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Abstract: Carob is one of the major food trees for peoples of the Mediterranean basin, but it has also
been traditionally used for medicinal purposes. Carob contains many nutrients and active natural
products, and D-Pinitol is clearly one of the most important of these. D-Pinitol has been reported
in dozens of scientific publications and its very diverse medicinal properties are still being studied.
Presently, more than thirty medicinal activities of D-Pinitol have been reported. Among these, many
publications have reported the strong activities of D-Pinitol as a natural antidiabetic and insulin
regulator, but also as an active anti-Alzheimer, anticancer, antioxidant, and anti-inflammatory, and
is also immune- and hepato-protective. In this review, we will present a brief introduction of the
nutritional and medicinal importance of Carob, both traditionally and as found by modern research.
In the introduction, we will present Carob’s major active natural products. The structures of inositols
will be presented with a brief literature summary of their medicinal activities, with special attention
to those inositols in Carob, as well as D-Pinitol’s chemical structure and its medicinal and other
properties. D-Pinitol antidiabetic and insulin regulation activities will be extensively presented,
including its proposed mechanism of action. Finally, a discussion followed by the conclusions and
future vision will summarize this article.

Keywords: carob; inositols; D-Pinitol; medicinal activities; antidiabetic; insulin regulator; mechanism
of action

1. Introduction
1.1. Carob: The Faithful Companion of Humanity

Carob (Ceratonia siliqua L.) is one of the most important nutritional crops for peoples
of the Middle East, North Africa, and Southern Europe [1]. Carob fruits (named pods or
kibbles), contain a wide range of macro- and micronutrients, as well as many other natural
products. A summary of Carob fruit composition is presented in Table 1.

Table 1. General composition of Carob fruits [2].

Component Proportion (%)

Moisture 6.3–7.6
Protein 1.7–5.9

Ash 2.3–3.2
Fat 0.2–4.4

Total dietary fiber 11.7–47
Starch 0.1

Total carbohydrates 42–86
Fructose 2–7.4
Glucose 3–7.3
Sucrose 15–34

D-Pinitol 5.5

However, since antiquity, humans have used different parts of the Carob tree for many
and interesting purposes [3]. Among these, analgesic and anti-inflammatory activities are
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the most important [4,5]. Most of the traditional medicine uses have utilized different
forms of fruits, including unripe pods, but these utilizations included extracts, decoctions
and infusions of leaves and bark [6].

Modern research followed traditional knowledge and dozens of studies were pub-
lished to date about dozens of medicinal activities of Carob’s various products, including its
extracts and single natural products. Consequently, many review articles that summarize
the research articles can also be found [7–10]. However, one of the best review articles
about Carob’s composition has been published by K. Rtibi et al., where they focus on
Carob-derived treatments of the gastrointestinal tract [11]. In Figure 1, major and new (red
names) phenolic compounds are shown [12–14].
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Figure 1. Major and new phenolic compounds found in Carob pods and leaves [12–14].

To conclude this section, it is important to indicate that in recent years there has
emerged a rapidly growing interest in Carob seeds, their composition (protein rich), nutri-
tional potential and medicinal activities [2,15,16].

1.2. Insulin Resistance in Type 2 Diabetes

Type 2 diabetes (T2D) is defined by the World Health Organization (WHO) as a
“metabolic disorder of multiple etiology characterized by chronic hyperglycemia with
disturbance of carbohydrate, fat, and protein metabolism resulting from defects in insulin
secretion, insulin action, or both” [17]. The International Diabetes Federation reported
that in 2018, there were 463 million people around the world affected by this disease,
and the organization estimates that by 2045, there will be 700 million people affected by
it [18]. It has also been reported that in 2017, the global healthcare expenditure associated
with diabetes and its complications was USD 850 billion. The prevalence rate is estimated
as 13.5% in low-income countries, compared with 10.4% in high-income nations. It is
interesting to mention the fact that this trend is also found within different ethnicities in
the same country. In the USA, the ethnic distribution of T2D follows the “rule” higher-
income-lower-diabetes: Non-Hispanic Whites (highest income) 7.6%, Asians 9%, Hispanics
12.8%, and African Americans (lowest income) 13.2%, in 2017 [19]. In Israel, the author’s



Nutrients 2022, 14, 1453 3 of 17

home country, there are 12% of diabetics among Arabs (lower income) and 6.2% among
Jews (higher income) [20].

