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During liver regeneration, quiescent hepatocytes re-enter the cell cycle to

proliferate and compensate for lost tissue. Multiple signals including hepa-

tocyte growth factor, epidermal growth factor, tumor necrosis factor a,
interleukin-6, insulin and transforming growth factor b orchestrate these

responses and are integrated during the G1 phase of the cell cycle. To

investigate how these inputs influence DNA synthesis as a measure for pro-

liferation, we established a large-scale integrated logical model connecting

multiple signaling pathways and the cell cycle. We constructed our model

based upon established literature knowledge, and successively improved

and validated its structure using hepatocyte-specific literature as well as

experimental DNA synthesis data. Model analyses showed that activation

of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase

pathways was sufficient and necessary for triggering DNA synthesis. In

addition, we identified key species in these pathways that mediate DNA

replication. Our model predicted oncogenic mutations that were compared

with the COSMIC database, and proposed intervention targets to block

hepatocyte growth factor-induced DNA synthesis, which we validated

experimentally. Our integrative approach demonstrates that, despite the

complexity and size of the underlying interlaced network, logical modeling

enables an integrative understanding of signaling-controlled proliferation at

the cellular level, and thus can provide intervention strategies for distinct

perturbation scenarios at various regulatory levels.
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Introduction

The liver is an essential organ with important roles in

metabolism and detoxification. In the case of partial

tissue loss due to intoxication or resection, it can

undergo a remarkable regenerative process to maintain

its function. Quiescent hepatocytes of the residual

organ rapidly enter the G1 phase of the cell cycle

to proliferate and compensate for the lost cell mass

[1,2]. This highly synchronized response makes liver

regeneration, and in particular hepatocytes, an attrac-

tive biological system to investigate proliferation con-

trol at the cellular level.

Multiple signals from different sources within the

body orchestrate progression through the regenerative

process and are integrated during the mitogen-

sensitive G1 phase of the hepatocyte cell cycle (Fig. 1).

Among them are hepatocyte growth factor (HGF),

epidermal growth factor (EGF), interleukin (IL)-6,

tumor necrosis factor (TNF)a, insulin and transform-

ing growth factor (TGF)b. HGF, the main liver mito-

gen, and EGF induce hepatocyte proliferation in vivo

and in vitro [1]. IL-6 contributes to a variety of early

responses, for example, the induction of a large num-

ber of immediate early genes (IEG) [3]. There has been

considerable debate concerning whether IL-6 itself can

induce proliferation because studies have yielded

opposing results in the past [1,2,4–6]. TNFa and insu-

lin do not trigger hepatocyte proliferation, but enhance

the effect of mitogens [1]. TGFb inhibits the prolifera-

tion of hepatocytes in culture and retains them in a

quiescent state in the normal liver [7]. Furthermore, it

plays an important role towards the end of liver regen-

eration in vivo, for example, in the reorganization of

the regenerated tissue and establishment of the extra-

cellular matrix [1].

Each of the described factors triggers individual sig-

naling pathways and downstream responses that affect

the hepatocyte’s fate. The different signals, however,

do not act in a ‘one factor–one effect’ manner. The

different inputs reach the cells simultaneously and

consequently feed into an intertwined regulatory net-

work [1]. This raises several questions: What is the

individual contribution of each factor? How do the

diverse stimuli affect each other and ultimately the cell

cycle? Is there a safeguard in form of redundancy to

guarantee completion of the regenerative process?

These issues are difficult to assess using traditional

experimental approaches, which are limited in the

number of mechanisms that can be investigated at

once. To understand liver regeneration from a systems

point of view it is, however, crucial to integrate the

various regulatory circuits into a comprehensive pic-

ture. Here, systems biology that combines experimental

data with mathematical modeling can elucidate the

complex interplay of regulatory factors and mecha-

nisms.

In the past, mathematical models of either signaling

pathways [8–15] or the cell cycle [16–27] have mainly

been developed separately from each other. As a con-

sequence, the former usually used relevant kinases or

transcription factors as end points without including

detailed descriptions of downstream responses trig-

gered by these factors. The latter primarily accounted

for mitogenic stimulation only by the use of a single,

simplified parameter, for example, growth or the

presence of mitogen, and did not incorporate represen-

tations of upstream signaling events. To enable a com-

prehensive understanding of proliferation in response

to multiple factors, integrative models that capture the

complex interplay between signaling cascades and the

cell cycle in more detail have to be developed [28].

First approaches have been made to connect signaling

and cell-cycle progression in single models [29–31].

Yet, these studies achieved integration through drastic

simplifications, for example, by lumping species and

using single protein species to describe a biological

phenotype such as DNA synthesis. Thus, comprehen-

sive mathematical models integrating multiple signaling

pathways that regulate cell proliferation with the cell

cycle remain to be established.
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Fig. 1. Multi-factorial control of the hepatocyte cell cycle. When

the liver is challenged by intoxication or tissue loss a regenerative

process is initiated. Usually quiescent hepatocytes exit quiescence

(G0) and proliferate. A variety of signals including HGF, EGF, TNFa,

IL-6, insulin and TGFb orchestrate progression through the cell

cycle. They are integrated during the mitogen-sensitive G1 phase of

the cell cycle until the restriction point (R), where cells commit to

proliferation and transition into S phase where DNA synthesis takes

place.
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The construction of interaction maps constitutes a

starting point for most mathematical modeling

approaches. Several groups have established such maps

focusing on either a specific signaling pathway affect-

ing the cell cycle [32–34] or the cell cycle itself with

some connections to known players of signaling cas-

cades [35–37]. These maps describe relationships

between a great number of species, but are not directly

useable to simulate the systems behavior [38]. Here,

logic-based representations provide a solution that

enables predictions, as well as analyses, of network

responses and key properties. While the investigation

of the qualitative dynamical behavior of logical models

using, for example, the ginsim software [39] is

restricted to small systems with up to 20 components

[21–23,25,31], the analysis of large logical networks

focuses on static features such as global interdependen-

cies or qualitative input–output relationships.

An appropriate framework for static analyses of

signaling and regulatory networks is based on logical

interaction hypergraphs (LIH) [40,41], and has been

successfully applied in various studies [11,13–15,42].

For example, by analyzing logical steady states (LSS)

the qualitative response of a large network for a

given set of stimuli can be calculated, and optimal

perturbation targets to enforce a distinct network

response can be identified [41]. For the latter, the

concept of minimal intervention sets (MIS) has been

introduced. A MIS describes a minimal combination of

activations or inhibitions of certain species that leads to

a predefined effect [41,43], for example, blocking of

DNA synthesis. Furthermore, structural sensitivity

analysis [13] can be performed to elucidate whether

distinct reactions are particularly important to obtain a

desired input–output relationship or whether the

network inherits distinct properties like robustness to

structural changes.

In this study, we used this framework to build a

comprehensive large-scale logical model that integrates

the influence of various signals (inputs) with the regu-

lation of the cell cycle in hepatocytes. The model’s pre-

dictive power was assessed by comparison with

literature-derived and our own experimental data,

allowing subsequent model refinement by suitable and

biologically justified modifications. Using MIS analysis

we were able to: (a) elucidate the importance of the

phosphatidylinositol 3-kinase (PI3K) and mitogen-acti-

vated protein kinase (MAPK) pathways for prolifera-

tion; (b) identify key species in this pathway; (c) predict

genetic alterations with malignant consequences, which

we verified using a mutation database; and (d) propose

and experimentally validate inhibition targets to pre-

vent DNA synthesis in HGF-stimulated hepatocytes.

Results

A logical multilevel model to capture the impact

of multiple signaling inputs on the G1 ⁄ S
transition of the mammalian cell cycle

Here, we present a logical model that integrates the

influence of multiple signals (inputs) with the regulation

of the cell cycle in hepatocytes. For its construction we

used the LIH formalism, which is directly supported by

the software tools promot [44] and cellnetanalyzer

[40] (see Materials and methods). Its structure was based

on knowledge derived from the established literature

and available dynamical models of the mammalian cell

cycle, and documentation for all reactions can be found

in the Supporting information (Doc. S2). The model is

organized in a modularized fashion to delineate func-

tional units and contains a total of 27 modules distrib-

uted over five layers of regulation (Fig. 2).

Six inputs for essential signals of the liver-regenera-

tion process (TNFa, IL-6, insulin, HGF, EGF ⁄TGFa
and TGFb) were incorporated. Activation of their

corresponding transmembrane receptors is captured

in the layer ‘Receptors’. It should be noted that the

integrated model presented here does not distinguish

between EGF and TGFa stimulation, because: (a) both

ligands signal via the same receptor (epidermal growth

factor receptor), and (b) the model does not reproduce

specific dynamic signaling behavior arising from either

ligand. Activation of transmembrane receptors leads to

signal propagation described in the layer ‘Signaling

Cascades’. This section contains simplified pathway

representations of protein phosphatase (PP) 2A, SRC

kinase family, dual-specificity tyrosine phosphoryla-

tion-regulated kinase (DYRK), MAPK, PI3K, GTPase

and p38 ⁄ c-Jun N-terminal kinase (JNK) signaling. The

respective modules are not as comprehensive as specific

models of individual pathways such as the logical mod-

els of EGF [14] and TNFa [15] signaling. Because our

approach aims at integrating not only a single pathway,

but the majority of signaling cascades important in the

liver regeneration process with the mitogen-sensitive

G1 ⁄S cell-cycle phase, we used qualitative pathway

descriptions that provide all relevant connections to

allow coupling to each other, and also to adjacent

model layers. Signal propagation in ‘Signaling Cas-

cades’ leads to activation of downstream targets

described in the layer ‘Transcription Factors’ that con-

tains modules for the important species nuclear factor

kappa B (NFjB), signal transducer and activator of

transcription (STAT) 3, MYC, p53, mothers against

decapentaplegic homologs (SMAD) and immediate

early genes (IEG). It is directly connected to the ‘Cell

Logical modeling of proliferation control J. Huard et al.
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Cycle (G1 ⁄S)’ section thus linking multiple input signal-

ing and cell-cycle regulation. ‘Cell Cycle (G1 ⁄S)’
describes progression through the G1 phase of the

mammalian cell cycle until the G1 ⁄S transition. It feeds

directly into the layer ‘DNA Replication’ that describes

the onset of DNA synthesis, which is the single model

output. Lastly, the model contains ‘External Stimuli’

that incorporate additional inputs in case of unfavor-

able environmental conditions, such as contact inhibi-

tion, serum starvation or cellular damage.
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Fig. 2. Schematic representation of the integrated large-scale logical model. The model comprises six layers of regulation indicated by differ-

ent colors: Receptors (green), Signaling Cascades (rose), External Stimuli (turquoise), Transcription Factors (yellow), Cell Cycle (G1 ⁄ S) (light

blue) and DNA Replication (dark blue). Each layer contains modules (gray boxes) describing the activation or inhibition of certain species or

families of species, e.g. belonging to a distinct signaling pathway. The MAPK and PI3K modules for which a specific model analysis has

been conducted are highlighted with light blue fill. Activation processes are denoted as black arrows, while red edges represent inhibitory

reactions. Green hexagons symbolize inputs (ligands), light gray ones with black font indicate transmembrane receptors, and dark gray ones

with white font represent reservoirs. Rectangles with colored rims represent kinases (red), phosphatases (blue), transcription factors (yel-

low), ubiquitin ligases (orange), GTPases and guanine nucleotide exchange factors (GEFs) (purple), adaptor proteins (green), and others

