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Abstract: Recently, the issue of sound quality inside vehicles has attracted interest from both
researchers and industry alike due to health concerns and also to increase the appeal of vehicles to
consumers. This work extends the analysis of interior acoustic noise inside a vehicle under several
conditions by comparing measured power levels and two different models for acoustic noise, namely
the Gaussian and the alpha-stable distributions. Noise samples were collected in a scenario with real
traffic patterns using a measurement setup composed of a Raspberry Pi Board and a microphone
strategically positioned. The analysis of the acquired data shows that the observed noise levels are
higher when traffic conditions are good. Additionally, the interior noise presented considerable
impulsiveness, which tends to be more severe when traffic is slower. Finally, our results suggest
that noise sources related to the vehicle itself and its movement are the most relevant ones in the
composition of the interior acoustic noise.

Keywords: noise sources; regression analysis; impulsive noise; vehicle interior noise; traffic noise;
alpha-stable noise

1. Introduction

Acoustic noise has received much attention in the automotive industry due to the
increasing demand for in-vehicle voice assistant systems [1]. Noise evaluation is an essential
issue in this field, enabling the design of in-vehicle multimedia systems with better noise
control and fewer disturbances that degrade acoustic communications performance in a
vehicle interior. Such disturbances may have different sources, and identifying them in
order to focus on the most dominant sources will result in more efficient noise controls and
optimized systems for audio applications. The statistical characteristics of the noise are
crucial to define and configure the active noise control techniques [2].

Therefore, this work presents an experimental evaluation of the characteristics of the
acoustic noise inside a vehicle under the perspective of an in-vehicle voice reception system.
We also capture sources related to the traffic that might impact a car’s interior environment,
providing insights concerning the acoustic noise and its source in the vehicle interior.

Our previous analysis [3] showed how some factors such as traffic are correlated to
the average noise power inside the vehicle. For that evaluation, a total of 194 noise samples
were collected using a measurement setup installed in a C4 Lounge from Citroën. In this
paper, we extended our previous work on the subject in the following ways:

• Acquiring an additional 254 noise samples, which were collected in a different vehicle
and a different time of the year from our previous work [3];

• Validating our setup using a sound pressure level meter to verify the power levels
measured;
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• Improving the statistical evaluation of the selected variables, examining which of them
have more influence in the noise power levels inside, comparing the results between
both measurement sets, and providing a more in-depth analysis of the effect of the
car’s windows;

• Evaluating the degree of impulsiveness of the interior noise and comparing the AWGN
and alpha-stable noise models;

• Analyzing the window size for the estimation of alpha-stable distribution parameters.

Finally, we highlight that the complete collection of measurements, including
information about the conditions and location, is freely available [4] and can be helpful for
different purposes.

This paper is organized as follows. Section 2 presents a brief overview of the literature
on vehicle interior noise. The measurement campaigns and setup are described in Section 3.
Section 4 presents the statistical methods used to analyze the collected data, and Section 5
discusses the results. Finally, in Section 6, we present our final remarks.

2. Related Works

The topic of acoustic noise or sound quality in vehicles is a multidisciplinary subject
that is related not only to the health and comfort of drivers and passengers but also to the
appeal of vehicles as a product. Thus, since the beginning of the car industry, many studies
have been developed exploring different aspects of sound quality. Many of these studies
focus on the effects of traffic noise on human health. There is research on the impact of noise
on sleep and mental health [5–7], on the development of cognitive processes in children [8],
and on the increase of risk of heart diseases [9,10] and diabetes [11]. Recent studies present
contributions to identifying and optimizing vehicle interior noise [12–17], approaching
different noise sources. The sound quality of the vehicle cabin is also essential for various
in-vehicle applications, such as multimedia [18–20], security [21–23], assistive [24–26],
and autonomous vehicles [27,28]. Furthermore, several studies in psychoacoustics
seek to establish objective metrics to assess the subjective sound quality perceived by
vehicle passengers [29,30], which is an essential factor for consumer satisfaction and the
marketability of a vehicle [31].

Given the importance of the subject, several studies were developed to characterize
internal noise in vehicles. As the noise perceived inside the cabin is a composition of
noise sources of different natures, such as wind, engine, and rolling, most works focus
on describing the contribution of specific components. Knowledge of the most relevant
sources can indicate the main challenges in acoustic systems and the best way to represent
them mathematically. Therefore, its characterization is essential for anyone interested in
vehicular acoustic systems.

According to the literature [32,33], the different contributions to in-vehicle noise can
be classified according to their source. Noise can originate from the structural vibrations of
the car and its components or from aerodynamic excitations [34] transmitted by the cabin
of the car. For instance, the noise created by the tires/road interaction is usually separated
into two components [33]: structural low-frequency noise (below 500 Hz) [35,36], and aerial
noise, with medium and high-frequency contributions (above 500 Hz). Understanding the
characteristics of this particular noise source is essential for the development of low-noise
roads [37–39]. Other works investigate the sound quality of specific vehicle phenomena and
components, such as closing car doors [40,41], engine noise [32,42], Heating, Ventilation,
Air Conditioning (HVAC) systems [43], seat belts [44], and wind [45,46].

Some studies use linear regression modeling [47] to establish correlations between
objective psychoacoustics metrics, such as pitch, roughness, volume, and others [48], and
subjective sound quality metrics, which are often obtained from jury reviews [48]. With a
similar aim, some works use machine learning techniques, such as clustering and neural
networks, to model the contribution of one or multiple sources [49–51] or even the human
auditory system [52]. However, these models usually use psychoacoustics metrics, focusing
on predicting the assessment of the subjective perception of the sound quality of a passenger
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or driver. Many works contribute to noise prediction using artificial intelligence, providing
a model for the traffic noise [53–55] and sound quality prediction [56–58] contexts.

Although there are a wide variety of works on the evaluation of interior vehicle noise,
most of them focus on studying one or a few noise sources at a time [32]. The works on
modeling and prediction are usually elaborated from the perspective of psychoacoustics,
whose metrics may not be relevant for a voice processing system in a vehicular multimedia
center. In addition, these studies are often conducted in laboratory or highly controlled
environments [31,50,59]. Thus, relevant sources of acoustic noise present in a real driving
scenario in an urban environment, and the composition of their effects are potentially
disregarded.

Additionally, in our literature survey, studies that seek to consider the composition
of multiple sources for in-vehicle noise with probability distribution modeling were not
found. One of the most popular noise models in communication systems is the Additive
White Gaussian Noise (AWGN) model [60], based on the Gaussian probability distribution.
Although the AWGN model is of great importance, it is not always adequate [61]. Impulsive
phenomena, in which the noise changes suddenly to a value far from the mean in a short
period of time, can affect the performance of signal processing solutions based on traditional
Gaussian modeling [62–64]. In the context of this work, impulsive noise is relevant to source
location [64–68], voice processing [69,70], and noise comfort and pollution [71,72]. In
several of the works cited above, impulsiveness is modeled by an alpha-stable distribution.
Alpha-stable distributions are widely used to represent a range of phenomena for which
non-Gaussian behavior is expected. The flexibility of its parameters, which allow for
changes in the symmetry, dispersion, and tail mass of the distribution, as well as the
Generalized Central Limit Theorem and empirical evidence [73] justify the use of stable
models in applications such as econometrics, computing, meteorology, medicine, and image
processing, among others [73,74].

3. Measurement Campaigns and Setup
3.1. Measurement Campaigns

The evaluated interior noise data were obtained in two separate measurement
campaigns. Both campaigns took place in Natal, Brazil. Located in northeastern Brazil,
the city has an area of 167 km2 and a typical tropical climate with warm temperatures
and high humidity throughout the year. The first campaign was carried out in June and
July of 2019. The samples collected and the result of their analysis were presented in our
previous work [3]. To extend the results of the previous work, we also conducted a second
measurement campaign, which occurred between April and May of 2021. It is worth
emphasizing that the second campaign was carried out during the SARS-CoV-2 pandemic.
Due to social distancing measures such as the closing of schools, restaurants, and public
spaces, the traffic patterns in the city were altered. In particular, during the weeks with
high-level restrictions, traffic was less heavy than expected in some regions of the city.

Even though both campaigns use the same measurement setup and have the same
objectives, differences between the results for each are expected. Factors such as the model
of the cars, the driver, the months of the year, and different traffic patterns, among others,
can influence the interior noise and the data collection process. In this work, we aim
to evaluate if the results for both campaigns are compatible and exhibit the same trend,
especially considering the higher amount of measurement points in the second campaign.

The sampling points were located in different streets and avenues, aiming to spread
uncontrolled conditions such as crowd noise. Figures 1 and 2 show the sampling locations.
The colors in the marking represent the traffic conditions associated with each sample.
These conditions are defined following Google Maps’ traffic conditions policy [75]. There
are four possible traffic conditions, according to the mean speed of the cars in the street.
Table 1 lists the traffic categories and the speed intervals used by the map application to
classify the traffic in each street. Moreover, the car used in the data acquisition was always
at the speed interval for that specific measurement. The exact car speed value can be found
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in our dataset [4]. It is also expected that on average, the nearby cars are in the same speed
interval.

Figure 1. Map of Natal with markings for each measurement point in the first measurement campaign.
The colors indicate the traffic condition at the time of the measurement, as described in Table 1.

Table 1. Description of theTraffic variable.

Traffic Condition (Color) Speed Interval Description

Black 0 Indicates extremely slow traffic.
Red <20 km/h Traffic moves slowly.

Orange >20 km/h and <40 km/h Intermediate traffic flow.
Green >40 km/h Indicates that traffic is fast.