Therefore, in the abovementioned definition of T2D, insulin plays a critical role, and
“insulin resistance” is the major cause of this disease. This health disorder is defined as:
“a defect in insulin-mediated control of glucose metabolism in tissues—prominently in
muscle, fat and liver” [17], but insulin has various functions in the human body, and they
are presented in Table 2 [21].

Table 2. Functions of insulin in human body [21].

Effect Type Role of Insulin

Metabolic Stimulation of glucose transport and metabolism
Stimulation of glycogen synthesis
Stimulation of lipogenesis
Inhibition of lipolysis
Stimulation of ion flux

Growth-promoting Stimulation of DNA synthesis
Stimulation of cell growth and differentiation

Metabolic & Growth-promoting Stimulation of amino acid influx
Stimulation of protein synthesis
Inhibition of protein degradation
Stimulation of RNA synthesis

The mechanism of action of insulin in healthy conditions can be found in many
publications [22], and a simplified illustration of it is shown in Figure 2.
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Figure 2. Insulin mechanism of action in healthy conditions.

Insulin enters the cell through an insulin receptor. As a result, tyrosine (Tyr) phos-
phorylation occurs on the insulin receptor substrate (IRS) protein. The resulting adduct
activates phosphoinositide 3-kinase (PI3K), resulting in activation of phosphoinositide-
dependent kinase-1,2 (PDK1/2). Protein kinase (AKT) gets phosphorylated by PDK1/2 and
promotes glucose transporter 4 (GLUT4) translocation to plasma membrane and facilitates
glucose into cell. Thioredoxin interacting protein (TXNIP) inhibits is blocked.

Numerous research articles have been published about this key factor of T2D, and
dozens of review articles that summarize these research publications. However, it is
important to understand the possible mechanisms of insulin resistance that were also
presented in most of these scientific publications. One of the most comprehensive and
illustrated review articles was published by M.C. Petersen and G.I. Shulman [23]. Insulin
resistance is discussed as major and sub-major types, where each section is illustrated with
many figures and graphs.

The review article of H. Yaribeygi et al. follows the previous reference, though it
is far less comprehensive [24]. However, one of its clearest advantages is the table that
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summarizes the molecular mechanisms that are involved in insulin resistance (page 6 in
Ref. [24]), and it is partially cited here as shown in Table 3.

Table 3. Molecular mechanisms of insulin resistance [24].

Molecular Mechanism Roles in Insulin Resistance

Upregulation of PTP1B [25]
Reverses insulin-induced phosphorylation in
tyrosine residues of IRS-1 and so impairs
insulin signal transduction

Inflammatory mediators and adipokines

Activation of IKKβ/NF-κB and JNK pathways,
serine phosphorylation of IRS-1 in the site of
307, declines GLUT-4 expression, reduces IRS-1
expression via ERK1/2, induce IRS
degradation through SOCS1- and
SOCS3-dependent mechanisms

Free radical overload

Activates several serine–threonine kinase
pathways, i.e., IKKβ/NF-κB and JNK, IRS
degradation, suppresses GLUT-4 expression
and localization in cell membrane,
decreases insulin-induced IRS-1 and PIP-kinase
relocation between cytoplasm and microsomes,
decreases PKB phosphorylation, serine
phosphorylation at site of serine 307 of IRS-1,
activates inflammatory responses

Defects in serine phosphorylation of IRS-1
Decrease in insulin receptor phosphorylation,
phosphorylation in serine 307 which blocks
signaling

Obesity and adipocytes importance
Decrease in insulin receptor phosphorylation,
phosphorylation in serine 307 which blocks
signaling

Accelerated insulin degradation
Autoimmune antibodies against insulin or
abnormal
insulin structure due to mutation