(black). Model species subjected to inhibitor treatments for experimental validation purposes within this study are highlighted with purple fill.

Turquoise ovals represent environmental stimuli, and rose-colored ones phenotypes. The model contains 245 species including 104 auxiliary

(dummy) (Materials and methods) and comprises 417 reactions. For details regarding interconnectivity please refer to Doc. S2. The model is

provided in PROMOT format in the Supporting information. Furthermore, the CELLNETANALYZER model files are available from the model reposi-

tory of this software at the following website: http: ⁄ ⁄ www.mpi-magdeburg.mpg.de ⁄ projects ⁄ cna ⁄ repository.html
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Although most nodes are represented as Boolean

variables [38], some are described using multivalued

logic to account for step-wise activation or inactivation

processes of species important in positive feedback

loops. This concept enables a single species to perform

different functions depending on its current activation

state. For example, in the layer ‘Cell Cycle (G1 ⁄S)’
the species retinoblastoma protein (Rb), E2F, nuclear

p21 and CDC25A can display three activation levels

(‘0’, ‘1’ and ‘2’), whereas nuclear p27 and cyclin

E : cyclin-dependent kinase (CDK)2 can feature four

possible states (‘0’, ‘1’, ‘2’ and ‘3’) (Doc. S2). To allow

computation of initial network responses in the pres-

ence of feedback loops two time scales were introduced

that allow distinguishing early from late events (Mate-

rials and methods).

The complete integrated logical model included 141

species, as well as 104 dummy and reservoir species

simplifying model representation (Materials and meth-

ods). It contained 417 interactions or hyperedges, i.e.

‘AND’ combinations of species that lead to the activa-

tion of another species [41]. Thirty seven interactions

were set to time scale ‘2’.

Comparison of model behavior and

hepatocyte-specific literature data indicates

necessary model improvement

Our integrated logical model has been constructed

upon established literature knowledge derived from a

variety of mammalian cell types. To evaluate its per-

formance in a hepatocyte-specific context we compared

model predictions with selected literature scenarios of

this cell type.

As a first reference, we compared our network with

a detailed logical model of EGF receptor signaling

[14] that comprised 104 species and 204 interactions,

and had been validated using high-throughput pri-

mary human hepatocyte data. Because this model

related to only a small part of our network, we

focused on the comparison of model simulations for

shared species rather than the model topologies. Of

the 29 species in common, predictions for 28 showed

agreement between the two models when simulating

EGF stimulation. The simulation for the species pp2a

differed, however. To allow signal propagation in the

model, this specific node must be disabled, which can

be realized in different ways. In the model of Samaga

et al. [14], the state of pp2a was set to ‘0’ (inactive),

whereas in our model its activity was moved to a

separate time scale ‘2’. The good agreement between

predictions for our integrated network and the EGF

receptor model indicated a sufficient quality of the

simplified EGF-induced signaling pathway employed

in our model.

We furthermore selected literature scenarios of nor-

mal (wild-type) or perturbation studies conducted in

primary murine hepatocytes under various stimulation

conditions for a comparison. A detailed list of the

selected 44 scenarios comprising 160 measurements in

total can be found in the Supporting information

(Doc. S3). LSS computation for the respective scenar-

ios at time scale ‘1’ (Materials and methods) revealed

an agreement of only 60.0% between model predictions

and literature data; 30.6% of the scenarios differed,

and for 9.4% a unique response could not be calcu-

lated from the logical relationships because of indeter-

minacy (Fig. 3, left). This relatively large percentage of

incorrect predictions and incalculable responses sug-

gested an optimization of the model structure to

improve the predictive power.

Model improvements allow full determination of

all species

To eliminate incalculable states, we searched for suit-

able model improvements. There are three possibilities

that prevent a fully determinable LSS: (a) an input has

not been defined, (b) incomplete truth table (ITT) gates

[41] exist, or (c) feedback loops prevent steady-state

computation (Materials and methods). In our case, all

inputs were defined, thus eliminating the first possibil-

ity. The two species stabil_p21 and foxo_sp1 were regu-

lated by ITT gates. Closer inspection of the scenarios

in which a unique response could not be calculated

revealed that in each case the tumor suppressor p53

was inhibited. In the context of p53 inhibition upon

HGF stimulation only the species foxo_sp1 could not

be determined. However, imposing a value (‘0’ or ‘1’)

did not improve steady-state computation, showing

that ITT gates were not the source of incalculable

states. Consequently, the presence of feedback loops

circumvented a full determination of all model spe-

cies. This furthermore showed that not all loops were

disrupted by the assignment of time scale ‘2’ for 37

reactions to allow computation of the initial response.

We investigated more closely the interactions

between the 59 undetermined species that emerged

when simulating HGF-mediated responses in the pres-

ence of p53 inhibition. This small subnetwork con-

tained 5635 feedback loops of which 49.5% were

negative, indicating a high interconnectivity between

its components. Because of this property, there might

exist central components that are members of various

loops for which imposing a value is sufficient to deter-

mine a unique state of all remaining species. To iden-

Logical modeling of proliferation control J. Huard et al.
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tify them, we used the concept of MIS [41,43] (Materi-

als and methods) on a scenario in which inhibition of

p53 prevented the induction of DNA synthesis

although HGF was present [45]. We computed the

MIS of size ‘1’ and selected solutions leading to full

determination of the model’s steady state. Because we

searched for a solution that did not modify all other

scenarios, we reduced the number of candidates by

retaining only species directly regulated by p53. Based

on this selection, only imposing a value for sp1rep
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Fig. 3. Comparison between model predictions and selected literature dataset. A murine hepatocyte-specific literature dataset comprising

44 scenarios (vertical axis) and 23 species (horizontal axes) was selected and used for comparison with model predictions to qualitatively

judge its predictive power. A detailed description of this dataset with all references can be found in Doc. S3. Concordance between model

predictions and literature dataset is color-coded (upper right-hand corner). (Left) Comparison of selected literature and initial large-scale

model before model refinement; 60% of all observations were predicted correctly, 30.6% differed and a logical steady state was incalculable

in 9.4% of the cases. (Right) Comparison of selected literature dataset and refined large-scale model; 76.3% of all observations were pre-

dicted correctly, 23.7% differed and no incalculable states remained. act, activation; inh., inhibition; Ins., insulin; overex., overexpression;

exp, expression; No stim., no stimulation.
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representing the repressive form of the specificity

protein 1 (Sp1) transcription factor possessed the poten-

tial to allow a full determination of all species in the case

of p53 inhibition. Because this solution was impeded by

a negative feedback loop between prb and sp1rep, we

consequently moved this loop to another time scale

thus allowing a complete solution for all species.

To further improve accordance of model predictions

and selected literature scenarios we identified devia-

tions between them and searched for suitable and

biologically justifiable modifications of the network

structure. Although our model predicted cdk2, cdk46

and cyclin_d3 to be absent during quiescence, literature

data showed that their corresponding proteins were

detectable in unstimulated hepatocytes (scenario 44,

Doc. S3). Hence, their regulation was removed from

the model and their default value set to ‘1’. We also

searched for input and observation pairs showing

inconsistencies of their regulation in model and litera-

ture scenarios. However, no candidate with a proxim-

ity of ‘1’ (direct regulation) was identified that would

have allowed straightforward and unique changes.

The described modifications improved the accor-

dance between model predictions and selected litera-

ture scenarios to 71.3% and reduced their deviation to

28.7%, while no incalculable states remained (Fig. S1).

Comparison of model predictions and

experimental DNA synthesis data shows

discrepancies in the input-output behavior

We next sought to validate the input (presence of

ligands)–output (DNA synthesis) behavior of the

model for primary mouse hepatocytes. A set of stan-

dardized experiments was performed to measure the

induction of DNA synthesis upon stimulation with a

variety of ligand combinations. Primary mouse hepato-

cytes were isolated and cultivated at subconfluency

under serum-free conditions. Cells were stimulated

with HGF, EGF, IL-6, TNFa, insulin, TGFb or com-

binations thereof for 48 h. Ligand concentrations were

chosen according to the established literature to ensure

robust activation of the canonical pathways [46]. Fol-

lowing stimulation for 48 h, cells were assayed for

DNA content using a Sybr� Green I-based assay. For

each of the tested stimuli the log2 fold change in DNA

content after 48 h of stimulation is plotted in Fig. 4A.

A value of ‘1’ corresponds to a doubling of the genetic

information. We used a statistical mixed linear model

to identify whether DNA synthesis was significantly

induced for a given input compared with the unstimu-

lated control [47] (Materials and methods). This proce-

dure accounts for technical variability within a single

experiment and biological variability between different

experiments. As statistical threshold we employed a

common P-value of 0.05. The DNA content of

untreated controls did not change over time (Fig. S2).