In addition to the traffic condition, each of the sampling points has different
characteristics. Hence, we measured the noise in many different areas of the city to represent
the different noise sources of each environment. We aimed to measure each traffic category
in different streets and times of the day. For example, for the Green condition, we collected
samples in the federal highway BR-101, which always presents fast but intense traffic flow
with multiple lanes and also measured in the coastal highway, which comparatively has
fewer cars and lanes but presents sources such as the wind and the ocean. In addition,
the measurements were done at different times of the day for each location in order to
represent the variations in traffic patterns throughout the day.

All measurements were obtained in asphalt with smooth road surface conditions
with no potholes or unevenness. The HVAC systems were turned off. The participants
were quiet during measurement, and all objects that could create noise during the car’s
movement were removed. Furthermore, to avoid bias in the impulsiveness analysis, we
removed from the dataset some of the samples that could represent outliers. We checked
each measured audio sample for highly impulsive events that are not part of the observed
variables or that could not be adequately represented by the amount of collected samples:
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• Car horns;
• Potholes or unevenness in the road;
• Speed bumps;
• Sudden braking or acceleration due to traffic, intersections, or traffic lights;
• Excessive noise from heavy vehicles;
• Noise from multiple motorcycles passing close by;
• Music and advertisements from other cars or establishments on the street;
• People talking around the vehicle;
• Noise from animals such as dogs, birds, and cicadas;
• Ambulance and police car sirens;
• Unidentified noise sources and other events.

While one can argue that many of the events listed above are common in a typical
traffic scenario, it should be noted that the main objective of this work is to analyze the
contribution of the controlled variables to the noise level inside a car and how these
variables affect the impulsiveness of this noise. For example, a car horn is an event that will
be impulsive and contribute significantly to the noise observed inside the car regardless of
the traffic conditions.

Figure 2. Map of Natal with markings for each measurement point in the second measurement
campaign. The colors indicate the traffic condition at the time of the measurement, as described
in Table 1.



Sensors 2022, 22, 1946 6 of 31

3.2. Controlled and Uncontrolled Variables

In addition to the traffic condition explained above, two other variables were controlled
during the campaigns, as presented in Table 2. They are the position of the car windows
and the maximum speed of the car at the moment during a measurement. These variables,
along with traffic conditions, were chosen based on our literature review and due to being
easily controllable. Care was taken to obtain noise samples for all combinations of these
variables. The car speed was always compatible with the speed interval of the traffic
conditions described in Table 1.

Table 2. Description of the controlled environment variables.

Variable Possible Values Notes

Windows positions Open; Closed All four windows on the same position.
Traffic Black; Red; Orange; Green Speed interval (see Table 1).
Speed 0–80 km/h Maximum value during measurement interval.

The three variables in Table 2, along with time and location, are the variables we
could control during our experiment. However, each measurement is affected by far
more variables. The model of the car, the type of road, the weather, the driver, the
number of people on the streets, and many other factors can affect the noise characteristic
inside the vehicle. Some of these variables have fixed values (such as the car model or
the absence of rain). For the other uncontrolled variables, care was taken to represent
their effects in the sample data. For instance, we drove through many different streets
and avenues to account for variations in the type of asphalt between roads. We expect
that the selected controlled variables will significantly affect the interior noise levels and
impulsiveness [32,34]. However, it is worth bearing in mind that other factors not accounted
for in this experiment may also influence the noise.

3.3. Measurement Setup

The measurement setup used is an adaption of the one presented in [76], which was
composed of an Analog-to-Digital Converter (ADC) AC108 embedded in an expansion
board for Raspberry Pi, called ReSpeaker Core v1 (MT7688) board (Figure 3 [77]). The
instrument’s specifications are described in Table 3. The recordings were stored using a
Raspberry Pi 3 (Model B), which also controlled the setup. Each microphone records a five
seconds-long audio sample, although only the samples from the first channel were used.

Table 3. Description of the ReSpeaker Core v1 specifications.

Specification Value

Microphone channels 4
ADC model AC108

Digital output I2S/TDM
System clock 19.2 MHz
Sampling rate 48 kHz

The car selected for the first campaign was a C4 Lounge (Figure 4), and the one used in
the second campaign was a C3 (Figure 5), which are both from Citroën and with automatic
transmission. The boards were positioned above the cars’ panels, as pictured in Figure 6.
This position was chosen to mimic that of microphones in vehicle multimedia systems.
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Figure 3. RespeakerCore v1 (MT7688) board used to record the acoustic noise inside the car.

Figure 4. Vehicle used in the first campaign.

Figure 5. Vehicle used in the second campaign.
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Figure 6. Position of the measurement setup above the panel (second campaign).

4. Statistical Methods

Our goal is to understand how the selected variables affect the characteristics of the
acoustic noise inside the vehicle, namely the noise levels and the impulsiveness. To evaluate
the first, the average power of each noise sample was computed, and statistical analysis
was performed to assess the most relevant variables. To evaluate impulsiveness, we fit the
noise data to the AWGN and alpha-stable models and compare their performance and how
each variable affects the distribution of the models’ parameters, as described in Figure 7.

Figure 7. Methodology flow chart.

4.1. Average Power

The average power of the measurements is computed for each individual acquisition
as follows:

PdBV = 20 · log

(
1
N

N

∑
n=1

x2[n]

)
, (1)

where N is the length of sampling, and x(n) is the voltage signal from the microphone.
Usually, the power of acoustic signals and noise is measured using specific tools, such

as a Sound Pressure Level (SPL) meter. We measured some sampling points with our
setup and an MSL-1352C (Minipa) SPL meter to verify the measured power levels, whose
specifications are described in Table 4. The meter was set to use A-weighting, slow response
(1 s) and a range of 30 to 130 dB, as instructed by the meter’s manual for measurement of
the SPL of an oscillating noise. The SPL was positioned near the ReSpeaker setup, in the
car’s panel, and acquired data simultaneously as the microphone in the ReSpeaker. Unlike
the ReSpeaker acquisition, the SPL measurements were manual.

Figure 8 compares the power levels measured by the instruments. Despite the
instrumentation errors present in this scheme, such as the positioning of the instruments
and the reading of the SPL meter by a human, we can observe a linear relationship between
the values measured by each instrument.
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Table 4. Description of the MSL-1352C SPL specifications.

Specification Value

Measurement range 30∼130 dB
Resolution 0.1 dB

Frequency response 31.5∼8.5 kHz
Precision (94 dB/1 kHz) ±1.5 dB

Data logger capacity 4422 samples

Figure 8. Comparison between power levels measured by the setup and the SPL meter.

4.2. Regression Analysis

Each noise sample has four features: average noise power, windows positions, traffic
conditions, and speed. Some of them are numeric in nature (power and speed), while the
others are categorical. The Window variable was encoded with 0 s and 1 s due to being a
binary variable. The Traffic variable is encoded in descending order of severeness, where
Green corresponds to 3, and Black corresponds to 0.

We employ tools from descriptive and inferential statistics to analyze how the average
power is related to the other variables. Boxplots are used to compare the power levels
between different categories and histograms and density curves to visualize how it is
distributed.

Next, we create linear regression models for the continuous and Traffic variables. The
objective of the models is to highlight the relations between the selected variables and the
power levels measured inside the car. The models obtained cannot be considered noise
models for the acoustic noise in this scenario, as there are not enough samples for this type
of characterization nor are sufficient measurements conditions being considered (such as
multiple models of vehicle, for instance). Nevertheless, the use of linear regression models
allows us to visualize the relations between the variables. Even if this relation is only
approximately linear, the models can identify and quantify the effect of input on the output
of a system.

Consider a set of N pair of observations (xi, yi) = (x1, y1), (x2, y2), ..., (xN , yN);
the simple linear regression model (with a single independent variable) for this set of
observations is given by:

yi = β0 + β1xi + εi, i = 1, 2, ..., N, (2)
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with y as the dependent or response variable, and x as the independent, explanatory, or
regression variable, and β0 and β1 as the regression or model coefficients [78]. The model
coefficients are estimated using the Ordinary Least Squares (OLS) method [78].

Three Goodness of Fit (GoF) metrics [79] are used to compare the results of the models:
Mean Squared Error (MSE), coefficient of determination (R2), and F-statistic. We use
the logistic regression model [79] for categorical data and the McFadden Pseudo-R2 [80]
coefficient as a GoF metric to compare the models.

4.3. Impulsive Noise and Alpha-Stable Model

One of the most ubiquitous noise models in communications systems is the AWGN
model, which is based on the Gaussian distribution. The use of the Gaussian distribution is
motivated by the Central Limit Theorem, which states that the distribution of the sample
mean of N independent and identically distributed (i.d.d.) random variables with finite
variance converges to a Gaussian distribution as N → ∞ [79]. Thus, the distribution is
suited for modeling the cumulative effect of many independent noise sources.

Despite its importance, the Gaussian model is not always the best choice to represent
the noise in a communication channel [61]. Impulsive phenomena, when the noise varies
subtly and greatly from the mean in a short period, can jeopardize the performance of
solutions and strategies based on the traditional Gaussian approach [62–64]. Impulsive
noise is present in several scenarios of communication systems, such as powerline
communications [81], OFDM in wireless networks [82], and sensor networks [83]. Unlike
the Gaussian, the alpha-stable distribution can have infinite variance, so it better represents
data with heavy tails [61,84].

The family of stable distributions, also known as Lévy’s alpha-stable distribution,
comprises a class of distributions that satisfy the stability property [73]: a random variable
X is said to be stable if for two independent instances X1 and X2 of X and for any positive
constants a and b, the variable aX1 + bX2 has the same distribution that the variable cX + d,
for c > 0 and d ∈ R.