Mitochondrial dysfunction Induces oxidative stress, impairs insulin
signaling

Reduced the capacity of
receptors to binding to insulin

Decrease in number of insulin receptors,
reduction in
functional receptors due to mutation,
autoimmune
antibodies against insulin receptors

Mutations of GLUT-4

Point mutation changes normal modification of
GLUT-4, inhibits glucose entering into
dependent cells and
impairs subsequent signaling pathways

ER stress Disrupts proper protein folding leading to
accumulation of misfolded proteins

PTP1B [25], protein tyrosine phosphatase 1B; IRS-1, insulin receptor substrates-1; IKKβ/NF-κB, central regulator
of NF-κB; GLUT-4, type 4 glucose transporter; ERK, extracellular signal-regulated kinase SOCS1/3, suppressor of
cytokine signaling; JNK, c-Jun N-terminal kinase; ER, endoplasmic reticulum.

The review article of D.E. James has special importance for two major reasons [26].
First, it includes excellent figures that explain the putative factors that contribute to insulin
resistance (Figure 4, page 12 in Ref. [26]). Second, it discusses the situation of fasting in
insulin resistance conditions. This situation has great relevance for hundreds of millions of
people around the world. Another review article with special importance about insulin
resistance has been recently published by W.A. Banks and E.M. Rhea [27]. This article is
important for three major reasons. First, it links insulin resistance with the brain–blood
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barrier (BBB); second, it discusses the relation of insulin signaling and oxidative stress
manifestation in T2D and Alzheimer’s disease; and third, it contains excellent illustrations,
especially the figure that shows the interactions between insulin and oxidative stress.

1.3. Treatment of Insulin Resistance with Natural Products

As mentioned in the previous section, T2D is a severe global health issue and a major
cause of financial burden. Consequently, many methods have been developed to target this
disorder. However, before presenting treatments that are based on natural products, we
will briefly present some selected synthetic pharmaceuticals.

C.L. Reading et al. have reported the anti-inflammatory activity and improvement
of the insulin-sensitivity activity of synthetic sterol (Figure 3) in insulin-resistant obese-
impaired glucose tolerance [28].
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A significantly different approach has been reported by S. Xue et al. who report a
treatment for hepatogenous diabetes using Oleanolic acid, which triggered the expression
of short-peptide genetic synthesis [30]. The synergistic activity of Oleanolic acid and the
peptide (researchers have named it shGLP-1), proved to be more efficient than the activity
of each component separately. To conclude this part, we indicate the review article of R.
Vieira et al. which is very informative and comprehensive [31].

Many natural products have been tested and published for their insulin regulation
activity. F.S. Saadeldeen et al. list in their excellent review article 98 naturally occurring
compounds that regulate glucose metabolism and treat insulin resistance [32]. This article
provides the structure of each compound, its botanical source, and its activity.

Following traditional Chinese medicine therapeutic methods, J. Li et al. list pure
natural products and herbal formulations used to treat insulin resistance [33]. Formulations
are listed with their Chinese names, and detailed information about methods and purposes
of use.

In addition to D-Pinitol, which will be discussed in Section 3, numerous natural
products have been published in research articles for having insulin regulation activity.
We limit our presentation here to two of these compounds that have been mentioned in
very recent publications. First, R. Alaaeldin et al. reported the amelioration of insulin
resistance of Carpachromene (Figure 4), a natural product that can be found in Banyan
(Ficus binghalensis L.) [34].
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They found (in vitro model) that Carpachromene has significant insulin resistance
amelioration compared with Metformin, a synthetic drug widely used for treating this
disorder.

The second report was published by A. Deenadayalan et al. who tested the effect of
Stevioside (Figure 5) on insulin resistance, in both in vivo (rats) and in silico models [35].
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Their findings indicate that this compound has similar activity to metformin.
Finally, it is important to mention very recent research published by H. Sanz-Lamora

et al. that found that treatment with pure polyphenol supplementation (D18060501) wors-
ened insulin resistance in diet-induced obese mice [36].

2. Inositols—A Brief Presentation

Inositols are naturally occurring Cyclitols or Polyols, and they can be found in mam-
malian and plant kingdoms [37]. In terms of more specific chemical structure, these natural
products are stereoisomers of hexahydroxy cyclohexane. In Figure 6, the structures of
naturally occurring inositols are shown.