HGF and EGF proved to be the most potent mitogens

in our assay. Also IL-6, though to a much smaller

extent, was capable of inducing DNA synthesis. TNFa
and insulin seemed to trigger a slight increase in DNA

content. However, these changes were not statistically

significant.

Model predictions were compared with these experi-

mental results by computing the LSS for the respective

input scenarios, and discretizing the experimental data-

set based on our statistical analysis. A significant, posi-

tive induction of DNA synthesis in our experiments

was interpreted as a binary state of ‘1’, whereas no sig-

nificant or negative induction corresponded to ‘0’

(Fig. 4). Prevention of DNA synthesis by adding

TGFb to any ligand combination was predicted cor-

rectly by the model, as a complete block of DNA rep-

lication could be seen when combining TGFb with

HGF or with HGF and insulin in our assay. Stimula-

tion with TGFb alone resulted in a negative fold

change indicating a certain degree of cell death in

addition to the block of proliferation. However, our

network does not represent this effect, because the

only possible model outputs are presence or absence of

DNA synthesis. The model identified HGF and EGF,

as well as IL-6 alone or in combination with insulin or

TNFa as sufficient for triggering DNA synthesis,

which was in line with our experimental observations.

However, in contrast to our model predictions, TNFa
and insulin alone did not trigger DNA synthesis in pri-

mary mouse hepatocytes, but were capable of doing so

when applied in combination. Because of this deviation

the input–output behavior could be only partially vali-

dated and further model improvements were required.

Activation of PI3K and MAPK signaling are

necessary and sufficient for mitogen-dependent

proliferation

To enable specific improvements that allow reproduc-

tion of the experimental data by our model, we

searched for species and modules whose regulation was

essential to the induction of DNA synthesis.

We used the approach of MIS to find interventions in

the network that induced DNA synthesis when all

inputs were set to ‘0’. The results are depicted in Fig. S3.

Apart from transmembrane receptors for all ligands

except TGFb, MIS of size ‘1’ comprised the janus kinase

(jak), the adapter protein growth factor receptor-bound

protein (grb)2, the guanidine nucleotide exchange factor

Logical modeling of proliferation control J. Huard et al.
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sos, the GTPase ras, pi3k and the signaling molecule

phosphatidylinositol-(3,4,5)-triphosphate (pip3). These

species hence conferred the ability to trigger DNA syn-

thesis to their respective modules, i.e. the Janus kinase

(JAK), PI3K and MAPK pathways.

We further investigated the relationship between

these three signaling cascades by analyzing their truth

table for the induction of DNA synthesis (Table 1).

When activating only one of the three modules and

simultaneously inhibiting either the PI3K or MAPK

pathway, DNA synthesis was blocked. From this

observation, three conclusions could be drawn: (a) both

the PI3K and the MAPK pathway must be activated

for mitogen-mediated induction of DNA synthesis, (b)

the PI3K and MAPK signaling pathways activate each

other by cross-talk, and (c) JAK triggers DNA synthe-

sis via activation of PI3K and MAPK. To experimen-

tally validate that coactivation of the PI3K and MAPK

modules is required for induction of DNA synthesis,

we employed small molecule inhibitors against central

components of these pathways (Fig. 2). We treated pri-

mary mouse hepatocytes with either protein kinase B

(Akt) inhibitor VIII, LY294002 or U0126 targeting

Akt1 ⁄ 2, PI3K or MAPK kinase (MEK)1 ⁄2, respec-

tively. In line with our model hypothesis, inhibition of
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Fig. 4. Comparison between model predictions for DNA synthesis and experimental data. (A) Log2 fold change in DNA content compared

with unstimulated control. Primary mouse hepatocytes were cultivated at subconfluency in serum-free cultivation medium and stimulated

with 1 ngÆmL)1 TGFb, 20 ngÆmL)1 TNFa, 100 nM insulin, 40 ngÆmL)1 IL-6, 50 ngÆmL)1 EGF, 40 ngÆmL)1 HGF, combinations thereof or were

left untreated for 48 h. DNA content was subsequently determined using a Sybr� Green I assay. Data obtained in four independent experi-

ments were used for analysis. A significant increase in DNA content was identified using a statistical mixed linear model (Materials and

methods). The significance threshold for P-values was set to 0.05. Error bars represent 95% confidence intervals. *0.05 > P > 0.01;

**0.01 > P > 0.001; ***P < 0.001. Values of P can be found in Doc. S5. To allow comparison with model predictions data were discretized

based upon the statistical analysis. Treatments with a positive and statistically significant log2 fold change were assigned a binary state of

‘1’ (green bars). Treatments with a statistically not significant or negative log2 fold change were assigned a state of ‘0’ (red bars). (B) Compari-

son of model predictions for DNA synthesis with experimental data. Each row represents the comparison of the model prediction for the out-

put (DNA synthesis) of a distinct input (ligand) combination with the experimental DNA synthesis data. Inputs in orange are present (active or

‘1’), whereas gray ones are absent (inactive or ‘0’). A green output indicates induction of DNA synthesis, whereas red outputs equal absence

of DNA replication. Only two scenarios were incorrectly predicted by the model: insulin and TNFa alone did not trigger DNA synthesis in vitro.

Table 1. Truth table describing the effects of the JAK, PI3K and

MAPK pathways on DNA synthesis. Setting the PI3K pathway

module to ‘1’ means that only pi3k adopts the state ‘1’, whereas

setting it to ‘0’ means that all PI3K pathway members are switched

to ‘0’ to avoid cross-induction by active MAPK. The same concept

applies to the MAPK module, where only the species grb2 is set to

‘1’ in case of activation, while the whole MAPK cascade adopts a

state of ‘0’ in case of inhibition. An asterisk (*) indicates that no

input value was imposed, which can however be set after logical

steady-state computation by cross-talk.

Inputs Output

JAK PI3K MAPK DNA synthesis

1 * * 1

* 1 * 1

* * 1 1

* 1 0 0

* 0 1 0

1 * 0 0

1 0 * 0

J. Huard et al. Logical modeling of proliferation control
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either the PI3K or MAPK pathway was sufficient to

prevent HGF-induced DNA synthesis (Fig. 5A).

In order to determine the species of the MAPK and

PI3K pathways required for an induction of DNA syn-

thesis, we again used MIS analysis. However, in this

case, we added constraints. In a simple network

A fi B fi C, if activation of C was the goal of MIS

calculation, both activation of A or B would be MIS

candidates. However, activation of A is a candidate only

because of the subsequent activation of B. When the

states of A and B are fixed to their respective steady-

state values in the absence of stimulation (i.e. A and B

would be ‘0’), activation of B remains the only possible

MIS of size ‘1’. Using these constraints for species of

the PI3K and MAPK modules and by allowing inter-

ventions only on these two pathways and not on the rest

of the network, we found a unique MIS of size ‘5’ com-

prising the activation of akt, pkc, erk and s6k, as well as

inhibition of gsk3b. We thus identified these five species

to be essential in mediating induction of DNA synthesis

through the MAPK and PI3K pathways.

Refinement of model structure regarding

activation of PI3K and MAPK modules

allows reproduction of experimental data

We next identified minimal model changes regarding

activation of the PI3K and MAPK pathways by TNFa
and insulin that led to a full reproduction of our

experimental DNA synthesis data. For this purpose,

we extracted the cross-talk between the JAK, PI3K

and MAPK modules from our integrated logical model

(Fig. 6A) to optimize their interconnection. A simplifi-

cation of the original subnetwork (Fig. 6B) served as

starting point to develop different model versions in

which only removal or rearrangement of nodes

involved in the Boolean expression of an interaction

were allowed. Each model version represents a set of

model variations, as different combinations of edges

can result in the same simplified structure. In total 159

model variations grouped into six versions (Fig. 6C–H)

could explain our DNA synthesis data.

Our experimental data showed that IL-6 triggered

DNA synthesis in primary mouse hepatocytes. From

our analysis, we knew that the PI3K and MAPK path-

ways had to be activated to allow this induction.

Hence, MAPK activation by JAK that is a target

downstream of IL-6, and at least one link between the

MAPK and PI3K cascades were necessary to enable

induction of DNA synthesis by IL-6.

To capture the cooperative effect of TNFa and insulin

on DNA synthesis, at least one ‘AND’ gate was neces-

sary to allow activation of the MAPK and PI3K path-

ways only in the presence of both ligands. Several

solutions are possible to achieve this modification: (a)

an improved model with minimal changes and these key

features is represented by one variation of version v1

(Fig. 6C), where insulin and TNFa together induce

MAPK activity, and PI3K activation is provided by

cross-talk with the MAPK module; (b) insulin and

TNFa could directly trigger the PI3K pathway, thus

requiring activation of MAPK by cross-talk (Fig. 6D);

(c) the MAPK and the PI3K pathways could be individ-

ually induced by insulin and TNFa making the cross-

talk between PI3K and MAPK superfluous (Fig. 6E);

(d) one of the two pathways could be activated via an

‘AND’ gate requiring both ligands, whereas the other is

directly activated by only one of them. Here, the cross-

talk had to be absent to prevent activation of PI3K and

MAPK if only one ligand was present (Fig. 6F–H). The

case in which the MAPK pathway is triggered by either

TNFa or insulin is not a valid option, because it would

activate PI3K through the cross-talk that enables IL-6

to induce DNA synthesis.

For the following analyses we implemented version v3

(Fig. 6E) that conserved all original cross-talks and

required only few changes in the network structure, spe-

cifically the addition of two ‘AND’ gates for coactivation

of the MAPK and PI3K modules to allow full reproduc-

tion of the experimental data (Fig. 6I). All other intro-

duced model versions (Fig. 6F–H) would have been

valid to achieve accordance with the DNA synthesis data

as well, but would have required more modifications.

Using this refined integrated logical model we again

compared the selected hepatocyte-specific literature

scenarios (Doc. S3) with the corresponding model pre-

dictions. Agreement was further increased to 76.3%,

while only 23.7% of the scenarios differed (Fig. 3,

right). These values indicated a substantial improve-

ment of our integrated logical model.