In other words, a linear combination of i.d.d. stable variables will have the same
distribution, except possibly for the location and scale parameters. Another essential
property of the stable distributions is that they generalize the Central Limit Theorem.
Relaxing the constraint of finite variance, the limit of the sum of i.d.d. random variables
tends to a stable distribution. The Gaussian distribution and the traditional Central Limit
Theorem are special cases when the variances of the random variables are finite [73].

The alpha-stable distribution has several different parametrizations. As found in recent
literature [73], the most common form is to describe the distribution by its characteristic
function φ(t):

φ(t) = exp(jδt− γ|t|α[1 + jβsign(t)ω(t, α)]) (3)

and

ω(t, α) =

{
tan απ

2 , if α 6= 1
2
π log |t|, if α = 1

(4)

sign(t) =


1, if t > 0
0, if t = 0
−1, if t < 0

. (5)

The four parameters in the alpha-stable distribution are as follows:

• α, the characteristic exponent, satisfying 0 < α ≤ 2. It is the main shape parameter of
the distribution, describing the tails of the distribution. Smaller values of α indicate
a heavier tail, meaning a higher probability of extreme events. Conversely, values
approaching 2 indicate a behavior closer to that of a Gaussian distribution. When α = 2,
it is equivalent to a Gaussian distribution;
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• β, the skewness parameter, is limited to β ∈ [−1, 1]. It controls the skewness of the
distribution. For β = 0, the distribution is symmetric. If β > 0, then the distribution is
right-skewed. If β < 0, then the distribution is left-skewed;

• γ, the scale parameter, which is always a positive number (γ > 0). This parameter
behaves similarly to the variance in the Gaussian distribution. It determines the
dispersion around the location parameter. It should be noted that the variance of
an alpha-stable variable is only defined for α = 2;

• δ, the location parameter, which shifts the distribution to the left or to the right by an
amount δ ∈ R.

Lastly, we highlight that the distributions with β = 0 and δ = 0 form a particular family
of symmetric stable distributions known as Symmetric α-Stable (SαS). These distributions
share many characteristics with the Gaussian distribution. Both are continuous, unimodal,
and bell-shaped distributions. The main difference is in the decay of the tails: the Gaussian
curve has an exponential decay, while the SαS has an algebraic one [84]. These properties
make the SαS model a common choice to model problems in signal processing where the
distribution is similar to the Gaussian but with heavier tails [63,84,85].

To evaluate the degree of impulsiveness in the interior vehicle noise, as well as to
compare the performance of the two models, we estimate the parameters of a Gaussian
and a stable distribution fitted to all the collected samples. The fitting of the noise samples
to the models is obtained with Maximum Likelihood Estimation (MLE) [86].

The application of MLE for the Gaussian case is straightforward. In the case of the
stable distributions, for which no closed expression for the probability density function
exists, the MLE must be found with numerical methods and optimizations routines [73].
In this work, we computed the MLE using MATLAB, which bases its implementation on
the works of John P. Nolan [87,88]. To obtain a starting point to the optimization routine,
MATLAB uses the method described in [89]. In this approach, the four parameters are
derived in terms of five quantiles of the data. Although the accuracy of this method is
inferior, its low computational cost makes it convenient to provide a starting point for other
estimation techniques.

5. Results and Discussions

Table 5 shows the number of samples collected in each measurement campaign as
well as the encoding used for the variables Traffic and Window. There is a balanced amount
of samples for the two window position situations in both campaigns and in Campaign
1 for the traffic categories. In the case of Campaign 2, there is a higher amount of Black
category samples. The change in traffic patterns imposed by the COVID-19 pandemic
sanitary measures made it difficult to obtain samples in this category, as traffic became
lighter than usual for some of the roads where traffic jams usually happen. However, it
was possible to obtain an equivalent number of samples for the Black category to that of
Campaign 1.

In this section, we analyze the results using the methodology described in Section 4
and illustrated in Figure 7. The analyses were performed using acoustic signals measured
with setup and constraints described in Section 3.3 for each condition described in Table 2.
Finally, the evaluation metrics used are described in Sections 4.2 and 4.3.
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Table 5. Number of samples collected in each measurement campaign by traffic condition and position
of windows. The last row presents the encoding used to model the variables Traffic and Window.

Window Traffic
Total

Open Closed Black Red Orange Green

Number of samples for
the first campaign

95 99 47 51 51 45 194

Number of samples for
the second campaign

127 127 45 80 64 65 254

Encoding 1 0 0 1 2 3 -

5.1. Noise Power Level Analysis

Figure 9 shows the average power distributions of the collected noise samples for both
campaigns. The negative density in the second histogram is merely a consequence of its
mirroring for illustrative purposes. The range and distribution of values are similar for
both campaigns, and a visual inspection indicates that most samples are concentrated in
the center of the range.

The histograms show that the campaigns have measurements with compatible power
values. In the following subsections, an analysis of the average power in relation to the
other three variables of the study (traffic, window position, and speed) is carried out
individually, which is followed by an analysis of the three variables together.

Figure 9. Comparison of the distribution of the power levels measured in both campaigns. The
histograms were normalized, the total area of each being unitary. The negative density in the second
histogram is merely a consequence of its mirroring for illustrative purposes.

5.1.1. Traffic Analysis

Figure 10 presents the box diagrams of the power levels grouped by traffic conditions
for Campaigns 1 and 2, respectively. For both cases, the boxes are ordered from Black to
Green in ascending order of power, indicating that noise levels inside the car tend to increase
as traffic becomes less severe. The main difference between the results of the campaigns is
the greater variation in power in the first three traffic categories for the second campaign,
which is illustrated in its taller boxes and lines. For example, there is a greater intersection
between the power levels for the Yellow and Green categories in the second campaign, with
samples from the Yellow category reaching higher power levels.
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Figure 10. Box diagrams of power levels by traffic category for both measurement campaigns.

Despite these differences, both results indicate the same trend toward higher noise
levels associated with more fluid traffic conditions. These results suggest that there is some
significant correlation between the two variables. To assess this relation, a linear regression
model was built for each campaign in the form:

Traffic ≈ a0 + a1 · power, (6)

where the intercept variable is a0 and the coefficient of the explanatory variable (power
level) is a1. We chose to fit a linear model due to the ordered nature of the traffic data and
the trend implied in Figure 10.

The models obtained are shown in Figure 11. The circles represent the actual traffic
condition associated with each sample, while the diamonds represent the traffic predicted
by the model. Both models show that higher power levels imply a less severe traffic
condition, which is in accordance with the behavior shown in the box diagrams. The range
of predictions for each traffic category is centered around the correct value for the Traffic
variable, although some variation causes overlap between the categories. For instance, this
can be seen in the red diamonds centered around Traffic = 1.

A comparison between the two models in Figure 11 highlights the greater variability
of the data in Campaign 2, which can also be seen in the box diagrams. This is also reflected
in the GoF metrics listed in Table 6. The first model has a higher value for R2 and for the
F-Statistic and a lower value for MSE, confirming its better performance. In fact, the results
indicate that 72% of the power variability is explained by the variation in traffic in data
of the first campaign. This suggests a strong relationship between the variables and that
a large part of the observed indoor noise power is associated with the traffic level. The
high F value and its low p-value confirm the significance of this relation. Although the
results of the second model are inferior due to the higher dispersion of power in each traffic
condition, they too indicate a significant association between power and traffic, with 61%
of the variation explained by the model. In both campaigns, the MSE has a low value.
However, due to the categorical nature and scale of the traffic data, the MSE is not an
adequate GoF metric for the Traffic models.
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Table 6. Regression coefficients (with 95% confidence interval) and GoF metrics for the power and
traffic models.

Regression Coefficients Goodness of Fit

a0 a1 MSE R² F-Value Prob (F)

1st campaign 4.4942
(4.216–4.772)

0.0766
(0.070–0.083) 0.337 0.72 498.26 3.03× 10−55

2nd campaign 4.1012
(3.841–4.361)

0.0712
(0.064–0.078) 0.431 0.61 401.96 4.19× 10−54

Figure 11. Traffic and predictions using the linear model for both campaigns. Colors represent the
actual traffic conditions of each sample, which is in accordance with Table 1.

5.1.2. Window Analysis

Figure 12 presents the box diagrams for the power levels grouped by the position of
the car windows for both campaigns. Comparing the campaigns, the power levels for the
second are slightly higher than the first. Unlike the Traffic variable, the layout of the samples
is visually very similar between the two categories. In both campaigns, power levels tend
to be higher when the windows are open, which is expected, as there is more coupling of
outside noise inside the car. However, there is a significant overlap in values between the
two categories. For Campaign 1, only 8.42% of the measurements in the Open group have a
power greater than the maximum power in the Closed group, while for Campaign 2, the
percentage is 4.72%.
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Figure 12. Box diagrams of the average noise power of the samples grouped by the variable Window.

This implies few distinctions in power values when the car windows are open or
closed. This result goes against expectations, as the qualitative difference is significant when
perceived by a passenger or when listening to the recordings of this experiment. However,
this sensorily-perceived difference does not manifest itself in an expressive difference in the
average power level received by a microphone located close to the vehicle’s panel, which
can be advantageous for voice command applications.

To verify whether this observation has any bias in relation to the Traffic variable,
Figures 13 and 14 present the box diagrams of the samples grouped by traffic and window
position for both sets of measurements. Once more, the results for the two campaigns are
in agreement. The most significant difference between the two windows positions occurs
in the Black category when the vehicle is stopped in a traffic jam.