The biological properties of inositols have been extensively studied and published.
Most of these activities have been summarized by O.C. Watkins et al. [38]. These properties
include insulin regulation, antidiabetic, antioxidant, antibacterial, female fertility enhancer,
metabolic syndrome treatment, antidepressant, gastroprotective, hepatoprotective, hy-
polipidemic and antiaging. However, in this review and in most published literature
about the properties of these compounds, it is clear that most studies have focused on two
activities: insulin regulation and treatment of female fertility disorders. In Table 4 we cite
some of these notable publications, in chronological order.
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Table 4. Selected publications of insulin regulation and women fertility disorders treatment of inositols.

Property Short Description Type of Publication Ref., Year

Insulin regulation in human diabetics research [39], 1990
Treatment respiratory disorders in infants research [40], 1992
Insulin regulation in human diabetics research [41], 1993
Treatments of psychiatric disorders review [42], 1997
Treatment of polycystic ovary syndrome (PCOS) research [43], 1999
Treatment of Alzheimer disease, in vitro research [44], 2000
Insulin regulation in human diabetics research [45], 2005
Treatment of endothelial dysfunction,
antioxidant, animal model research [46], 2006

Biological roles review [47], 2007
Derivatives and their functions review [48], 2008
Treatment of PCOS review [49], 2014
Insulin regulation in obese male children research [50], 2016
Treatment of PCOS review [51], 2016
Treatment of PCOS research [52], 2017
Bioavailability for treatment of PCOS review [53], 2017
Treatment of PCOS in subfertile women review [54], 2018
Effects on glucose homeostasis review [55], 2019
General presentation of medicinal activities review [56], 2019
Treatment of PCOS review [57], 2020
Treatment of PCOS, with other technologies review [58], 2021
Treatment of preterm birth review [59], 2021
Treatment of psychological symptoms in PCOS review [60], 2021
Insulin regulation in pregnancy review [38], 2022

From Carob, six inositols and their derivatives (methyl ethers) were isolated and
characterized [61]. Their structures are shown in Figure 7.

myo-Inositol is the most abundant compound of this family in all life forms, followed
by D-Pinitol and its precursor, D-chiro-Inositol, in the plant kingdom. D-Bornesitol and
D-Sequoyitol are relatively rare, and their properties are almost unknown. D-Ononitol has
been very limitedly studied [62,63].
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3. D-Pinitol: Occurrence, Isolation, and Properties

D-Pinitol can be found in more than 20 plant sources, and its highest content is in Carob
pods, at 5.5% [2,64]. To date, more than 40 publications have reported the quantification
and/or isolation of this important natural product. One of the most notable works has
been published by O. Negishi et al. [65]. They determined the content of methylated
inositols in 43 edible plants by the HPAE-PAD analytical method. J. Qiu et al. reported
the determination of D-Pinitol in rat plasma [66]. This study is highly important since it
provides understanding of the pharmacokinetics and bioavailability of D-Pinitol in vivo.

The medicinal and other properties of D-Pinitol have been extensively studied and
published. In Table 5, we list most of these reports, excluding publications that report no or
low results.

Table 5. Published properties of D-Pinitol.

Activity/Property Testing Method Ref.

Anti-Alzheimer In vivo, mice [67]
Anti-Alzheimer In vitro, hippocampal cultures [68]
Anti-Alzheimer In vivo, C. elegans, mice [69]

Antiaging In vivo, D. Melanogaster [70]
Antibacterial M. smegmatis [71]
Anticancer In vitro, human cancer cells [72–77]
Anticancer In vivo, rats [78–83]
Anti-colitis In vivo, rats [84]

Antidepressant In vivo, mice [85]
Antidiabetic In vivo, mice/rats [86–92]
Antidiabetic In vivo, humans [93–98]
Antidiabetic Theoretical evaluation [99]

Antidiarrheal In vivo, mice [100]
Antifibrotic In vivo, mice [101]

Antihyperlipidemic In vivo, rats [64,102]
Anti-inflammatory In vivo, mice/rats [103–106]
Anti-inflammatory In vitro, Human cells [72,107,108]
Anti-inflammatory In vitro, BV2 microglial cells [109]
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Table 5. Cont.

