significantly defective for chemotaxis to

this odor and showed very severe cilia defects in AWC [11].

Though odr-3(n2150) showed a decrease in cilia size, as

determined both by electron microscopic analysis [9] and our

observations (Figure S4), the defects we observed were far less

pronounced than those seen in rgs-3, tax-2 or tax-4 mutant

backgrounds. Thus, we were able to dissociate the role for the Ga
ODR-3 in promoting intact cilia from its role in integrating

prolonged odor signaling by using the less severe odr-3(n2150)

allele.

We have also examined the localization of EGL-4 in other

neurons and the AWCs are the only cells that we could identify in

which EGL-4 is not constitutively nuclear (unpublished observa-

tions by Jeff Eastham-Anderson and N.D.L). Furthermore, EGL-

4’s ability to accumulate within the AWC nucleus seems to be

specific for EGL-4 as other GFP-tagged proteins that are both

cytosolic and nuclear do not translocate to the nucleus after odor

exposure (unpublished observations by Bi-Tzen Juang and N.D.L).

Specificity of adaptation response versus a lack of
specificity in nuclear accumulation of EGL-4

One interesting aspect of odor adaptation is its specificity. In the

starved animal, adaptation to the AWC-sensed odor benzaldehyde

does not affect isoamyl alcohol chemotaxis and vice versa [1]. It is

intriguing to contemplate how, in the wildtype worm, specificity is

maintained in light of our finding that the adaptation process

involves nuclear translocation of a kinase that can promote

adaptation to each odor we use and that occurs in response to each

odor we studied (Figure 4H and [26]). In general, there are two

possibilities: 1) EGL-4 may send a generic signal to adapt the

neuron and this signal enhances or interacts with a second odor-

specific signal; or 2) each odor may alter EGL-4 in such a way that

nuclear EGL-4 produces an odor-specific signal that adapts the

neuron to that odor.

Since we can force adaptation to occur even in the absence of

odor by expressing a constitutively nuclear form of EGL-4

(Figure 4H), it suggests that an odor signal is not required for

adaptation once EGL-4 is in the nucleus. However, when EGL-4

is forced to be constitutively nuclear by this manipulation, the

worm’s response to all odors is lost (data not shown). To reconcile

these observations, we postulate that when the wildtype worm

naturally adapts to one odor, this process differs in a way that

allows odor to limit or shape the output of EGL-4. This could be

achieved if the native form of EGL-4 enters the nucleus and there

produces a signal that could cooperate with odor to promote

adaptation. Alternately, once in the nucleus the native EGL-4

might induce gene expression of adaptation machinery that is

odor-specific.

Our evidence is that there are parts of the adaptation machinery

that act down stream of EGL-4’s nuclear entry that are required

for adaptation to specific odors, (OSM-9) and that there are parts

that are required for all odors we have tested (PUFAs). Since loss

of osm-9 renders animals defective for adaptation to butanone but

leaves their ability to adapt to benzaldehyde intact [1], it will be

interesting to understand whether any of the signals that EGL-4

produces when it is in the nucleus are odor-specific or whether

odor in conjunction with a generic EGL-4 signal promotes odor-

specific adaptation.

Materials and Methods

Strains and maintenance
Bristol N2, odr-3(n2150), egl-4(n479), gpb-2(pk751), gpb-2(sa603),