We speculate that in this case, the absence of movement of the car makes external
noises predominate, and the position of the windows becomes more significant than in
other scenarios. As it gains speed, the noise generated by the vehicle becomes more relevant,
so that for Red or Yellow traffic, the difference between the power levels is small between
both states of the windows. Finally, when the vehicle reaches a higher speed (category
Green), there is again a noise trend of higher power values when the windows are open.
It is speculated that at these speeds, the noise produced by the wind, thanks to the car’s
movement, has a more significant contribution.

Figure 13. Power levels box diagrams grouped by both Traffic and Window variables (fist campaign).
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Figure 14. Power levels box diagrams grouped by both Traffic and Window variables (second campaign).

Then, the overall effect observed is of slightly higher noise power when the windows
are open. As there is little distinction between the power levels of the groups, it is expected
that a model that takes into account only the average power of the samples will be unable to
represent the data well. Given the categorical and binary nature of the variable in question,
two logistic models are obtained in the following form:

window ∼ eb0+b1·power

1 + eb0+b1·power , (7)

where b0 and b1 are the model coefficients. Table 7 presents the coefficients and GoF
metrics, while Figure 15 shows the models obtained. Visually, it is clear that there is little
differentiation between the categories. If the models were used for a classification task, the
accuracy would be substandard. The Pseudo-R2 values of both models are low and close to
each other. These results suggest a weak influence of the window position on the measured
internal power. It is important to emphasize that this result considers all traffic categories.
Figures 13 and 14 show that the distinction between power levels is greater for extreme
traffic categories. Finally, in contrast to the Traffic variable, the performances of the Window
models are quite similar for the two measurement campaigns.

Figure 15. Window data and predictions using the logistic model for both campaigns.
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Table 7. Regression coefficients (with 95% confidence interval) and GoF metrics for the power and
window models.

Regression Coefficients Goodness of Fit

b0 b1 Pseudo-R²

1st campaign 1.2482 (0.254–2.242) 0.0329 (0.009–0.057) 0.0274

2nd campaign 1.6167 (0.771–2.463) 0.0458 (0.023–0.069 0.04704

5.1.3. Speed Analysis

The histogram in Figure 16 shows the speed distribution of the measurements from
both campaigns. There is a larger number of measurements for zero velocity. These
points correspond to the Black traffic category, when the car is stationary or at a very low
speed due to traffic jams. The speed of the car during measurement is linked to the traffic
condition at the time of measurement (Table 1). Therefore, there is a greater concentration
of measurements in the ranges between 0 and 20 km/h (Red), and 20 and 40 km/h (Orange),
when compared to the longer range of 40 to 80 km/h (Green). In both campaigns, we
sought to measure at different speeds to take into account the entire speed range of each
traffic level.

Figure 16. Comparison of the speed values for the samples between measurement campaigns. The
histograms were normalized, the total area of each being unitary. The negative density in the second
histogram is merely a consequence of its mirroring for illustrative purposes.

Of the three variables analyzed, speed is the only numerical one in nature. Therefore,
a linear regression model is obtained in the form:

speed ≈ c0 + c1 · power, (8)

where c0 and c1 are the regression coefficients. Figure 17 shows the predictions of the
models and the actual speed values, while Table 8 lists the GoF metrics. The figures indicate
that a higher speed implies higher noise levels, which is expected, as higher speeds result
in more engine noise and more vibrations in other parts of the vehicle.
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Figure 17. Speed data and predictions using the linear models.

Table 8. Regression coefficients (with 95% confidence interval) and GoF metrics for the power and
speed models.

Regression Coefficients Goodness of Fit

c0 c1 MSE R² F-Value Prob (F)

1st campaign 98.37
(91.23–105.51) 1.77 (1.60–1.94) 221.65 0.68 404.92 3.56× 10−49

2nd campaign 86.33
(79.81–92.85) 1.63 (1.46–1.81) 270.76 0.57 336.34 2.66× 10−48

Visually, both models show a good fit to the data. This is also confirmed by the GoF
metrics. The R2 value indicates that approximately 68% and 57% of the variation in power
is explained by the variation in speed in models 1 and 2, respectively. The high F-value and
the low p-value confirm that the relation between the variation in power and the variation
in speed expressed by the models is unlikely to result from chance.

Similar to what was discussed for the Traffic models, the dispersion of power levels is
greater in the Campaign 2 samples. The circles in Figure 17 illustrate the greater variability
of power levels in the second campaign in the speed range from 0 to 40 km/h. This interval
is in accordance with the greater variability in power values observed when comparing the
box diagrams shown in Figure 10 for the Black, Red, and Yellow conditions.

The models obtained for the variables Traffic and Speed are similar in appearance and
GoF metrics. On the other hand, the difference between the two measurement groups is
smaller for the Window variable. This set of results suggests that the average power level
measured inside the vehicle is generally more influenced by the car’s movement, which
depends on its speed and traffic conditions, than by external noise sources. Furthermore,
the similarity between the adjustments of the variables Traffic and Speed suggests a strong
correlation between the two, arising from the way traffic levels are defined in Table 1.
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5.1.4. Multiple Variable Analysis

The Window variable analysis demonstrates that the windows have a weak influence on
the vehicle noise level. Nonetheless, the traffic and speed variables contribute significantly
to the vehicle interior noise in the traffic and speed analyses. One way to check the strength
of the relationship between variables and noise level is to calculate their cross-correlation.
Figure 18 presents the correlation matrix for the two datasets. In both, noise power has a
high correlation with traffic and speed and a low correlation with window position.

Figure 18. Correlation matrix of the dataset for both measurement campaigns.

Figure 18 also shows a high correlation between Traffic and Speed. A high correlation is
to be expected due to how the traffic conditions are defined by Google (Section 3.1). In the
context of statistical modeling, the variables convey roughly the same information about
the noise power inside the vehicle. To better illustrate this redundancy, two models of the
average noise power are created using the other characteristics as independent variables
(Figure 19 and Table 9). The models are a linear regression with categorical and numerical
variables, in the form

power ≈d0 + d1 · speed + d2 · trafficred + d3 · trafficorange + d4 · trafficgreen

+ d5 ·windowopen ,
(9)

where d0 is the intercept; d1 is the coefficient of Speed; d2, d3, and d4 are the coefficients added
when the traffic condition is red, yellow, or green, respectively; and d5 is the coefficient
added when windows are open.

Table 9. Model coefficients and GoF metrics for the power model vs. other variables.

Regression Coefficients Goodness of Fit

d0 d1 d2 d3 d4 d5 MSE R² F-Value Prob (F)

1st campaign −55.72 7.44 13.56 16.45 4.492 0.170 35.63 0.766 123.01 2.50× 10−57

2nd campaign −52.69 6.09 12.61 9.92 5.87 0.27 39.59 0.713 123.086 4.21× 10−65

Coefficients d2, d3, and d4 from Equation (9) determine a base power level for each
traffic category. This is illustrated in the graphs above: the predictions are grouped
according to their traffic condition. Each group has two straight lines corresponding
to the two possible states of the Window variable. These lines are close together for all traffic
conditions, with a small difference between the two. This difference is compatible with
the box diagrams discussed previously, which indicate that the power tends to be slightly
higher when the windows are open. In fact, the variable Speed, related to the slope of the
eight line functions, is what determines the power in each group of traffic conditions.
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The high values of R2 in Table 9 indicate that most of the variation in noise power
is accounted for by the models. However, a comparison with the GoF metrics in
Sections 5.1.3 and 5.1.1 show that although the R2 increases greatly in the more complex
model, the F-value decreases with the addition of the other two variables. The Traffic
variable contributes little to the model due to its redundancy with Speed, while Window has
almost no relation to the response variable. We conclude that either the traffic categories or
the speed can be used as an explanatory variable for the noise power inside vehicles due to
the way traffic was defined in this work.

Figure 19. Power data grouped by traffic conditions, and predictions using the linear models with
Speed, Window, and Traffic as the explanatory variables. Colors represent the actual traffic conditions
of each sample, which are in accordance with Table 1.

5.2. Impulsiveness Evaluation

For this section, the alpha-stable and Gaussian distributions were fitted to each noise
sample using MLE. To calculate the fitting error for the two distributions, a histogram was
created based on the empirical cumulative distribution of each measurement. Then, the
Root Mean Squared Error (RMSE) was calculated between a probability density curve with
the parameters estimated by the MLE and the data histogram.

As in the first section, this analysis is split between the variable Traffic and the variable
Window. The variable Speed is omitted for clarity, since it would have redundant results
with the variable Traffic. For the stable distributions, we assume an SαS model and estimate
only the α and γ parameters.

5.2.1. Traffic Analysis

Figures 20 and 21 show, respectively, the distribution of the estimated parameters
α and γ of the alpha-stable distribution, which are grouped by traffic conditions. Figure 22
shows the distribution of the parameter σ of the Gaussian distribution. The parameter µ is
close to zero for all measurements, indicating no offset in the noise level.

In Figure 20, the estimated values in the categories Green, Yellow, and Red are closer
together and to α = 2 in Campaign 2 than in Campaign 1. The first campaign also has more
significant outliers, which have metrics with α < 1.8 across all traffic categories. This makes
the results of Campaign 1 more dispersed. The difference is even better seen by comparing
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the Kernel Density Estimation (KDE) curves, which are more spread out around α = 2 for
the first campaign.

Figure 20. Distribution of the estimated parameter α, from the alpha-stable distribution, grouped by
the traffic conditions. The KDE curves were obtained using a Gaussian kernel.

Figure 21. Distribution of the estimated parameter γ, from the alpha-stable distribution, grouped by
the traffic conditions. The KDE curves were obtained using a Gaussian kernel.
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Figure 22. Distribution of the estimated parameter σ, from the Gaussian distribution, grouped by the
traffic conditions. The KDE curves were obtained using a Gaussian kernel.