Logical input hierarchy on the induction of DNA

synthesis

For analysis of the input (presence of ligands)–output

(DNA synthesis) behavior, we used the refined inte-

grated logical model and extracted an input hierarchy

regarding the ability to induce DNA synthesis. We

extrapolated our experimental data by computing the

outcome of all possible input combinations and

extracted canalizing inputs from the resulting matrix

(Fig. S4). A canalizing input determines the output of

a system independently of other inputs [48]. In our

model, only TGFb met this criterion and was hence a

canalizing input of the first order (or strong canaliz-

ing input). IL-6, HGF, EGF (or TGFa) and the com-

Logical modeling of proliferation control J. Huard et al.
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bination insulin ‘AND’ TNFa were canalizing inputs

of the second order (or weak canalizing inputs)

because their activity induced DNA synthesis only

when the strong canalizing input TGFb was inactive.

This result was translated into the following logical

relationship that is schematically depicted in Fig. 6J

(see Materials and methods for logical operators):

!TGFb � ½IL-6þ EGF/TGFaþHGFþ ðInsulin � TNFaÞ�
! DNA synthesis

This input hierarchy allows TGFb to have priority

over any growth signal and to block hepatocyte pro-

liferation even if mitogens are present.
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Fig. 5. Experimental validation of model predictions. Log2 fold change in DNA content compared with solvent control. Primary mouse he-

patocytes were stimulated with 40 ngÆmL)1 HGF and 10 lM Akt inhibitor VIII or 10 lM LY294002 or 10 lM U0126 (all A), or 15 lM BX912 or

2 lM PD0332991 (both B), or 1 nM LMB (C) for 48 h. DNA content was subsequently determined using a Sybr� Green I assay. Data

obtained in three (B,C) or four (A) independent experiments were used for statistical analysis. A significant increase in DNA content compared

to solvent controls [ethanol (EtOH) for LMB, dithmethylsulfoxide (DMSO) for all other inhibitors) was identified using a statistical mixed linear

model (Materials and methods). The significance threshold for P-values was set to 0.05. Error bars represent 95% confidence intervals.

*0.05 > P > 0.01; **0.01 > P > 0.001; ***P < 0.001. Values of P can be found in Doc. S5. To allow comparison with model predictions, data

were discretized based upon the statistical analysis. Treatments with a positive and statistically significant log2 fold change were assigned a bin-

ary state of ‘1’ (green bars). Treatments with a statistically not significant or negative log2 fold change were assigned a state of ‘0’ (red bars).
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Structural sensitivity analysis identifies structural

redundancy of the network

To assess the importance of structural errors, a sensi-

tivity analysis was performed. The information best

known about a protein–protein interaction is usually

the immediate influence of one species on the other,

whereas the complex interplay of several effectors and

thus the model structure often remains uncertain. This

is especially true if reactions are not ubiquitous and

occur only in specific cell types. For our analysis, we

removed or substituted one to three model reactions

with time scale ‘1’ at a time and subsequently simu-

lated the outcome for the scenarios of the literature as

well as experimental dataset. The correct data simula-

tion was judged relative to the original model, which

was set to 100%. The result of the structural sensitivity

analysis is shown in Table S6.1. In a pool of networks

in which one reaction was removed, or an ‘AND’ gate

was converted into an ITT or ‘OR’ gate, more than

83.3% of the models were able to yield a relative data

reproduction of 90%. In the case of two affected reac-

tions, this proportion decreased to 69.0%, and for 3

‘AND’ gates converted into an ITT or ‘OR’ gate to

67.4%. However, the average of relative agreement

between the new models and the reference structure

for a model pool was higher than 91.0% for all investi-

gated structural changes.

These results illustrated structural redundancy pro-

viding a rather stable predictive behavior to the net-

work. For some structural changes even a slight

increase in the relative agreement between the original

and new model could be observed because the original

model did not correctly reproduce the entire literature

dataset. This finding indicated that an automated

structure optimization could, in principle, improve the

model’s predictive power further. There exists at least

one model that can only reproduce as low as 27% of

the predictions made by the original model. Indeed,

the removal of certain reactions prevents any predic-

tion for DNA synthesis because of a sinkhole structure

present in the model that is constituted by several

inputs affecting a single output.

Analysis of positive feedback loops identifies

species essential for restriction point bistability

Feedback loops are an essential regulatory structure.

During the progression from G1 into S phase, hepato-

cytes reach independence from mitogenic stimuli

(Fig. 1), and Yao et al. [27] showed that this restriction

point is based upon a bistable Rb–E2F switch. Because

bistability requires the presence of an extrinsic or

intrinsic positive feedback loop [49–52], we computed

the species participation in the positive loops of the

interaction graph underlying our logical model to iden-

tify important players in the decision-making process

(Materials and methods).

In our case, a feedback loop is an elementary cycle

as defined in graph theory and represents a subnet-

work along which a species can influence itself without

visiting the same node, except the starting node, twice.

It is distinct from a feedback, which is defined as an

edge starting from a species and pointing back to one

of its predecessors upstream in regulation. Because of

these definitions a feedback can give rise to several

feedback loops.

Computing the feedback loops in a network as large

as the integrated model presented here proves challeng-

ing because of their great abundance. Hence, we

focused on the ‘Cell Cycle (G1 ⁄S)’ layer, which already

gives rise to a total of 6206 positive feedback loops.

The nuclear form of the CDK inhibitors p21 and p27,

the activated CDKs 2, 4 and 6, Rb as well as E2F1-3a

proved to be part of most of the positive feedback

loops in this layer (Fig. S5). These species are thus

likely to be of major importance in restriction point

control.

MIS analysis can be used to predict mutations

with malignant consequences

To predict mutations that could lead to liver cancer, we

computed MIS of size ‘1’ to ‘4’ that led to induction of

DNA synthesis in the absence of stimulation in our

model, mimicking liver malignancies (Fig. S4). The

validity of these predictions was tested by comparison

with mutations of malignant liver tissue samples

recorded in the COSMIC database (http://www.sanger.

ac.uk/genetics/CGP/cosmic/, 3 April 2011).

The fact that a given gene is mutated does not per se

provide information on functional consequences, but

can identify candidates for deregulation in cancer cells.

The comparison of MIS results and database allowed

confirmation of 12 predictions in total (six true posi-

tives, six true negatives), whereas eight others were

invalidated (two false positives, six false negatives)

(Table 2). There was no database information avail-

able for the remaining species. Although our model

suggested Akt1 and MYC as potential oncogenes,

these targets were not recorded in the COSMIC data-

base. By contrast, Raf, inhibitor of CDK4 (Ink4a),

phosphatase and tensin homolog (PTEN), ARF, ATR

and SMAD appear in the mutation database, but not

in our analysis. These species might occur in MIS with

larger cardinality (> 4), but their computation

J. Huard et al. Logical modeling of proliferation control
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becomes difficult because of the increasing combinato-

rial complexity.

Using a one-tailed Fisher’s exact test, we investi-

gated whether a significant proportion of species iden-

tified by our MIS analysis overlapped with the

COSMIC database. When considering all predicted

species, the test yielded a P-value of 0.2596. However,

because our model does not account for the basal

activity of cell-cycle inhibitors required for blocking

DNA synthesis in the absence of external stimuli, the

species Ink4a, Ink4c, PTEN, ARF, ATR and SMAD

were removed from the comparison, thus decreasing

the P-value to 0.0513. This result showed that MIS

analysis is a useful tool to predict mutations with

malignant consequences.

MIS analysis reveals targets to block

HGF-stimulated DNA synthesis in hepatocytes

To obtain a list of possible single constitutive activa-

tions or inhibitions that led to cell-cycle arrest in pro-

liferating cells, we computed the MIS of size ‘1’ that

block DNA synthesis in the context of HGF stimula-

tion. The result of this analysis is depicted in Fig. S6

showing that 28 single species’ inhibitions and 32

single species’ activations would induce this event.

Interestingly, four species with multivalued logic (p53,

e2f1_3a, p21nuc and p27nuc) could be either com-

pletely activated (level ‘2’ or ‘3’) or inhibited (level ‘0’),

reflecting their dual effect on proliferation.

Our previous model analysis had indicated a require-

ment for coactivation of the PI3K and MAPK path-

ways to allow induction of DNA synthesis upon

mitogenic stimulation. This hypothesis was experimen-

tally validated by targeting Akt1 ⁄ 2, PI3K and

MEK1 ⁄ 2 with small molecule inhibitors (Figs 2 and

5A). In line with this result, these species were also

identified as targets by our MIS analysis. To further

verify our predictions, we selected three other interven-

tion targets from different locations within the model

to confirm their necessity for the induction of DNA

synthesis in mitogen-stimulated cells (Fig. 2). For

experimental validation we targeted the phosphoinosi-

tide-dependent protein kinase (PDK)1 in the PI3K

module of the layer ‘Signaling Cascades’, the exporter

chromosome maintenance region 1 or exportin 1

(CRM1) in the ‘Cell Cycle (G1 ⁄S)’ section, and the

cyclin-dependent kinases (CDK)4 ⁄ 6 in the same model

layer with the small molecule inhibitors BX912, lepto-

mycin B (LMB) and PD0332991, respectively. As

shown in Figs 5B,C and S7, the inhibitors dramatically

reduced DNA synthesis in HGF-stimulated cells.

BX912 and LMB mediated a complete block of DNA

synthesis (Figs 5B,C and S7), whereas PD0332991

yielded a reduction of only � 50% (Fig. 5B). This

reduced effect was most likely attributed to metaboli-

zation by or export from the hepatocyte, as very high

PD0332991 concentrations blocked DNA synthesis in

a dose–response experiment (Fig. S7C). Our results for

inhibition of Akt1 ⁄ 2, PI3K, MEK1 ⁄ 2, PDK1 and

CRM1 show that our integrated logical model could

identify intervention targets that mediate cell-cycle

arrest in proliferating hepatocytes.

Discussion

This study connects the influence of multiple pro- and

antiproliferative signals to the mitogen-dependent G1

phase of the mammalian cell cycle in a single, large-scale

integrated logical model and thereby provides a broad

picture of proliferation control in primary hepatocytes.