gpc-1(pk298), fat-3(wa22), fat-4(wa14) fat-1(wa9), rgs-3(vs19), egl-

30(js126), crh-1(tz2), tax-2(p671), tax-4(p678), osm-9(ky10) strain

JZ1032 (made by out-crossing CX10 one extra time prior to

assaying), pyIs500[(p)odr-3::GFP::EGL-4; (p)odr-1::RFP; (p)ofm-

1::GFP] him-5, gpb-2(sa603);him-5 pyIs500, gpb-2(pk751);him-5

pyIs500, gpc-1(pk298);him-5 pyIs500, unc-18(md299);him-5 pyIs500,

mbk-1(pk1389);him-5 pyIs500, daf-2(e1370);him-5 pyIs500, daf-

3(e1376);him-5 pyIs500, let-60(n1046);him-5 pyIs500, let-23(sa62);-

him-5 pyIs500, gpa-2(pk16);Ex[pyIs500], arr-1(ok401);him-5 pyIs500,

rgs-3(vs19);him-5 pyIs500, gcy-31(ok296);him-5 pyIs500, gcy-36

(db42);him-5 pyIs500, grk-2(rt97);him-5 pyIs500, tax-4(pr678);him-5

pyIs500, tax-2(p671);him-5 pyIs500, cng-1(jh111);him-5 pyIs500, cng-

3(jh113);him-5 pyIs500, ncs-1(qa406);him-5 pyIs500, unc-2(e55);him-5

pyIs500, tax-6(jh107);him-5 pyIs500, tax-6(p675);him-5 pyIs500, ttx-

3(ks5);him-5 pyIs500, pkc-1(ok563);him-5 pyIs500, egl-30(n686);him-5

pyIs500, itr-1(sa73);him-5 pyIs500, egl-8(n488);him-5 pyIs500, egl-

8(ok934);him-5 pyIs500, egl-10(md176);him-5 pyIs500, egl-30(js126);him-

5 pyIs500, fat-3(wa22);him-5 pyIs500, osm-9(ky10);him-5 pyIs500, fat-

4(wa14) fat-1(wa9);Ex[pyIs500], sel-12(ar131);him-5 pyIs500, che-

2(e1033);him-5 pyIs500, che-11(e1810);him-5 pyIs500, pyIs500 him-5;

Ex[(p)odr-1::ODR-1; elt-2::GFP], odr-3(n2150);Ex[pyIs500], adp-1(ky20)

is a dominant mutation (Colbert and Bargmann, [1]) and was

assayed as a cis-heterozygote in Figure S1 as adp-1(ky20); him-5

pyIs500/+++, N2;Ex[(p)str-2::RFP; (p)ofm-1::GFP], fat-4(wa14) fat-

1(wa9);Ex[(p)str-2::RFP; (p)ofm-1::GFP], fat-3(wa22);Ex[(p)str-2::RFP;

(p)ofm-1::GFP], osm-9(ky10);Ex[(p)str-2::RFP; (p)ofm-1::GFP], adp-

1(ky20);Ex[(p)str-2::RFP; (p)ofm-1::GFP, pyIs500; Ex[(p)odr-3::ODR-

3(30ng/ml), (p)unc-25::RFP], fat-3(wa22); Ex[(p)ceh-36::FAT-3::GFP,

(p)ofm-1::GFP], N2; Ex[(p)odr-3::NLS::GFP::EGL-4], crh-1(tz2); Ex[(p)

odr-3::NLS::GFP::EGL-4], osm-9(ky10); Ex[(p)odr-3::NLS::GFP::EGL-

4], fat-3(wa22); Ex[(p)odr-3::NLS::GFP::EGL-4], egl-30(js126); Ex[(p)

odr-3::NLS::GFP::EGL-4]. NGM plates were seeded with E. coli strain

OP50 and maintained according to standard protocol [68].

Hermaphrodite mutants were crossed into pyIs500 males and F1

cross progeny picked by identifying transgene-containing (green)

worms. F2 animals were picked and genotyped by behavioral

analysis, PCR, visual phenotypes or sequencing and then homo-

zygosed for the mutation of interest and the pyIs500 transgene.

Chemotaxis and adaptation assays
Chemotaxis was performed as described previously [1,8,9].

Briefly, 10mls of 1.6% agar in assay buffer was placed into a 10cm

petridish. One microliter of odor diluted into ethanol and one

microliter of 100mM sodium azide (an anesthetic) was placed at

opposite ends of the hardened agar lining the petridish. Worms

were washed from their growth plates into S- Basal in 1.5 ml

microcentrifuge tubes and collected by nanofuge centrifugation for

6 seconds this was repeated twice before placing concentrated

animals at the origin which was equidistant from either odor or

ethanol spots. Chemotaxis assays were initiated by wicking the

liquid from the animals. The chemotaxis index of each population
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was determined by counting the number of animals at the odor

and subtracting from that the number at ethanol and diving this

number by the total number of animals that had left the origin.