However, the results of both campaigns are compatible with the behavior of α across
the traffic categories. In general, the values are concentrated very close to α = 2. The
positions of the box diagrams and the fact that the KDE curves are centered close to this
value demonstrate this fact. This suggests that most of the measured samples present
behavior that can be well-represented by a Gaussian distribution, and, therefore, it can be
said that they present low impulsiveness. However, a significant number of noise samples
deviate from α = 2 and can be said to present some degree of impulsiveness. As with the
average power, this degree is ordered according to traffic categories: Green presents the
least impulsive behavior, with a greater proportion of samples close to α = 2, while the
Black category has the widest range of values. The Red and Yellow categories have a similar
distribution, being placed between the other two.

Combining this result with the one from Section 5.1.1, we speculate that a lower
degree of impulsiveness can be associated with a higher speed of the car. When in a Green
traffic situation, the continuous sound produced by the vehicle and the rolling noise are
more dominant in the composition of the internal acoustic noise, so that it tends to have a
characteristic closer to that of a Gaussian noise. Conversely, when a car stops in a traffic
jam, sources such as other vehicles passing in the adjacent lanes, vehicles braking beside
and behind the car, among other external sources, are more prevalent. These tend to be
more transitory in nature, contributing to an increase in the observed impulsiveness.

Therefore, assuming an AWGN model for the vehicle’s internal noise can be
detrimental to algorithms and applications that suffer performance degradation in the
presence of non-Gaussian noise. It is important to remember that in this study, sources of
noise such as potholes and horns, the noise produced by magazines and local businesses,
sounds generated by passengers, and events such as rain, among others, were disregarded.
Therefore, the impulsive nature described above is optimistic, justifying research on more
complex models that consider non-Gaussian behavior for the vehicular scenario.

The second estimated parameter of the alpha-stable model is the scale parameter
γ (Figure 21). An evaluation of the box diagrams shows that the distributions of values by
traffic category are in ascending order. This result is very similar to what was discussed
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about the average power in Section 5.1.1. Another similarity between the behavior of the
average power and γ is the difference between campaigns. Again, the dispersion of values
is greater in the second campaign, especially in the Yellow category, which is similar to the
comparison made between the campaigns in Figure 10.

In turn, the result for the estimation σ, in turn, shows great similarity with the
distributions of γ. In fact, these parameters have a similar nature, being related to the
dispersion of their respective probability distributions. In fact, for α = 2, the alpha-stable
distribution is equivalent to a Gaussian distribution with variance σ2 = 2γ. Observing the
distribution of the parameter α in Figure 20, the similarity in the shape of the distributions
of γ and σ is justified, since most of the measured signals have an α value close to 2.

The relation between average power, γ, and σ is illustrated in Figure 23, which graphs
power in relation to the other parameters. To obtain the curves, only data from the first
campaign were used, since a similar result can be shown for the second campaign. Both
curves follow a logarithm shape, with oscillations in the case of γ. In the AWGN model, the
noise variance is an estimator for its power. In contrast, variance and power are not defined
for the alpha-stable distribution (unless α = 2), meaning there is no direct association
between the dispersion parameter and power such as in the Gaussian case. However, γ is
still helpful to measure the noise level in a stable noise model. For instance, some authors
define a generalized version of the signal-to-noise ratio (GSNR) that takes into account the
power of a s(t) signal and the dispersion of an alpha-stable noise [63]:

GSNR = 10 log10

(
1

γM

M

∑
t=1
|s(t)|2

)
. (10)

Consequently, the results obtained for γ and σ reaffirm the conclusion that the fluidity
of traffic and the speed at which the vehicle can move due to this traffic are related to the
noise power levels received inside the vehicle.

Figure 23. Relation between average power and γ and σ. Curves were obtained using data from the
first measurement campaign.

5.2.2. Window Analysis

Figures 24–26 show, respectively, the distribution of the estimated parameters α, γ,
and σ, which are categorized by the Window variable. In accordance with the previous
section, most samples have an α value close to 2 in both campaigns and window positions,
and the dispersion is greater for the first campaign. However, unlike the Traffic variable,
the distribution of α is similar for both states of the windows.
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Figure 24. Distribution of the estimated parameter α, from the alpha-stable distribution, grouped by
Window. The KDE curves were obtained using a Gaussian kernel.

Figure 25. Distribution of the estimated parameter γ, from the alpha-stable distribution, grouped by
Window. The KDE curves were obtained using a Gaussian kernel.
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Figure 26. Distribution of the estimated parameter σ, from the alpha-stable distribution, grouped by
Window. The KDE curves were obtained using a Gaussian kernel.

Similarly, Figure 25 indicates little difference between the distribution of γ and σ for
the two positions of the car windows. There is only a trend of slightly higher values for
the open windows scenario, which is a result compatible with the average power analysis.
The results for the Window and Traffic variables lead to the conclusion that the position of
the car’s four windows has little influence on the level and degree of impulsiveness of the
observed internal noise. From the standpoint of an audio reception system, external factors
have less relevance to the internal noise composition when the vehicle is at higher speeds.
It is important to emphasize that these conclusions are valid for the scenario described in
Section 3.1.

5.2.3. RMSE Evaluation

Table 10 lists the Root-Mean-Squared Error (RMSE) fitting errors of the models in
all samples, comparing the performance of alpha-stable and Gaussian distributions. The
first line shows that in both campaigns, more than half of the samples had a lower RMSE
when modeled by an alpha-stable variable. In addition, the biggest absolute difference
of RMSE when the Gaussian model performs better is 0.0060. In contrast, this difference
for when the alpha-stable model has a superior performance is 1.1606 for Campaign 1
and 0.6124 for Campaign 2. Therefore, even when they are inferior in terms of RMSE, the
alpha-stable models approximate the performance of Gaussian models, while the opposite
does not occur.

This is due to the greater flexibility of the alpha-stable variable. By adjusting the tail
of its distribution, it is able to represent different degrees of impulsiveness, including the
Gaussian case with α = 2. Finally, the average RMSE of all samples is smaller for the
alpha-stable option in both measurement groups. Hence, the alpha-stable distribution
achieves a better fit in an overall assessment of the scenario.
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Table 10. Comparison of RMSE values for the fitting of alpha-stable and Gaussian models.

First Campaign Second Campaign

Proportion of samples with
a smaller RSME for the alpha-stable model

71.13% 61.81%

Greatest difference in RSME
when alpha-stable model performs better

1.1606 0.6124

Greatest difference in RSME
when Gaussian model performs better

0.0060 0.0060

Average RMSE for alpha-stable model 0.3136 0.1930

Average RMSE for Gaussian model 0.3660 0.2064

5.3. Considerations about Window Size for Estimation

The window size is an important parameter for any signal processing system. In
the context of impulsive noise, the choice of the number of samples used to estimate
the parameters of an alpha-stable probability distribution must take into account the
trade-off between latency and stability of the estimation. Larger windows lead to faster
convergence of parameters, while with smaller windows, the estimation tends to vary
more depending on whether or not impulsive events are included in the observed interval.
However, larger windows can represent a signaling cost that can make delay-sensitive
applications unfeasible.

The effect of window size on the estimation of the α parameter by MLE can be seen in
Figure 27. Two of the measurements with 240,000 samples each were divided into fixed
windows, ranging from 1000 to 21,000 samples with a step of 2000 samples. The figure
shows the mean and variance of the estimated value of α for the computation of each
window size. In the first curve, obtained from a measurement of the Green traffic category,
the estimated value rapidly converges to its final value, which is close to α = 2, which is the
value obtained when all samples are used. Likewise, the variation between the estimated
values quickly becomes negligible. In the second curve, from a measurement of the Black
category, the variation in the estimated value is greater than for the first curve.

However, in both cases, the variance of the estimator decreases as the number of
samples included in the window increases. This is a desirable feature for an estimator [86].
The curves illustrate the trade-off between convergence to an optimal value and the
processing time involved in the choice of window size. The convergence of the estimation
depends on the degree of the impulsiveness of the measured signal and on the inclusion or
not of impulsive events in the window [76].

Another important factor to consider for windows with few samples is the possibility
of numerical errors due to an insufficient amount of samples. For some of the noise samples
tested for the convergence curves of α, it was not possible to obtain results for a window
size of 1000 samples. In these cases, the error is associated with the convergence of the
parameter γ. As discussed in Section 4, the use of MLE in MATLAB for the alpha-stable
distribution depends on the choice of initial values to start the optimization routine. As
these values are chosen based on quantiles of the signal, the number of samples in the
window has a great influence on the result of the quantile estimation algorithm [60]. In the
case of the signals for which the error occurs, the optimizer is not able to find a valid value
of γ within the number of iterations imposed by the optimization routine, returning γ = 0.
Therefore, the estimation for very small windows may be unfeasible. In the tests performed
in this work, the smallest size for which all estimators converged to a valid result was for a
window of 3000 samples.
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Figure 27. Estimation stability for different window sizes. The central value is the mean of the
estimation, and the error bars are the variance. The first curve corresponds to a measurement from
the Green traffic group, and the second curve belongs to a Black measurement.

6. Final Remarks

Internal acoustic noise is an important factor in vehicle design. Interest in this topic
grows due to concern with health and acoustic comfort issues and with the emergence of
autonomous vehicles and new vehicular applications such as more advanced multimedia
centers. Although there is extensive literature on the subject, most of the works focus
on the study of the contribution to the noise of specific vehicle components in controlled
environments such as test laboratories and under the perspective of psychoacoustics.
In this work, an experimental evaluation of in-vehicle noise was presented, in which
several noise samples were collected in two separate measurement campaigns in real traffic
scenarios, with a setup elaborated from the perspective of multimedia systems and sound
processing applications.