The employed workflow of model validation and analy-

sis, the key results as well as the prospective use of the

validated model are summarized in Fig. 7.

Mathematical modeling approaches allow investiga-

tion of the system’s properties. Dynamical models

based on ordinary differential equations (ODE) or

partial differential equations can describe systems

dynamics in the most accurate way, but to enable anal-

ysis of the network’s time-dependent behavior their

Table 2. Comparison of MIS leading to DNA synthesis in unstimulated cells and content of the COSMIC database. Comparison between

targets found in MIS of size ‘1’ to ‘4’ leading to DNA synthesis in unstimulated cells, and data from mutations found in liver cancer cells

extracted from the COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/, status at 3 April 2011). Species names are written in

italics. Corresponding genes from the COSMIC database are indicated in parentheses. According to a one-tailed Fisher exact test, the over-

lap between model predictions and database is substantial (P = 0.0513) if cell cycle inhibitors with basal activity, which are not considered in

our model, are removed from the list.

Part of MIS Not part of MIS

Mutation found in COSMIC pi3k (pik3ca), c_met (met), prb (rb1),

egfr (egfr), jak (jak1, jak2), p53 (tp53)

pten (PTEN), raf (raf1), arf (cdkn2a (p14)),

smad (smad4), atm_atr (atr), ink4a (cdkn2a)

No mutation found in COSMIC akt (akt1), c_myctrans (myc) apc_cdh1 (cdh1), ink4c (cdkn2c), c_ebp_alpha (cebpa),

mkk4_7 (map2k4), tsc (tsc1 ⁄ tsc2), fbw7 (fbxw7)
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parameters, e.g. initial protein concentrations and

kinetic rate constants, have to be fitted using time-

resolved quantitative experimental data. With increas-

ing network size this task becomes more and more

challenging, in experimental as well as computational

aspects. Thus, current ODE-based models are limited

to a few dozen components insufficient to describe

large systems [38]. Logical modeling based on the

study of qualitative input–output relationships and

structural network analysis, by contrast, solely depends

on the model structure, and not on quantitative kinetic

parameters, thus enabling functional investigation of

large molecular networks.

To qualitatively judge the predictive power of our

integrated logical model we compared distinct model

scenarios with carefully selected hepatocyte-specific lit-

erature information. This approach was feasible,

because a logical model does not depend on kinetic

parameters and hence allows the direct use of literature

information. By manually introducing specific modifi-

cations to the network, we successively increased the

correlation between literature and model scenarios,

and hence the model’s predictive power from initially

60.0% to 76.3%. Further model improvement by addi-

tion or removal of edges is conceivable in theory, and

would require systematically fitting the model structure

to experimental data, e.g. using cellnetoptimizer

[12]. To allow such a process for large-scale models

two procedures can be applied: (a) The model has to

be drastically reduced to comprise only observed spe-

cies. This minimizes the combinatorial complexity cru-

cial for the fitting process, but such a reduction

counteracts the construction of an utmost comprehen-

sive model structure; and (b) high-throughput data of

adequate quality for a large set of species have to be

generated [12,14]. However, the number of hepatocytes

isolated from mouse liver is limited and thus does not

allow such extensive measurements at present. Because

of these limitations further model refinement was not

pursued.

The remaining percentage of false predictions for the

comparison of literature and model scenarios could

partially be attributed to the scarcity and heterogeneity

of the literature-derived dataset, which encompassed

only 16% of all model species excluding dummies and

reservoirs. This underrepresentation gave great weight

to any wrong prediction, and prevented a precise vali-

dation of the model structure including time scales.

Furthermore, the hepatocyte-specific literature scenar-

ios used for comparison were derived from various

studies conducted under different experimental condi-

tions. This can cause several problems: (a) Data can be

contradictory. In a pair of supposedly identical scenar-

ios in which DNA synthesis is observed in only one,

the corresponding model prediction will be necessarily

wrong in one case. For example, although insulin

did not significantly trigger DNA synthesis in our

experiments, Kimura et al. [53] found the opposite

outcome, and whereas in our case DNA synthesis was

Literature scenarios

Original Model

Refined model

MIS Analysis

Inhibitor experiments

Predictions

Validation

Experimental data
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Fig. 7. Biological insights obtained by combining logical modeling

and experimental data. The original model was refined after valida-

tion using literature scenarios (Doc. S3) as well as our own experi-

mental DNA synthesis data (Fig. 4A). Analysis of this model with

help of LSS analysis and MIS computation demonstrated the

requirement of (a) PI3K and MAPK pathway activation as well as (b)

five key species within those pathways for inducing DNA synthesis.

Predictions for species whose inhibition blocks HGF-mediated DNA

synthesis were verified experimentally employing inhibitors against

Akt, PI3K, MEK, CRM1, CDK4 ⁄ 6 or PDK1. The obtained validated

model can be used in future applications, e.g. for predicting specific

scenarios or as a starting point for the automatic setup of qualitative

ODE models using the ODEFY software.

J. Huard et al. Logical modeling of proliferation control

FEBS Journal 279 (2012) 3290–3313 ª 2012 The Authors Journal compilation ª 2012 FEBS 3303



significantly induced by EGF, Rickheim et al. [54]

observed only a weak induction. (b) For comparison

with binary model predictions, qualitative data derived

from publications has to be translated into a ‘yes ⁄no’
response [12]. It may be difficult to judge whether

a species can be regarded as active when evaluating a

literature-derived measurement. This is especially true

if information on the possible range of the reported

response in the experimental setting used is scarce or

missing completely. These problems complicated the

comparison of literature data with our model and

emphasize the need for standardized experimental pro-

tocols [55].

The input–output behavior of the improved model

was experimentally validated using primary mouse

hepatocyte data of DNA synthesis in response to dif-

ferent stimuli. To enable comparison with binary

model predictions, continuous experimental data has

to be discretized, and different strategies of data pro-

cessing are conceivable. Saez-Rodriguez et al. [12,56],

for example, employed a sophisticated transformation

strategy to interpret time course data for logical mod-

eling purposes. In our approach, we used DNA syn-

thesis data acquired at a single, defined time point and

employed a statistical mixed linear model for data dis-

cretization. A significant induction of DNA synthesis

compared with a control treatment was interpreted as

a binary state of ‘1’. Likewise, the absence of signifi-

cant induction was valued as ‘0’. It is important to

note that the employed statistical test solely identifies a

significant induction in DNA synthesis, but not its sig-

nificant absence. Thus, it cannot be excluded that a

treatment like insulin that failed to trigger statistically

significant DNA replication in our experiments, may

be capable of doing so in a different system [53].

The model predicted that all inputs except TGFb
could induce DNA replication. TNFa and insulin

alone did not fulfill this prediction, because they had

to be applied in combination to trigger a significant

increase in DNA replication in our experiments, which

was small compared with strong mitogens like HGF.

In line with this observation, the mitogenic abilities of

TNFa and insulin are known to be moderate, although

they can enhance the effects of growth factors [57].

Our improved model furthermore predicted that TGFb
would prevent replication of the genetic information

alone or as part of any input combination. Accord-

ingly, TGFb blocked DNA synthesis in the presence of

HGF or HGF and insulin in our experiments. The

model’s input hierarchy showed that this strong cana-

lizing input had priority over any competing mitogenic

signal. This dominance is a key feature of the TGFb-
induced cytostatic effect [58], which could be essential

to tightly regulate the hepatocyte’s response to pro-

proliferative signals. In our experiments, treatment

with TGFb alone led to a negative fold change in

DNA content. This might be due to the notion that in

addition to mediating cell-cycle arrest, TGFb can also

elicit pro-apoptotic effects [58]. Indeed, a small wave

of hepatocyte apoptosis during the late phase of liver

regeneration following two-thirds partial hepatectomy

contributes to the precise re-establishment of the origi-

nal liver mass [59].

The ligand concentrations used for hepatocyte stim-

ulation are critical parameters of cellular responses,

and we chose values known to induce robust pathway

activation for our experiments [46]. In vivo, however,

bioavailability and concentration depend on the loca-

tion in the liver and change over time [60]. Particularly

for IL-6, its precise level seems critical for its ability to

induce proliferation [2,61]. Because logical modeling

uses the qualitative system’s steady state to evaluate

the network behavior, our model does not employ

time-dependent input functions. Our approach thus

elucidates, independent of the concentration, whether a

distinct ligand is in principle capable of inducing DNA

synthesis via the presented model structure. To investi-

gate the impact of ligand concentrations, the logical

interactions can be translated into an ODE system

using the ODEfy plugin [62]. It might, however, be dif-

ficult to estimate the large number of parameters

resulting from this conversion, and thus to perform

dynamical analyses. Still, the logical model can be used

to identify smaller subnetwork structures essential in

mediating a ligand’s network response, which are more

suitable for ODE-based analysis. Moreover, direct con-

version into ODE systems using ODEfy allows reuse

of the established Boolean network structure and ren-

ders time scales superfluous.

Although a large amount of published data was

included in our model, such an interlaced network is

prone to errors and missing edges. To assess this struc-

tural uncertainty, we randomly substituted or removed

one to three interactions and observed that the result-

ing models could reproduce on average > 91% of the

predictions made by the original network. This result

illustrates redundancy in our network, which could

confer a relative robustness to perturbations ensuring

survival upon liver damage. In line with this hypothe-

sis, mouse models featuring distinct mutations fail to

show a complete block of hepatocyte proliferation

when subjected to two-thirds partial hepatectomy, but

rather display a decelerated regenerative response [2].

The interaction map underlying our model contains a

detailed description of the G1 ⁄S transition and simpli-

fied representations of important signaling cascades
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that regulate it. However, uncertainties concerning the

wiring of these two entities remain. Based on our inter-

action map, future work could include connecting the

cell-cycle layer to more detailed, experimentally

validated logical networks of signaling pathways to

analyze activation patterns upon successive stimula-

tion with different ligands, as well as the specific

contribution of distinct signaling cascades. For exam-

ple, the impact of TNFa and IL-6, which do not seem

to be strictly required for liver regeneration, could be

investigated.