Odors were diluted as follows unless otherwise stated: 1ml

benzaldehyde (Sigma) in 200ml EtOH, 1ml butanone (Sigma) in

1000 ml EtOH, 1ml isoamyl alcohol (Sigma) in 1000ml EtOH and

1ml 2,3 pentanedione (Sigma) in 10000 ml of EtOH. Odor

adaptations were performed as described elsewhere [1,3,8].

Briefly, animals were treated as described for a chemotaxis assay

but instead of being placed onto the petridish, the liquid in the

microcentrifuge tube was replaced with either S-Basal buffer alone

or S-Basal and odor. Odors were diluted as follows; 9ml

benzaldehyde into 100ml S-Basal, 12ml butanone into 100ml

S-Basal buffer, 1ml isoamyl alcohol into 100ml S-Basal and

populations of animals were exposed to the diluted odor for

80 minutes during long-term exposure. Plate adaptation assays for

isoamyl alcohol were performed as described previously [1]. Odor

exposures for 60 minutes were carried out for JZ1032 (osm-9(ky10))

(Figure 4A and 4E) and egl-30(js126) animals (Figure 5A). For the

mutants fat-4 fat-1, fat-3, fat-3;NLS::GFP::EGL-4 which all exhibited

uncoordinated (unc) phenotypes, modified adaptation assays were

performed (Figure 4) by placing worms at the center of the assay

plate. By modifying the origin point, shorter taxis distances were

traveled to overcome the unc phenotype of these animals (Figure

S5). For all assays between 100 and 200 animals were assayed in

each assay and each assay was repeated on separate days between

three and five times.

EGL-4 nuclear accumulation assays
Four to five L4 animals were picked onto a 9cm OP50 seeded

plate and incubated at 25uC. Animals were washed from these

plates and accumulation assays were performed by exposing

animals containing an integrated copy of (p)odr-3::GFP::EGL-

4;(p)ofm-1::GFP;(p)odr-1::RFP (strain name pyIs500) to odor in

S-Basal (pre-exposed) or S-Basal (un-exposed) for 80 minutes and

then scoring the number of worms exhibiting GFP in one AWC

nucleus after butanone exposure or in both AWC nuclei after

benzaldehyde or isoamyl alcohol exposure under 406magnifica-

tion. Wildtype pyIs500 worms were included for every transloca-

tion assay as a positive control using $0.75 percentile as the

baseline for successful control assays and treatment assay inclusion.

Between twenty and fifty animals were scored for each

translocation assay and repeated on separate days three to five

times.

PMA, EGTA, and 8-br-cGMP treatments
Wildtype pyIs500 animals were washed three times with ddH2O

and soaked in buffer plus benzaldehyde (9ml of benzaldehyde into

100mls S-Basal) with 0.5mg/ml PMA (Sigma) for 80 minutes. After

this pre-exposure, animals were washed three times with ddH2O

and tested for chemotaxis and the subcellular localization of

GFP::EGL-4 in AWC. For EGTA treatment, wildtype pyIs500

animals were pre-incubated in 50mM EGTA (pH 7.0 in water) for

2 hours before standard benzaldehyde exposure in S-Basal.

Benzaldehyde exposed animals were then assayed for chemotaxis

and examined for their subcellular localization of GFP::EGL-4 in

AWC, as described. For the preparation of 8-br-cGMP (Sigma)

containing plates, 5mM final concentration of 8-br-cGMP was

prepared as described by van der Linden et al. [69]. The 8-br-

cGMP plates were then seeded with E. coli OP50 24 hrs later. Four

to five L4 animals were picked to these plates and their progeny

assayed. Naı̈ve and odor exposed worms were examined for the

localization of GFP::EGL-4 (Figure S1 - 8-br-cGMP plate). For

8-br-cGMP soaking, animals were soaked in 100 mM solution

of 8-br-cGMP in S-Basal for 1 hr and exposed to odor for

80 mins (Figure S1 - 8-br-cGMP soak). Unexposed animals were

examined in parallel with S-Basal instead of benzaldehyde

containing adaptation mix after EGTA, PMA and 8-br-cGMP

treatments.