The results found in both measurement campaigns show a strong correlation between
the traffic level and the internal noise level. More fluid traffic, or equivalently a vehicle
moving at higher speeds, results in higher average power levels. In contrast, the position of
the car’s windows showed a weak influence on the power level measured inside the vehicle.
It is important to emphasize that this result, although counter-intuitive, was obtained from
the perspective of an audio capture system. It was also shown that from the point of view
of statistical modeling, speed and traffic are redundant variables, as the latter is defined
from the former.

Moreover, a comparison of the AWGN and alpha-stable models was made in the
modeling of the collected noise data. The comparison shows that models based on the
stable distribution have a superior fit. An evaluation of the parameter α of the alpha-stable
models revealed that although the internal noise has a predominant Gaussian characteristic,
there is a relevant degree of impulsiveness. The frequency of these impulsive phenomena
tends to be higher for heavier traffic situations. Thus, the alpha-stable model, particularly
the SαS model, is an appropriate option for representing this type of noise [63,76,84].

The results above lead to the conclusion that the most relevant factors for the
characteristics of internal acoustic noise are internal to the vehicle. It is speculated that
higher speeds lead to greater noise produced by the engine and other components of the car
and by the wind, reducing the influence of other external factors, even when the vehicle’s
windows are open. In addition, the observed internal noise has significant impulsiveness,
which again tends to have less relevance when the car is at higher speeds. Therefore, efforts
to mitigate internal noise, such as studies related to active noise control and optimizing
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vehicle structure systems, should mind the noise produced by the vehicle itself, and the
design of applications such as voice commands and source location should consider an
impulsive noise model.

In future works, the authors consider evaluating the vehicular interior noise in the
presence of speech signals, dealing with source separation systems. In addition, we intend
to extend our experiment with changes to the setup regarding the microphone’s position
and directivity. Such studies may provide new insights to comprehend and mitigate
the noise in a vehicle interior environment, which will contribute to the development of
in-vehicle voice and audio applications.

Author Contributions: Conceptualization, D.F., D.P., V.A.d.S.J. and A.M.; Data curation, D.F., D.P.,
H.L.O. and L.P.; Formal analysis, D.F. and D.P.; Investigation, D.F., D.P., H.L.O. and L.P.; Methodology,
D.F. and D.P.; Supervision, V.A.d.S.J. and A.M.; Visualization, D.F., H.L.O. and L.P.; Writing—original
draft, D.F. and D.P.; Writing—review & editing, V.A.d.S.J. and A.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001.

Data Availability Statement: The data collected and presented in this paper are available in [4].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kinsella, B.; Mutchler, A. In-Car Voice Assistant Consumer Report; Technical report; Voicebot: Washington, DC, USA, 2019.
2. Chen, S.; Gu, F.; Liang, C.; Meng, H. Review on Active Noise Control Technology for α-Stable Distribution Impulsive Noise. Circ.

Syst. Signal Process. 2021, 41, 1–38. [CrossRef]
3. Flor, D.; Pena, D.; Pena, L.; de Sousa, V.A.; Martins, A. Characterization of Noise Level Inside a Vehicle under Different

Conditions. Sensors 2020, 20, 2471. [CrossRef] [PubMed]
4. Pena, D.; Sousa, V.; Pena, L.; de Lucena Flor, D. Database of Acoustic Noise Power Levels in a Vehicle Interior under Different

Conditions. Available online: https://doi.org/10.6084/m9.figshare.11370885.v1 (accessed on 1 February 2022).
5. Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on

health. Lancet 2014, 383, 1325–1332. [CrossRef]
6. Rudolph, K.E.; Shev, A.; Paksarian, D.; Merikangas, K.R.; Mennitt, D.J.; James, P.; Casey, J.A. Environmental noise and sleep

and mental health outcomes in a nationally representative sample of urban US adolescents. Environ. Epidemiol. 2019, 3, e056.
[CrossRef]

7. Sygna, K.; Aasvang, G.M.; Aamodt, G.; Oftedal, B.; Krog, N.H. Road traffic noise, sleep and mental health. Environ. Res. 2014,
131, 17–24. [CrossRef]

8. Lercher, P.; Evans, G.W.; Meis, M. Ambient Noise and Cognitive Processes among Primary Schoolchildren. Environ. Behav. 2003,
35, 725–735. [CrossRef]

9. Roswall, N.; Raaschou-Nielsen, O.; Ketzel, M.; Gammelmark, A.; Overvad, K.; Olsen, A.; Sørensen, M. Long-term residential
road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction—A Danish cohort study. Environ. Res.
2017, 156, 80–86. [CrossRef]

10. Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and
ischemic heart disease: A meta-analysis. Environ. Res. 2015, 138, 372–380. [CrossRef]

11. Roswall, N.; Raaschou-Nielsen, O.; Jensen, S.S.; Tjønneland, A.; Sørensen, M. Long-term exposure to residential railway and road
traffic noise and risk for diabetes in a Danish cohort. Environ. Res. 2018, 160, 292–297. [CrossRef]

12. Huang, H.; Wu, J.; Huang, X.; Yang, M.; Ding, W. A generalized inverse cascade method to identify and optimize vehicle interior
noise sources. J. Sound Vib. 2020, 467, 115062. [CrossRef]

13. Numerical and experimental-based framework for vibro-acoustic coupling investigation on a vehicle door in the slamming event.
Mech. Syst. Signal Process. 2021, 158, 107759. [CrossRef]

14. Horne, D.; Jashami, H.; Monsere, C.M.; Kothuri, S.; Hurwitz, D.S. Evaluating In-Vehicle Sound and Vibration during Incursions
on Sinusoidal Rumble Strips. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 154–166. [CrossRef]

15. Liu, N.; Sun, Y.; Wang, Y.; Sun, P.; Li, W.; Guo, H. Mechanism of interior noise generation in high-speed vehicle based on
anti-noise operational transfer path analysis. J. Automob. Eng. 2021, 235, 273–287. [CrossRef]

16. Lu, M.H.; Jen, M.U.; de Klerk, D. Case study: Separating source contributions of vehicle interior noise by operational transfer
path analysis. Noise Control. Eng. J. 2021, 69, 39–52. [CrossRef]

17. Deng, J.; Sun, J.; Li, A. Analysis and Optimization of Vehicle Interior Noise Caused by Tire Excitation. In Proceedings of China SAE
Congress 2018: Selected Papers; (China SAE); Springer: Singapore, 2020; pp. 723–735.

http://doi.org/10.1007/s00034-021-01814-6
http://dx.doi.org/10.3390/s20092471
http://www.ncbi.nlm.nih.gov/pubmed/32349298
https://doi.org/10.6084/m9.figshare.11370885.v1
http://dx.doi.org/10.1016/S0140-6736(13)61613-X
http://dx.doi.org/10.1097/EE9.0000000000000056
http://dx.doi.org/10.1016/j.envres.2014.02.010
http://dx.doi.org/10.1177/0013916503256260
http://dx.doi.org/10.1016/j.envres.2017.03.019
http://dx.doi.org/10.1016/j.envres.2015.02.023
http://dx.doi.org/10.1016/j.envres.2017.10.008
http://dx.doi.org/10.1016/j.jsv.2019.115062
http://dx.doi.org/10.1016/j.ymssp.2021.107759
http://dx.doi.org/10.1177/0361198120967947
http://dx.doi.org/10.1177/0954407020937219
http://dx.doi.org/10.3397/1/37694


Sensors 2022, 22, 1946 29 of 31

18. Almalkawi, I.T.; Guerrero Zapata, M.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless Multimedia Sensor Networks: Current Trends
and Future Directions. Sensors 2010, 10, 6662–6717. [CrossRef]

19. Wang, X.; Ma, J.J.; Ding, L.; Bi, D.W. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks. Sensors
2007, 7, 2779–2807. [CrossRef] [PubMed]

20. Jennehag, U.; Forsstrom, S.; Fiordigigli, F. Low Delay Video Streaming on the Internet of Things Using Raspberry Pi. Electronics
2016, 5, 60. [CrossRef]

21. Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT Solution for Smart Cities’ Pollution Monitoring and the Security Challenges.
Sensors 2019, 19, 3401. [CrossRef]

22. Kordov, K. A Novel Audio Encryption Algorithm with Permutation-Substitution Architecture. Electronics 2019, 8, 530. [CrossRef]
23. Liu, L.; Han, Z.; Fang, L.; Ma, Z. Tell the Device Password: Smart Device Wi-Fi Connection Based on Audio Waves. Sensors 2019,

19, 618. [CrossRef] [PubMed]
24. Kuhn, T.; Jameel, A.; Stumpfle, M.; Haddadi, A. Hybrid in-car speech recognition for mobile multimedia applications. In

Proceedings of the 1999 IEEE 49th Vehicular Technology Conference (Cat. No.99CH36363), Houston, TX, USA, 16–20 May 1999;
Volume 3. [CrossRef]

25. Higuchi, M.; Shinohara, S.; Nakamura, M.; Mitsuyoshi, S.; Tokuno, S.; Omiya, Y.; Hagiwara, N.; Takano, T. An effect of noise
on mental health indicator using voice. In Proceedings of the 2017 International Conference on Intelligent Informatics and
Biomedical Sciences (ICIIBMS), Okinawa, Japan, 24–26 November 2017. [CrossRef]

26. Khan, S.; Akmal, H.; Ali, I.; Naeem, N. Efficient and unique learning of in-car voice control for engineering education. In
Proceedings of the 2017 International Multi-topic Conference (INMIC), Lahore, Pakistan, 24–26 November 2017; pp. 1–6.
[CrossRef]

27. Tremoulet, P.D.; Seacrist, T.; Ward McIntosh, C.; Loeb, H.; DiPietro, A.; Tushak, S. Transporting Children in Autonomous Vehicles:
An Exploratory Study. Hum. Factors J. Hum. Factors Ergon. Soc. 2019, 62, 278–287. [CrossRef] [PubMed]

28. Chen, S.C. Multimedia for Autonomous Driving. IEEE Multimed. 2019, 26, 5–8. [CrossRef]
29. Doleschal, F.; Rottengruber, H.; Verhey, J.L. Influence parameters on the perceived magnitude of tonal content of electric vehicle

interior sounds. Appl. Acoust. 2021, 181, 108155. [CrossRef]
30. Liao, X.; Zheng, S. Quantification and characterization of the role of subjective preferences on vehicle acceleration sound quality.