We identified candidate nodes involved in inducing

the bistable behavior required to cross the restriction

point, and hence gain mitogenic independence. Bista-

bility requires the presence of extrinsic or intrinsic

positive feedback loops [49–52]. The model layer ‘Cell

Cycle (G1 ⁄S)’ contained a great number of such loops

and by computing the species’ participation in them,

we demonstrated that Rb, cyclin D : CDK4 ⁄ 6,
cyclin E : CDK2, as well as the nuclear forms of the

CDK inhibitors p21 and p27 are of major importance

in restriction point and proliferation control. In line

with this result is the notion that the CDK4–

cyclin D1–INK4–Rb-E2F cascade is deregulated in

> 80% of human malignancies [63]. Although CDKs

are rarely mutated, deregulation of CDK4 ⁄6 has been

described in various tumors, e.g. in melanoma [63,64].

In addition, overexpression of cyclin D1 is a frequent

feature of neoplasias [63,65], and serves as a prognostic

marker in pancreatic cancer [66]. Inhibition of Rb

function contributes to cancer initiation and progres-

sion [67,68], and loss of Rb is involved in the develop-

ment of liver cancer and other neoplasias [68].

Overexpression of cyclin E1 is a frequent feature and

indicator for poor prognosis in a number of malignan-

cies [66,69–71]. Although somatic mutations of p21 are

rare, loss of p27 is a more abundant feature in cancer

[66,72]. In addition, the presence of unnatural cyto-

plasmic p21 and p27 unable to inhibit nuclear CDK

activity indicates poor prognosis in a variety of tumors

including breast cancer [73].

A comparison of oncogenic modifications predicted

by our model and the COSMIC database showed sub-

stantial agreement. Targets suggested by the model,

but not present in the database, were Akt1 and Myc.

Although no mutation of Akt1 has been described to

date, it is a central component of the PI3K signaling

pathway that is frequently altered in hepatocellular

carcinoma [74]. Likewise, deregulation if not mutation

of the transcription factor Myc was found to induce

aggressive liver cancer [75]. Although Raf, Ink4a,

PTEN, ARF, ATR and SMAD appear in the muta-

tion database, they were not part of our MIS predic-

tion. In our network, Raf1 did not induce PI3K

pathway activation and was hence not identified by

our analysis. It might, however, appear in MIS of lar-

ger cardinality. In our model, mitogenic stimulation is

required to induce DNA synthesis and accordingly, the

inhibitors of the cell cycle Ink4a and PTEN were set

to ‘0’ to allow mitogenic signal propagation. In vivo

however, their presence is required to prevent cell divi-

sion induced by the basal activity of mitogenic path-

ways [66,76,77], explaining the discrepancy between

our predictions and the database. The tumor suppres-

sors ARF and ATR, as well as the transcription factor

SMAD, mediate a cytostatic response upon DNA

damage [78] or TGFb signaling [79]. Deregulation of

these species may hence lead to uncontrolled prolifera-

tion of damaged cells.

Through model analysis we furthermore predicted

that coactivation of the PI3K and MAPK pathways is

sufficient and required for induction of DNA synthe-

sis. The latter hypothesis was experimentally validated

in primary mouse hepatocytes using inhibitors target-

ing Akt1 ⁄ 2, PI3K and MEK1 ⁄ 2 kinases. Our results

are in line with the work of Heo et al. [80] who dem-

onstrated the requirement for the PI3K and MAPK

pathways in the regulation of DNA synthesis by TGFa
in mouse embryonic stem cells using the same interven-

tion strategies. Furthermore, inhibition of Akt1 ⁄ 2 and

PI3K with Akt inhibitor VIII and LY294002, respec-

tively, sensitizes hepatocellular carcinoma-derived cells

for apoptotic cell death, which indicates that Akt1 ⁄ 2
and PI3K are prone targets for anticancer therapies

[81]. Inhibition of MEK1 ⁄ 2 by U0126 was also shown

to mediate cell-cycle arrest and apoptosis in hepatocel-

lular carcinoma cell lines [82].

We lastly employed MIS analysis to propose species

whose activation or inhibition prevents induction of

DNA synthesis in the presence of the strong mitogen

HGF. The large number of possible MIS of size ‘1’

might seem to contradict the relative robustness identi-

fied through our sensitivity analysis at first glance.

However, although this approach only modified one

specific downstream function of a protein at once,

MIS constitutively affect all functions of a specific pro-

tein at the same time. To experimentally validate our

model predictions, selective perturbations were neces-

sary at the population level. Transfection of primary

hepatocytes for overexpression or siRNA-based knock-

down rarely exceeds 45% efficiency and is therefore

insufficient to achieve this goal [83,84]. In line with our

results concerning the requirement for coactivation of

the PI3K and MAPK pathways, the MIS analysis also

identified Akt, PI3K and MEK as potential interven-

tion targets. We employed further small molecule
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inhibitors to validate the three additional MIS targets

PDK1, CRM1 and CDK4 ⁄6. Inhibition of PDK1

kinase activity or CRM1 transport function by BX912

[85,86] or LMB [87,88] respectively, led to complete

inhibition of DNA synthesis in the presence of HGF,

thus confirming our MIS result. In line with our model

prediction and experimental observation, inhibition of

CRM1 by LMB has been reported to result in G1 and

G2 cell-cycle arrest of mammalian cells and fission

yeast [89]. Inhibition of CDK4 ⁄ 6 kinase activity by

PD0332991 [90] only resulted in attenuated DNA repli-

cation, probably due to metabolic conversion of the

compound reducing its efficacy. Although it has shown

promising performance in preclinical studies for the

treatment of cancer [91,92], very high concentrations,

often equivalent to the maximum tolerated dose, were

necessary to obtain an antiproliferative effect in xeno-

graft models [92,93]. This suggests that high

PD0332991 doses are required to compensate for meta-

bolic clearance and underscore the problem of strong

metabolic activity in the treatment of hepatocellular

carcinoma.

By employing model-based MIS analysis and DNA

synthesis assays in primary mouse hepatocytes, we the-

oretically predicted and experimentally validated sev-

eral targets in our complex network critical in

mediating HGF-driven proliferative responses. Our

results show that MIS analysis of a large integrated

logical model following experimental validation is a

powerful tool to understand complex biological pro-

cesses and to predict intervention targets (Fig. 7) to

counteract undesired proliferation like in the context

of hepatocellular carcinoma.

Material and methods

Logical modeling

The model presented here is based on the logical modeling

framework of logical interaction hypergraph (LIH) [41]

which is directly supported by the software tools promot

[44] and cellnetanalyzer [40]. In contrast to studies

focusing on the discrete dynamics of logical networks

[21,22,25,31], the formalism is tailored to study the qualita-

tive input–output response of signaling networks. Nodes in

the network represent biomolecular species, e.g. kinases,

transcription factors or genes, each having an associated

logical state, which is often Boolean (‘on’ ⁄ ’1’ or ‘off ’ ⁄ ’0’),
but multiple discrete levels are allowed as well. In the LIH

representation, signaling events are encoded as Boolean or

logical operations on the network nodes using only the

operators ‘AND’ (Æ), ‘OR’ (+) and ‘NOT’ (!). They are suf-

ficient to represent any logical relationship and are com-

bined in a so-called sum-of-product representation, where

‘AND’ terms are connected via ‘OR’ operators [40,41]. To

exemplify this we assume that the nodes A and B must be

active to activate a third node C: A AND B fi C or,

shorter, A Æ B fi C. In a graphical representation of the

network such an ‘AND’ connection can be displayed as a

hyperarc indicating that all start nodes of the hyperarc (A,

B) must be in the ‘on’ state in order to activate the end

node of the hyperarc (note that in contrast to simple arcs,

hyperarcs are allowed to have several start or end nodes).

In Fig. 6A, for example, there is a hyperarc indicating that

mtor ‘AND’ pkc ‘AND’ pdk1 are required to activate s6k.

The hyperarc consists of a blue circle having a set of inputs

which will be combined via ‘AND’s and one output node.

Generally, it is also allowed that a hyperarc is a simple

edge, i.e. it has only one input node. Here we use ‘interac-

tions’ or ‘reactions’ as synonyms for hyperarcs.

‘NOT’ operators can be applied to variables entering a

hyperarc and are graphically indicated by red color and

bars. They indicate that a given input must be inactive for

the output to be active. Finally, ‘OR’ connections can be

accounted for in the hypergraphical representation by

allowing a node to be independently activated by more

than one incoming hyperarc (i.e. by several independent

‘AND’ connections). For example, there are two different

hyperarcs for the activation of mtor. In this way, a hyper-

graph can effectively display the SOP representation. In

some cases it is useful to introduce ‘dummy’ nodes, which

do not correspond to concrete biological species but may

simplify editing large networks. For example, a Boolean

equation X = (A + B + C) Æ (D + E + F) can be repre-

sented via two dummy nodes d1 = A + B + C and

d2 = D + E + F which are then combined in a hyperarc

(‘AND’ connection) pointing into X (X = d1Æd2). This rep-
resentation is simpler than using the explicit SOP represen-

tation which would contain nine ‘AND’ terms.

Furthermore, some species are defined as reservoirs and

characterize a pool of a specific protein that is part of

another species, e.g. because it can bind several partners.

Thus, setting the reservoir to ‘0’ leads to the inhibition of

all complexes that contain this species.

Whereas interaction graphs describe positive or negative

influences between species, the LIH integrates the relation-

ship between several regulatory predecessors of the same

species. For example, if A and B are activators of C in the

interaction graph, the associated logical representation

would depend on whether A or B can activate C alone

(‘OR’), or whether both (‘AND’) are required. If this infor-

mation is not available an incomplete truth table (ITT) gate

can be used to implement the case where the presence of

only one input results in an unknown output. This limits

the determinacy of the logical steady state, but provides

more reliable results.

Embedded in the LIH formalism, cellnetanalyzer also

supports multivalued logic to mimic the fact that, in reality,

Logical modeling of proliferation control J. Huard et al.