Plasmid construction and transgenic strains
(p)odr-3::GFP::EGL-4 was constructed from (p)egl-4::GFP::EGL-4

(a generous gift from M. Fujiwara) by placing GFP sequences and

the first few coding sequences of EGL-4 downstream of (p)odr-3.

(p)odr-3::GFP::EGL-4 was co-injected (50 ng/ml) with the AWC

marker (p)odr-1::RFP (25 ng/ml) and coelomocyte marker (p)ofm-

1::GFP (25 ng/ml) into N2 animals, and the subsequent transgenic

line was integrated by TMP method to form the integrated strain

pyIs500. The egl-4 gain-of-function allele was made by inserting an

extra NLS coding sequence to the 59 end of GFP coding sequences

in the (p)odr-3::GFP::EGL-4 construct. This was accomplished by

site directed mutagenesis. The resulting construct was called

(p)odr-3::NLS::GFP::EGL-4. ODR-3 overexpression lines were

generated using (p)odr-3::ODR-3 (a kind gift from Denise Ferkey).

ODR-1 overexpression lines were generated using (p)odr-1::ODR-1

(injected at 1mg/ml). The (p)AWC::FAT-3::GFP rescue construct

was made by sub-cloning cDNA into an AWC specific promoter

construct, (p)ceh-36::GFP (a kind gift from John F. Etchberger and

Oliver Hobert) at the N terminus of GFP by using KpnI and MscI

sites. The ceh-36 promoter was truncated by John F. Etchberger and

Oliver Hobert until AWC-specific expression was achieved.

Polyunsaturated fatty acid dietary supplementation
Eicosapentaenoic acid (EPA) stocks were prepared by diluting

EPA fatty acid salt (Nu-Chek Prep, Elysian, MN) to 100 mM in

ddH20 immediately prior to making plates as described by Watts

et al. [50] and Kahn-Kirby et al. [49]. NGM solution was prepared

with the addition of 0.1% tergitol (NP-40, Sigma). Once the agar

was cooled to 45uC–50uC, lipids were added slowly, with stirring,

to a final concentration of 160mM then dried at room temperature

for at least 24 hours and seeded with OP50 E. coli.

Supporting Information

Figure S1 Mutant animals for a variety of signaling pathways

were assayed for the ability of EGL-4 to translocate to the nucleus

after prolonged odor exposure. Error bars represent S.E.M.

Found at: doi:10.1371/journal.pgen.1000761.s001 (0.90 MB TIF)

Figure S2 Overexpression of ODR-1 causes developmental and

adaptation defects in AWC ([38]; [7] and N.D.L.). (A) The

chemotaxis response of three transgenic lines of ODR-1

overexpressing animals to 2,3 pentanedione was examined. The

odor 2,3-pentanedione is sensed by the AWC OFF cell. (B) The

adaptation behavior of three transgenic lines overexpressing

ODR-1 was examined to the AWC sensed odor butanone. Error

bars represent S.E.M. ** Indicates p less than 0.005 and * indicates

p less than 0.05 significant differences.

Found at: doi:10.1371/journal.pgen.1000761.s002 (0.25 MB TIF)

Figure S3 The authors have previously demonstrated that

appending an extra nuclear localization sequence (NLS) onto the

N terminus of EGL-4 to make a (p)odr-3::NLS::GFP::EGL-4

expressing line was sufficient to constitutively force EGL-4 into the

nucleus of AWC [26]. Consequently the animals displayed a

constitutively adapted phenotype at the behavioral level. This

fluorescent confocal image shows a naı̈ve NLS::GFP::EGL-4

expressing animal with EGL-4 in the nucleus of AWC.

Found at: doi:10.1371/journal.pgen.1000761.s003 (0.77 MB TIF)
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Figure S4 Fluorescent confocal image of the AWC neuron of an

odr-3(n2150) mutant animal. Structural defects of odr-3(n2150) are

juxtaposed with representative images of wild-type and rgs-3(vs19)

for comparison. The white dotted box highlights the defect. The

n2150 mutant fails to form wild-type fan shaped cilia.

Found at: doi:10.1371/journal.pgen.1000761.s004 (0.45 MB TIF)

Figure S5 Representation of standard and modified assay plates.