Mech. Syst. Signal Process. 2020, 138, 106549. [CrossRef]
31. Swart, D.; Bekker, A. The relationship between consumer satisfaction and psychoacoustics of electric vehicle signature sound.

Appl. Acoust. 2019, 145, 167–175. [CrossRef]
32. Huang, H.B.; Huang, X.R.; Yang, M.L.; Lim, T.C.; Ding, W.P. Identification of vehicle interior noise sources based on wavelet

transform and partial coherence analysis. Mech. Syst. Signal Process. 2018, 109, 247–267. [CrossRef]
33. Jung, W.; Elliott, S.J.; Cheer, J. Local active control of road noise inside a vehicle. Mech. Syst. Signal Process. 2019, 121, 144–157.

[CrossRef]
34. Vanherpe, F.; Baresch, D.; Lafon, P.; Bordji, M. Wavenumber-Frequency Analysis of the Wall Pressure Fluctuations in the Wake of

a Car Side Mirror. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference),
Portland, Oregon, 5–8 June 2011. [CrossRef]

35. Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014,
29, 79–87. [CrossRef]

36. Pizzo, A.D.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized
pavements. Appl. Acoust. 2020, 159, 107080. [CrossRef]

37. Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of
a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226. [CrossRef]

38. Praticò, F.G.; Anfosso-Lédée, F. Trends and Issues in Mitigating Traffic Noise through Quiet Pavements. Procedia-Soc. Behav. Sci.
2012, 53, 203–212. [CrossRef]

39. Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Bianco, F.; Chetoni, M. Performance Assessment of Low-Noise Road Surfaces in the
Leopoldo Project: Comparison and Validation of Different Measurement Methods. Coatings 2015, 5, 3–25. [CrossRef]

40. Shin, T.J.; Park, D.C.; Lee, S.K. Objective evaluation of door-closing sound quality based on physiological acoustics. Int. J.
Automot. Technol. 2013, 14, 133–141. [CrossRef]

41. Parizet, E.; Guyader, E.; Nosulenko, V. Analysis of car door closing sound quality. Appl. Acoust. 2008, 69, 12–22. [CrossRef]
42. Li, Q.; Qiao, F.; Yu, L.; Shi, J. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs

and engine operation. J. Air Waste Manag. Assoc. 2018, 68, 576–587. [CrossRef]
43. Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl.

Acoust. 2017, 124, 11–19. [CrossRef]
44. Morgan, C.D.; Naganarayana, B.P.; Shankar, S. Comparative Evaluation of Seat Belt Retractor Websense Mechanism Rattle Noise.

SAE Trans. 2004, 113, 127–134.
45. Yoshida, J.; Inoue, A. Road & wind noise contribution separation using only interior noise having multiple sound

sources—Accuracy improvement and permutation solution. Mech. Eng. J. 2017, 4, 1700165. [CrossRef]
46. Talay, E.; Altinisik, A. The effect of door structural stiffness and flexural components to the interior wind noise at elevated vehicle

speeds. Appl. Acoust. 2019, 148, 86–96. [CrossRef]

http://dx.doi.org/10.3390/s100706662
http://dx.doi.org/10.3390/s7112779
http://www.ncbi.nlm.nih.gov/pubmed/28903261
http://dx.doi.org/10.3390/electronics5030060
http://dx.doi.org/10.3390/s19153401
http://dx.doi.org/10.3390/electronics8050530
http://dx.doi.org/10.3390/s19030618
http://www.ncbi.nlm.nih.gov/pubmed/30717181
http://dx.doi.org/10.1109/VETEC.1999.778396
http://dx.doi.org/10.1109/ICIIBMS.2017.8279690
http://dx.doi.org/10.1109/INMIC.2017.8289467
http://dx.doi.org/10.1177/0018720819853993
http://www.ncbi.nlm.nih.gov/pubmed/31268359
http://dx.doi.org/10.1109/MMUL.2019.2935397
http://dx.doi.org/10.1016/j.apacoust.2021.108155
http://dx.doi.org/10.1016/j.ymssp.2019.106549
http://dx.doi.org/10.1016/j.apacoust.2018.09.019
http://dx.doi.org/10.1016/j.ymssp.2018.02.045
http://dx.doi.org/10.1016/j.ymssp.2018.11.003
http://dx.doi.org/10.2514/6.2011-2936
http://dx.doi.org/10.1016/j.trd.2014.04.004
http://dx.doi.org/10.1016/j.apacoust.2019.107080
http://dx.doi.org/10.1016/j.trd.2017.07.002
http://dx.doi.org/10.1016/j.sbspro.2012.09.873
http://dx.doi.org/10.3390/coatings5010003
http://dx.doi.org/10.1007/s12239-013-0015-1
http://dx.doi.org/10.1016/j.apacoust.2006.09.004
http://dx.doi.org/10.1080/10962247.2017.1350213
http://dx.doi.org/10.1016/j.apacoust.2017.03.015
http://dx.doi.org/10.1299/mej.17-00165
http://dx.doi.org/10.1016/j.apacoust.2018.12.005


Sensors 2022, 22, 1946 30 of 31

47. Volandri, G.; Di Puccio, F.; Forte, P.; Mattei, L. Psychoacoustic analysis of power windows sounds: Correlation between subjective
and objective evaluations. Appl. Acoust. 2018, 134, 160–170. [CrossRef]

48. Wang, Y.; Shen, G.; Xing, Y. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial
neural network. Mech. Syst. Signal Process. 2014, 45, 255–266. [CrossRef]

49. Pietila, G.; Lim, T.C. Intelligent systems approaches to product sound quality evaluations—A review. Appl. Acoust. 2012,
73, 987–1002. [CrossRef]

50. Huang, X.; Huang, H.; Wu, J.; Yang, M.; Ding, W. Sound quality prediction and improving of vehicle interior noise based on deep
convolutional neural networks. Expert Syst. Appl. 2020, 160, 113657. [CrossRef]

51. Park, J.H.; Kang, Y.J. Evaluation Index for Sporty Engine Sound Reflecting Evaluators’ Tastes, Developed Using K-means Cluster
Analysis. Int. J. Automot. Technol. 2020, 21, 1379–1389. [CrossRef]

52. Wang, Y.; Guo, H.; Feng, T.; Ju, J.; Wang, X. Acoustic behavior prediction for low-frequency sound quality based on finite element
method and artificial neural network. Appl. Acoust. 2017, 122, 62–71. [CrossRef]

53. Puyana Romero, V.; Maffei, L.; Brambilla, G.; Ciaburro, G. Acoustic, Visual and Spatial Indicators for the Description of the
Soundscape of Waterfront Areas with and without Road Traffic Flow. Int. J. Environ. Res. Public Health 2016, 13, 934. [CrossRef]

54. Bravo-Moncayo, L.; Lucio-Naranjo, J.; Chávez, M.; Pavón-García, I.; Garzón, C. A machine learning approach for traffic-noise
annoyance assessment. Appl. Acoust. 2019, 156, 262–270. [CrossRef]

55. Yin, X.; Fallah-Shorshani, M.; McConnell, R.; Fruin, S.; Franklin, M. Predicting Fine Spatial Scale Traffic Noise Using Mobile
Measurements and Machine Learning. Environ. Sci. Technol. 2020, 54, 12860–12869. [CrossRef]

56. Huang, H.; Wu, J.; Lim, T.C.; Yang, M.; Ding, W. Pure electric vehicle nonstationary interior sound quality prediction based on
deep CNNs with an adaptable learning rate tree. Mech. Syst. Signal Process. 2021, 148, 107170. [CrossRef]

57. Qiu, Y.; Zhou, E.; Xue, H.; Tang, Q.; Wang, G.; Zhou, B. Analysis on vehicle sound quality via deep belief network and
optimization of exhaust system based on structure-SQE model. Appl. Acoust. 2021, 171, 107603. [CrossRef]

58. Wang, Z.; Li, P.; Liu, H.; Yang, J.; Liu, S.; Xue, L. Objective sound quality evaluation for the vehicle interior noise based on
responses of the basilar membrane in the human ear. Appl. Acoust. 2021, 172, 107619. [CrossRef]

59. Liu, Y.; Lu, W.; Zhang, Q.; Wang, X.; Yin, X.; Hou, H. An Efficient Method for Prediction of the Flow-induced Vehicle Interior
Noise. J. Phys. Conf. Ser. 2020, 1650, 022114. [CrossRef]

60. Hägglund, K. Symmetric alpha-Stable Adapted Demodulation and Parameter Estimation. Master’s Thesis, Lulea University of
Technology, Lulea, Sweden, 2018.