3306 FEBS Journal 279 (2012) 3290–3313 ª 2012 The Authors Journal compilation ª 2012 FEBS



multiple relevant threshold values or states for a species may

exist. In addition to the binary on ⁄ off case, other levels for

the species can be defined. For example we can formulate a

logical function !A Æ 2B fi 3C, expressing that C reaches

level ‘3’ if A is inactive (level ‘0’) ‘AND’ B is at level ‘2’.

The hypergraphical representation facilitates the analysis

of a number of useful properties of a logical network or its

underlying interaction graph [11,13–15]. Here, we use our

model for computing feedback loops, MIS (see below) and

for predicting the qualitative input–output behavior. This is

achieved by propagating input signals and perturbations,

e.g. knockout of nodes, along the logical hyperarc connec-

tions to compute the resulting LSS [43], which reflects the

final qualitative response of the network, though not the

temporary sequence of signal flows.

Computation of feedback loops

Computing the feedback loops of a logical network in a

LIH representation requires its conversion into an interac-

tion graph by splitting all ‘AND’ gates. Duplicated edges

arising from this process are removed before counting the

actual number of cycles. For example, for the following

multilevel network with two hyperarcs, i.e. ‘AND’ connec-

tions, pointing to node C: {A Æ !D = C; !D Æ 2B = 2C}, the

corresponding interaction graph is represented by the fol-

lowing signed edges: A fi C, B fi C, D )|C.

Initial response

In some cases, the presence of feedback loops may pre-

vent the computation of a unique LSS for some or all

species. Indeed negative feedback loops might generate

oscillations, whereas positive feedback loops can induce

multistationarity. One possibility to cope with this prob-

lem is to focus on the initial response of the network by

introducing time scales. Typically, feedback loops become

active only after some time once a signaling event has

been triggered. For each feedback loop, we may therefore

declare the cycle-closing edge to a higher time scale, i.e.

it will be set to ‘0’ when considering the initial response.

The obtained LSS then reflects the initial response of the

nodes in the network, which is of main interest in most

applications.

A typical example is represented by the MAPK cascade

as modeled by Kholodenko et al. [94] and others.

Figure S8A shows the activation in this cascade and the

negative feedback from the end kinase (extracellular signal-

regulated kinase; ERK) to the input (rat sarcoma; Ras).

Simulation without feedback leads to a sustained activation

of ERK, whereas inclusion of this negative feedback

generates sustained oscillations (Fig. S8B). The potential

existence of oscillations prevents the determination of a

LSS when translated into a logical structure (Fig. S8C).

The signal must be able to propagate down to ERK at first

in order to activate the feedback loop and for this to

happen the loop can initially be considered to be open in

the logical model by defining it at time scale ‘2’. The

resulting two time scales do not define the two reactions as

slow or fast, but rather specify their sequence of activation.

Hence, they represent a local property of the activation of

Raf. In order to adjust the time scale within which Raf can

be inhibited, a dummy is incorporated, and a time scale of

‘2’ set for the reaction ERK fi dummy.

Whereas the shape of ERK activation seems to determine

cell fate, the outcomes of the different ERK activation

modes are somehow unclear. Although it is commonly

accepted that a sustained activation characterizes cell differ-

entiation and a transient one cell proliferation, some

authors showed that only a sustained ERK activation can

induce cyclin D1 expression and cell-cycle entry [95]. Logi-

cal models represent a good approach to handle large net-

works, but dynamic modeling in conjunction with large

amounts of quantitative experimental data will be required

if the precise transient course and quantitative aspects of

protein activation are of interest. This approach can be

used with the help of the ODEfy plugin [62] which converts

logical models into dynamical ODE models and was

included to cellnetanalyzer.

In this study, the model prior to modifications contained

37 edges with a time scale of ‘2’ assigned from biological

knowledge. Logical analyses were performed for time scale

‘1’ only (where time scale ‘2’ edges are thus temporarily

removed from the network). Most, but not all, cycles were

disrupted when removing the time scale ‘2’ edges. These

remaining cycles can potentially prevent LSS computation

in specific scenarios (main text).

Minimal intervention sets

MIS are defined as irreducible (support-minimal) sets of

constitutive activations and inhibitions of species that will

enforce a desired network response [41,43]. For this pur-

pose, a context (e.g. external inputs or knockouts) and an

intervention goal (activation or inhibition of specific spe-

cies) have to be defined. MIS are then computed by deter-

mining all combinations of constitutive activations and ⁄or
inhibitions that enforce an LSS where the intervention goal

is satisfied in the given context. The algorithm was

described by Samaga et al. [43].

Sensitivity analysis

Because logical models do not depend on kinetic parame-

ters, a sensitivity analysis investigates the effect of structural

errors on the predictive power. Structural changes were

obtained by removing one or more reactions of time scale

‘1’ as proposed in [13], or by substituting them by an OR or

ITT gate. Following each model modification, the effects on

the comparison of model predictions and data, i.e. literature
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as well as experimental datasets, were measured by counting

the number of wrong predictions (Doc. S6). Because the sce-

nario where EGF alone is the stimulus was present in both

datasets with different outcomes, we chose to include only

the result of our own dataset, i.e. EGF induces DNA syn-

thesis. Both scenarios, where TNFa is used as a stimulus,

were combined as they were not contradictory.

Software

The logical models were constructed with the editing tool

promot [44] and analyzed with the MATLAB package

cellnetanalyzer [40] using its computational methods

and application programming interface [96]. Dynamical

simulations (Fig. S8B) were performed using the simbiolo-

gy
� toolbox of matlab

� (MathWorks, Ismaning, Ger-

many). The model is provided in promot format in the

Supporting information. Furthermore, the cellnetanalyz-

er model files are available from the model repository

of this software at the following website: http://www.mpi-

magdeburg.mpg.de/projects/cna/repository.html.

Network construction

The network was constructed by compiling information

found in a total of 257 publications as listed in Doc. S2. It

represents a master network for mammalian cells with

information from different cell types.

Chemicals

Unless stated otherwise, chemicals were purchased from

Sigma-Aldrich (Munich, Germany).

Isolation of primary mouse hepatocytes

Primary mouse hepatocytes were isolated according to a

standardized procedure [97]. All mice were housed at the

DKFZ animal facility under a constant light ⁄dark cycle,

maintained on a standard mouse diet, and allowed ad libi-

tum access to food and water. All animal experiments were

approved by the governmental review committee on animal

care of the state Baden Württemberg, Germany (reference

number A24 ⁄ 10). Briefly, 8–12-week-old male C57BL ⁄ 6N
mice (Charles River, Sulzfeld, Germany) were used for pri-

mary hepatocyte isolation. Anesthesia was carried out by

intraperitoneal injection of 5 mg ketamine hydrochloride

10% (w ⁄ v) (Bayer Health Care, Leverkusen, Germany) per

100 mg body weight and 1 mg xylazine hydrochloride 2%

(w ⁄ v) (Pfizer, Berlin, Germany) per 100 mg body weight.

The liver was successively perfused with EGTA-containing

buffer (0.6% w ⁄ v glucose, 105 mm NaCl, 2.4 mm KCl,

1.2 mm KH2PO4, 26 mm Hepes, 490 lm l-glutamine,

512 lm EGTA, 15% v ⁄ v amino acid solution, pH 8.3) and

collagenase-containing buffer (0.6% w ⁄ v glucose, 105 mm

NaCl, 2.3 mm KCl, 1.2 mm KH2PO4, 25 mm Hepes,

490 lm l-glutamine, 5.3 mm CaCl2, 12% v ⁄ v amino acid

solution, 365 lgÆmL)1 collagenase type 1-A, pH 8.3) in an

anterograde fashion via the portal vein. The amino acid

solution consisted of 270 mgÆL)1
l-alanine, 140 mgÆL)1

l-aspartic acid, 400 mgÆL)1
l-asparagine, 270 mgÆL)1

l-cit-

rulline, 140 mgÆL)1
l-cysteine hydrochloride monohydrate,

1 gÆL)1
l-histidine monohydrochloride monohydrate,

1 gÆL)1
l-glutamic acid, 1 gÆL)1

l-glycine, 400 mgÆL)1
l-iso-

leucine, 800 mgÆL)1
l-leucine, 1.3 gÆL)1

l-lysine monohy-

drochloride, 550 mgÆL)1
l-methionine, 650 mgÆL)1

l-ornithine monohydrochloride, 550 mgÆL)1
l-phenylala-

nine, 550 mgÆL)1
l-proline, 650 mgÆL)1

l-serine, 1.35 gÆL)1

l-threonine, 650 mgÆL)1
l-tryptophane, 550 mgÆL)1

l-tyro-

sine and 800 mgÆL)1
l-valine, pH 7.6. The liver was subse-

quently withdrawn and transferred into washing buffer

(0.6% w ⁄ v glucose, 105 mm NaCl, 2.4 mm KCl, 1.2 mm

KH2PO4, 26 mm Hepes, 1 mm CaCl2, 0.4 mm MgSO4,

0.2% w ⁄ v BSA, 15% v ⁄ v amino acid solution, pH 7.6). He-

patocytes were collected by disrupting the liver capsule and

filtering the suspension through a 100 lm cell strainer (BD

Biosciences, Heidelberg, Germany). Cells were washed twice

by centrifugation at 50 g for 2 min. Cell yield and vitality

were determined by Trypan Blue staining, and preparations

exhibiting a vitality > 70% were used for our studies.

For experiments, hepatocytes were seeded at subconfluency

in full medium [phenol red-free Williams E medium

(Biochrom, Berlin, Germany) supplemented with 10% v ⁄ v
fetal bovine serum (Life Technologies, Darmstadt,

Germany), 0.1 lm dexamethasone, 10 lgÆmL)1 insulin,

2 mm l-glutamine and 1% (v ⁄ v) penicillin ⁄ streptomycin

100· (both Life Technologies)] using collagen I-coated cell

ware (BD Biosciences) [Correction added on 10 May 2012

after original online publication: in the preceding sentence

‘1 lm dexamethasone’ was changed to ‘0.1 lm dexametha-

sone’]. Cells were cultured at 37 �C, 5% CO2 and 95%

relative humidity. Following adhesion cells were washed

with NaCl ⁄Pi (PAN Biotech, Aidenbach, Germany) to

remove unattached hepatocytes and subsequently cultured

in serum-free cultivation medium (phenol red-free Williams

E medium supplemented with 0.1 lm dexamethasone,

2 mm l-glutamine, and 1% v ⁄ v penicillin ⁄ streptomycin

100·) for 24 h prior to experiments [Correction added on

10 May 2012 after original online publication: in the pre-

ceding sentence ‘1 lm dexamethasone’ was changed to

‘0.1 lm dexamethasone’].