The mutant animals fat-4(wa14)fat-1(wa9) and fat-3(wa22), which

all exhibited uncoordinated (unc) phenotypes, were assayed using

modified adaptation assays by placing worms at the center of the

assay plate. By modifying the origin point, shorter distances were

traveled to overcome the unc phenotype problem with assay-

ing these animals. Modified assays were also used to assay

fat-3(wa22); Ex [(p)odr-3::NLS::GFP::EGL-4] animals and fat-3(wa22);

Ex[(p)AWC::FAT-3] animals.

Found at: doi:10.1371/journal.pgen.1000761.s005 (0.23 MB TIF)

Table S1 List of mutant backgrounds tested for the ability to

regulate EGL-4’s entry to the nuclei of AWC after prolonged odor

exposure. [71] Patterson GI, Koweek A, Wong A, Liu Y, Ruvkun G

(1997) The DAF-3 Smad protein antagonizes TGF-beta-related

receptor signaling in the Caenorhabditis elegans dauer pathway.

Genes Dev 11: 2679–2690. [72] Antebi A, Culotti JG, Hedgecock

EM (1998) daf-12 regulates developmental age and the dauer

alternative in Caenorhabditis elegans. Development 125: 1191–1205.

[73] Zwaal RR, Mendel JE, Sternberg PW, Plasterk RH (1997)

Two neuronal G proteins are involved in chemosensation of the

Caenorhabditis elegans Dauer-inducing pheromone. Genetics 145:

715–727. [74] Morris JZ, Tissenbaum HA, Ruvkun G (1996) A

phosphatidylinositol-3-OH kinase family member regulating

longevity and diapause in Caenorhabditis elegans. Nature 382:

536–539. [75] Murphy CT, McCarroll SA, Bargmann CI, Fraser

A, Kamath RS, et al. (2003) Genes that act downstream of DAF-16

to influence the lifespan of Caenorhabditis elegans. Nature 424:

277–283. [76] Hirotsu T, Saeki S, Yamamoto M, Iino Y (2000) The

Ras-MAPK pathway is important for olfaction in Caenorhabditis

elegans. Nature 404: 289–293. [77] Aroian RV, Koga M, Mendel

JE, Ohshima Y, Sternberg PW (1990) The let-23 gene necessary for

Caenorhabditis elegans vulval induction encodes a tyrosine kinase

of the EGF receptor subfamily. Nature 348: 693–699. [78] Dal

Santo P, Logan MA, Chisholm AD, Jorgensen EM (1999) The

inositol trisphosphate receptor regulates a 50-second behavioral

rhythm in C. elegans. Cell 98: 757–767. [79] Raich WB, Moorman

C, Lacefield CO, Lehrer J, Bartsch D, et al. (2003) Characterization

of Caenorhabditis elegans homologs of the Down syndrome

candidate gene DYRK1A. Genetics 163: 571–580. [80] Hobert

O, Mori I, Yamashita Y, Honda H, Ohshima Y, et al. (1997)

Regulation of interneuron function in the C. elegans thermoregu-

latory pathway by the ttx-3 LIM homeobox gene. Neuron 19:

345–357. [81] Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic

vesicle fusion complex contains unc-18 homologue bound to

syntaxin. Nature 366: 347–351. [82] Cheung BH, Arellano-

Carbajal F, Rybicki I, de Bono M (2004) Soluble guanylate cyclases

act in neurons exposed to the body fluid to promote C. elegans

aggregation behavior. Curr Biol 14: 1105–1111. [83] Hukema RK,

Rademakers S, Dekkers MP, Burghoorn J, Jansen G (2006)

Antagonistic sensory cues generate gustatory plasticity in Caenor-

habditis elegans. EMBO J 25: 312–322. [84] Kitagawa N,

Shimohama S, Oeda T, Uemura K, Kohno R, et al. (2003) The

role of the presenilin-1 homologue gene sel-12 of Caenorhabditis

elegans in apoptotic activities. J Biol Chem 278: 12130–12134.

Found at: doi:10.1371/journal.pgen.1000761.s006 (1.22 MB PDF)
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