61. Nikias, C.; Shao, M. Recent Advances in Signal Processing with α-Stable Distributions. IFAC Proc. Vol. 1994, 27, 65–70. [CrossRef]
62. Yardimci, Y.; Cetin, A.; Cadzow, J. Robust direction-of-arrival estimation in non-Gaussian noise. IEEE Trans. Signal Process. 1998,

46, 1443–1451. [CrossRef]
63. Georgiou, P.G. Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Trans.

Multimed. 1999, 1, 291–301. [CrossRef]
64. Georgiou, P.; Kyriakakis, C. Robust maximum likelihood source localization: The case for sub-Gaussian versus Gaussian. IEEE

Trans. Audio Speech Lang. Process. 2006, 14, 1470–1480. [CrossRef]
65. Guo, M.; Sun, Y.; Dai, J.; Chang, C. Robust DOA estimation for burst impulsive noise. Digit. Signal Process. 2021, 114, 103059.

[CrossRef]
66. Figueredo, M.G.F.; Pena, D.d.S.; Filho, C.A.d.L.; Dória, M.F.d.S.; Martins, A.d.M.; Sousa Jr, V.A.d. Análise de Desempenho de

Métodos de DOA Sujeitos a Modelos de Ruído Impulsivo com Misturas Gaussinas. Os impactos de estudos voltados para as
ciências exatas. Braz. J. 2020, 1, 391–419. [CrossRef]

67. Figueredo, M.G.F.; Pena, D.d.S.; Lima Filho, C.A.; Dória, M.F.d.S.; Martins, A.d.M.; Sousa, V.A., Jr. Uma ferramenta de
prototipagem para análise de técnicas de estimação de direção de chegada. Braz. J. Dev. 2020, 6, 28331–28342. [CrossRef]

68. Pena, D.; Lima, A.; de Sousa Jr, V.; Silveira, L.; Martins, A. Robust time delay estimation based on non-Gaussian impulsive
acoustic channel. J. Commun. Inf. Syst. 2020, 35, 86–89. [CrossRef]

69. Liu, H.; Zhang, R.; Zhou, Y.; Jing, X.; Truong, T.K. Speech Denoising Using Transform Domains in the Presence of Impulsive and
Gaussian Noises. IEEE Access 2017, 5, 21193–21203. [CrossRef]

70. Sasaoka, N.; Akamatsu, E.; Kawamara, A.; Hayasaka, N.; ITOH, Y. 4th Order Moment-Based Linear Prediction for Estimating
Ringing Sound of Impulsive Noise in Speech Enhancement. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2020,
E103.A, 1248–1251. [CrossRef]

71. Rajala, V.; Hongisto, V. Annoyance penalty of impulsive noise—The effect of impulse onset. Build. Environ. 2020, 168, 106539.
[CrossRef]

72. Schaffeld, T.; Schnitzler, J.G.; Ruser, A.; Woelfing, B.; Baltzer, J.; Siebert, U. Effects of multiple exposures to pile driving noise on
harbor porpoise hearing during simulated flights—An evaluation tool. J. Acoust. Soc. Am. 2020, 147, 685–697. [CrossRef]

73. Nolan, J.P. Univariate Stable Distributions; Springer: Berlin/Heidelberg, Germany, 2020. [CrossRef]
74. Nolan, J.P. Bibliography on Stable Distributions, Processes and Related Topics. 2006. Available online: https://edspace.american.

edu/jpnolan/wp-content/uploads/sites/1720/2021/07/StableBibliography.pdf (accessed on 9 September 2021).
75. Pokorný, P. Determining Traffic Levels in Cities Using Google Maps. In Proceedings of the 2017 Fourth International Conference

on Mathematics and Computers in Sciences and in Industry (MCSI), Corfu, Greece, 24–27 August 2017; pp. 144–147. [CrossRef]

http://dx.doi.org/10.1016/j.apacoust.2017.11.020
http://dx.doi.org/10.1016/j.ymssp.2013.11.001
http://dx.doi.org/10.1016/j.apacoust.2012.04.012
http://dx.doi.org/10.1016/j.eswa.2020.113657
http://dx.doi.org/10.1007/s12239-020-0130-8
http://dx.doi.org/10.1016/j.apacoust.2017.02.009
http://dx.doi.org/10.3390/ijerph13090934
http://dx.doi.org/10.1016/j.apacoust.2019.07.010
http://dx.doi.org/10.1021/acs.est.0c01987
http://dx.doi.org/10.1016/j.ymssp.2020.107170
http://dx.doi.org/10.1016/j.apacoust.2020.107603
http://dx.doi.org/10.1016/j.apacoust.2020.107619
http://dx.doi.org/10.1088/1742-6596/1650/2/022114
http://dx.doi.org/10.1016/S1474-6670(17)47693-2
http://dx.doi.org/10.1109/78.668808
http://dx.doi.org/10.1109/6046.784467
http://dx.doi.org/10.1109/TSA.2005.860846
http://dx.doi.org/10.1016/j.dsp.2021.103059
http://dx.doi.org/10.35587/brj.ed.0000606
http://dx.doi.org/10.34117/bjdv6n5-326
http://dx.doi.org/10.14209/jcis.2020.9
http://dx.doi.org/10.1109/ACCESS.2017.2759142
http://dx.doi.org/10.1587/transfun.2020EAL2005
http://dx.doi.org/10.1016/j.buildenv.2019.106539
http://dx.doi.org/10.1121/10.0000595
http://dx.doi.org/10.1007/978-3-030-52915-4
https://edspace.american.edu/jpnolan/wp-content/uploads/sites/1720/2021/07/StableBibliography.pdf
https://edspace.american.edu/jpnolan/wp-content/uploads/sites/1720/2021/07/StableBibliography.pdf
http://dx.doi.org/10.1109/MCSI.2017.33


Sensors 2022, 22, 1946 31 of 31

76. Pena, D.; Lima, C.; Dória, M.; Pena, L.; Martins, A.V., Jr. Acoustic Impulsive Noise Based on Non-Gaussian Models: An
Experimental Evaluation. Sensors 2019, 19, 2827. [CrossRef]

77. Respeaker. ReSpeaker 4 Mic Array for Raspberry Pi. 2019. Available online: https://respeaker.io/4_mic_array/ (accessed on 15
March 2021).

78. Stigler, S.M. Gauss and the Invention of Least Squares. Ann. Stat. 1981, 9, 465–474. [CrossRef]
79. Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Cengage Learning: Boston, MA, USA, 2011.
80. Menard, S. Coefficients of Determination for Multiple Logistic Regression Analysis. Am. Stat. 2000, 54, 17–24. [CrossRef]
81. Bai, L.; Tucci, M.; Barmada, S.; Raugi, M.; Zheng, T. Impulsive Noise Characterization in Narrowband Power Line Communication.

Energies 2018, 11, 863. [CrossRef]
82. Landa, I.; Díez-Bravo, A.; Velez, M.; Arrinda, A. Influence of impulsive noise from lifts on orthogonal frequency-division

multiplexing digital radio mondiale signals. IET Commun. 2020, 14, 111–116. [CrossRef]
83. Alam, M.S.; Kaddoum, G.; Agba, B.L. Performance Analysis of Distributed Wireless Sensor Networks for Gaussian Source

Estimation in the Presence of Impulsive Noise. IEEE Signal Process. Lett. 2018, 25, 803–807. [CrossRef]
84. Shao, M.; Nikias, C. Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE

1993, 81, 986–1010. [CrossRef]
85. Belkacemi, H.; Marcos, S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter. Signal

Process. 2007, 87, 1547–1558. [CrossRef]
86. Scharf, L.L. Statistical Signal Processing-Detection, Estimation and Time Series Analysis, 5th ed.; Addison-Wesley Publishing Company:

Boston, MA, USA, 1991.
87. Nolan, J.P. Numerical calculation of stable densities and distribution functions. Commun. Stat. Stoch. Model. 1997, 13, 759–774.

[CrossRef]
88. Nolan, J.P. Maximum Likelihood Estimation and Diagnostics for Stable Distributions. In Lévy Processes: Theory and Applications;

Barndorff-Nielsen, O.E., Resnick, S.I., Mikosch, T., Eds.; Birkhäuser Boston: Boston, MA, USA, 2001; pp. 379–400.
89. McCulloch, J.H. Simple consistent estimators of stable distribution parameters. Commun. Stat.-Simul. Comput. 1986, 15, 1109–1136.

[CrossRef]

http://dx.doi.org/10.3390/s19122827
https://respeaker.io/4_mic_array/
http://dx.doi.org/10.1214/aos/1176345451
http://dx.doi.org/10.1080/00031305.2000.10474502
http://dx.doi.org/10.3390/en11040863
http://dx.doi.org/10.1049/iet-com.2018.5458
http://dx.doi.org/10.1109/LSP.2018.2825951
http://dx.doi.org/10.1109/5.231338
http://dx.doi.org/10.1016/j.sigpro.2006.12.015
http://dx.doi.org/10.1080/15326349708807450
http://dx.doi.org/10.1080/03610918608812563

	Introduction
	Related Works
	Measurement Campaigns and Setup
	Measurement Campaigns
	Controlled and Uncontrolled Variables
	Measurement Setup

	Statistical Methods
	Average Power
	Regression Analysis
	Impulsive Noise and Alpha-Stable Model

	Results and Discussions
	Noise Power Level Analysis
	Traffic Analysis
	Window Analysis
	Speed Analysis
	Multiple Variable Analysis

	Impulsiveness Evaluation
	Traffic Analysis
	Window Analysis
	RMSE Evaluation

	Considerations about Window Size for Estimation

	Final Remarks
	References