Sybr� Green I assay

Cells were washed twice with NaCl ⁄Pi, received fresh

serum-free cultivation medium and were stimulated with

the following factors either alone or in combination for a

total of 48 h: 40 ngÆmL)1 recombinant mouse (rm) HGF,

20 ngÆmL)1 rmTNFa, 1 ngÆmL)1 recombinant human (rh)

TGFb (all R&D Systems, Wiesbaden, Germany),
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50 ngÆmL)1 rhEGF (Millipore, Molsheim, France), 100 nm

insulin, 40 ngÆmL)1 rhIL-6 (gift from S. Rose-John, Chris-

tian-Albrechts-University, Kiel, Germany). Factors were

dissolved in cultivation medium or acidified double-distilled

H2O (insulin). For inhibitor treatments, cells were preincu-

bated with 10 lm Akt inhibitor VIII (Calbiochem EMD

Millipore, Darmstadt, Germany), 10 lm LY294002, 10 lm

U0126 (both Cell Signaling Technology, Frankfurt, Ger-

many), 1 nm LMB (gift from M. Yoshida, RIKEN

Advanced Science Institute, Saitama, Japan), 15 lm BX912

(Axon Medchem, Groningen, the Netherlands), 2 lm

PD0332991 (Selleck Chemicals, Houston, TX, USA) or

equal volumes of ethanol or dimethylsulfoxide for 30 min

prior to addition of 40 ngÆmL)1 HGF. LMB was dissolved

in ethanol; Akt inhibitor VIII, LY294002, U0126, BX912

and PD0332991 were dissolved in ditheylsulfoxide. In each

experiment, cells derived from a single animal were used

and treatments were performed in technical triplicates.

After the first 24 h, medium, stimulus and if applicable

inhibitory treatment were renewed. At the end of cultiva-

tion, cells were washed twice with NaCl ⁄Pi and frozen at –

20 �C for at least 24 h. To assay DNA content, plates were

incubated with 2 mLÆwell)1 of Sybr� Green I working solu-

tion (Sybr� Green I 10.000·) (Life Technologies, Darm-

stadt, Germany) diluted 1 : 2500 in NaCl ⁄Pi supplemented

with 0.1% v ⁄ v Triton X-100 (Roche Applied Sciences,

Mannheim, Germany) for 1 h in the dark. Fluorescence

intensity was read using an Ascent Fluoroscan plate reader

(Thermo Fisher Scientific, Bonn, Germany) with kexcita-

tion = 485 nm and kemission = 538 nm.

Statistical analysis

At least three individual experiments were used together for

statistical analysis of the Sybr� Green I assay data, where

each experiment was conducted in technical triplicate

employing hepatocytes isolated from a single animal. To

account for the two levels of variability, i.e. technical vari-

ability within an experiment and biological variability

between different experiments, a mixed linear model (sas

prox mixed, v. 0.2; SAS Institute Inc., Cary, NC, USA)

was used with fixed factor stimulation condition and ran-

dom intercept for the experiment. A detailed description of

the use of mixed linear models for statistical analysis can

be found in Littell et al. [47]. Prior to statistical analysis,

data were scaled to the average of the experiment’s fluores-

cence intensity and log2 transformed. Dunnett contrasts

were used to compare the different stimulation conditions

with the respective control (unstimulated or solvent con-

trol). Results were plotted as log2 fold change with 95%

confidence intervals. The null hypothesis was defined such

that the induction of DNA synthesis by any treatment is

not significantly different from the induction of DNA syn-

thesis in the reference sample. The significance threshold

for P-values was set to 5%.

To test the significance of the positive correlation between

model predictions on mutations with oncogenic consequences

and the COSMIC database, a one-tailed Fisher’s exact test

was performed. The null hypothesis was defined as such that

there is no significant overlap between the model predictions

and the mutations found in the COSMIC database (http://

www.sanger.ac.uk/genetics/CGP/cosmic/, 3 April 2011). The

significance threshold for P-values was set to 5%.

Acknowledgements

The authors thank L. D’Alessandro and S. Manthey

for technical assistance with primary hepatocyte exper-

iments. The authors acknowledge the promot and

cellnetanalyzer development teams for support and

R. Samaga and J. Saez-Rodriguez for help on logical

modeling. We acknowledge M. Yoshida and S. Rose-

John for kindly providing leptomycin B and rhIL-6,

respectively. We thank A. Kopp-Schneider for assis-

tance with statistical analysis as well as M. Schilling

and N. Iwamoto for critical discussions on the manu-

script. The authors are grateful to the ‘HepatoSys’ and

‘Virtual Liver’ funding initiatives of the German Fed-

eral Ministry of Education and Research (BMBF).

References

1 Michalopoulos GK (2007) Liver regeneration. J Cell

Physiol 213, 286–300.

2 Fausto N, Campbell JS & Riehle KJ (2006) Liver regen-

eration. Hepatology 43, S45–S53.

3 Li W, Liang X, Leu JI, Kovalovich K, Ciliberto G &

Taub R (2001) Global changes in interleukin-6-depen-

dent gene expression patterns in mouse livers after

partial hepatectomy. Hepatology 33, 1377–1386.

4 Cressman DE, Greenbaum LE, DeAngelis RA, Ciliber-

to G, Furth EE, Poli V & Taub R (1996) Liver failure

and defective hepatocyte regeneration in interleukin-6-

deficient mice. Science 274, 1379–1383.

5 Wuestefeld T, Klein C, Streetz KL, Betz U, Lauber J,

Buer J, Manns MP, Muller W & Trautwein C (2003)

Interleukin-6 ⁄ glycoprotein 130-dependent pathways are

protective during liver regeneration. J Biol Chem 278,

11281–11288.

6 Orstavik D & Mjor IA (1992) Usage test of four end-

odontic sealers in Macaca fascicularis monkeys. Oral

Surg Oral Med Oral Pathol 73, 337–344.

7 Ichikawa T, Zhang YQ, Kogure K, Hasegawa Y, Tak-

agi H, Mori M & Kojima I (2001) Transforming

growth factor beta and activin tonically inhibit DNA

synthesis in the rat liver. Hepatology 34, 918–925.

8 Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen

UB, Lauffenburger DA & Sorger PK (2009) Input–out-

put behavior of ErbB signaling pathways as revealed by

J. Huard et al. Logical modeling of proliferation control

FEBS Journal 279 (2012) 3290–3313 ª 2012 The Authors Journal compilation ª 2012 FEBS 3309



a mass action model trained against dynamic data. Mol

Syst Biol 5, 239.

9 Schoeberl B, Eichler-Jonsson C, Gilles ED & Müller G

(2002) Computational modeling of the dynamics of the

MAP kinase cascade activated by surface and internal-

ized EGF receptors. Nat Biotechnol 20, 370–375.

10 Singh A, Sharma R, Jayaraman A & Hahn J (2006)

Mathematical model of IL-6 signal transduction in

hepatocytes. Biotechnol Bioeng 95, 850–862.

11 Franke R, Müller M, Wundrack N, Gilles ED, Klamt

S, Kahne T & Naumann M (2008) Host–pathogen sys-

tems biology: logical modelling of hepatocyte growth

factor and Helicobacter pylori induced c-Met signal

transduction. BMC Syst Biol 2, 4.

12 Saez-Rodriguez J, Alexopoulos LG, Epperlein J,

Samaga R, Lauffenburger DA, Klamt S & Sorger

PK (2009) Discrete logic modelling as a means to link

protein signalling networks with functional analysis of

mammalian signal transduction. Mol Syst Biol 5, 331.

13 Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway

R, Bommhardt U, Arndt B, Haus U-U, Weismantel R,

Gilles ED, Klamt S et al. (2007) A logical model

provides insights into T cell receptor signaling. PLoS

Comput Biol 3, e163.

14 Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger

PK & Klamt S (2009) The logic of EGFR ⁄ErbB signal-

ing: theoretical properties and analysis of high-through-

put data. PLoS Comput Biol 5, e1000438.

15 Schlatter R, Schmich K, Avalos Vizcarra I, Scheurich

P, Sauter T, Borner C, Ederer M, Merfort I & Sawodny

O (2009) ON ⁄OFF and beyond – a Boolean model of

apoptosis. PLoS Comput Biol 5, e1000595.

16 Gérard C & Goldbeter A (2009) Temporal self-organi-

zation of the cyclin ⁄Cdk network driving the mamma-

lian cell cycle. Proc Natl Acad Sci USA 106, 21643–

21648.

17 Novák B & Tyson JJ (2004) A model for restriction

point control of the mammalian cell cycle. J Theor Biol

230, 563–579.

18 Qu Z, Weiss JN & MacLellan R (2003) Regulation of

the mammalian cell cycle: a model of the G1-to-S tran-

sition. Am J Pathol 284, C349–C364.

19 Alfieri R, Barberis M, Chiaradonna F, Gaglio D, Mila-

nesi L, Vanoni M, Klipp E & Alberghina L (2009)

Towards a systems biology approach to mammalian cell

cycle: modeling the entrance into S phase of quiescent

fibroblasts after serum stimulation. BMC Bioinformatics

10, S16.

20 Chen KC, Calzone L, Csikasz-Nagy A, Cross FR,

Novak B & Tyson JJ (2004) Integrative analysis of cell

cycle control in budding yeast. Mol Biol Cell 15,

3841–3862.

21 Davidich MI & Bornholdt S (2008) Boolean network

model predicts cell cycle sequence of fission yeast. PLoS

One 3, e1672.
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