Activity/Property Testing Method Ref.

Antinociceptive In vivo, mice [100]
Anti-obesity In vivo, humans [110]
Anti-obesity In vivo, rats [111]

Anti-osteoclastic In vitro, UAMS32 cells [112]
Antioxidant In vivo, rats [78,81,82,88,113]

Anti-psoriatic In vivo, mice [114]
Antiviral Theoretical evaluation [115]

Asthma treatment In vivo, mice [116]
Bone protection In vitro, Bone marrow cell lines, rats [117]
Bone protection In vivo, rats [118]
Cardioprotective In vivo, humans [93]
Cardioprotective In vivo, mice/rats [119,120]

Cytotoxic In vitro, human cancer cell lines [121]
Diuretic In vivo, mice [122]

Geno-protective In vitro, monkey liver cell lines [123]
Hepatoprotective In vivo, humans [124]
Hepatoprotective In vivo, mice/rats [125–131]

Hydration biomarker In vivo, humans [132,133]
Hypotensive In vivo, mice [134]

Immuno-protective Theoretical evaluation [99]
Immuno-protective In vivo, mice [116,135,136]

Immunosuppressive In vivo, mice [137]
Insulin regulation In vivo, mice/rats [111,131,138–141]
Insulin regulation In vivo, humans [96,142]
Insulin regulation In vitro, 3T3-L1, HUVEC cells [143,144]

Memory enhancement In vivo, rats [90]
Nanoparticles loaded In vitro, against M. smegmatis [29]

Nephroprotective In vivo, mice/rats [105,145]
Neuroprotective In vivo, mice/rats [85,122,146–148]
Sleep enhancer In vivo, D. melanogaster, in vitro PC12 cells [149]

Synergism w/ curcumin In vitro, PC12 cells, against As+3 toxicity [150]
Wound healing In vivo, rats, in vitro, HaCaT cells [151]

4. D-Pinitol as Insulin Regulator

In Section 3, we cited eight important published studies about the activity of D-Pinitol
as insulin regulator (Table 5). In fact, the number of publications about this topic is much
higher, and many review articles have published about it and other medicinal properties of
D-Pinitol. These review articles and the research publications that they cite, conclude that
D-Pinitol has two mechanisms of action as an insulin regulator [152]: insulin sensitizing
and insulin mimetic.

K. Srivastava et al. present the insulin-sensitizing effect of D-Pinitol in their review
article about this natural product [153], and a simplified illustration of this effect is shown
in Figure 8.

Interestingly, in a table that lists the botanical sources of D-Pinitol in Ref. [153] (page 3),
the authors do not mention the three plants with the highest content of this natural product:
Carob, Bougainvillea and Soybean [64].

T. Antonowski et al. present the insulin-like (insulin-mimetic) activity of D-Pinitol [154].
This publication, and others, demonstrates the simplified mechanism shown in Figure 9.

This minireview article is notably useful for understanding the structures of cyclitols
and their role in ameliorating metabolic syndrome and diabetes.
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5. Discussion

D-Pinitol is a naturally occurring inositol that can be found in many plant species.
Carob has the highest content of D-Pinitol, which has a wide range of medicinal and other
properties (Section 3). One of these, and probably the most important, is insulin regulation,
which has two major mechanisms: insulin-sensitizing and insulin-mimetic [152].

Many natural products have one or both properties of insulin regulation, including
plant extracts and other mixed compounds. For example, S.A. Kalekar et al. have reported
on the in vitro insulin-sensitizing activity of hydroethanolic extracts of three plants: Phyl-
lanthus emblica L., Tinospora cordifolia (Thunb.) Miers and Curcuma longa L. [155]. In a more
recent study, V. Stadlbauer et al. tested more than 600 plant extracts and found three of
them to have clear in vivo insulin-mimetic activity: Xysmalobium undulatum L., Sapindus
mukorossi L., Chelidonium majus L. [156]. It is important to mention that in this study Carob
is not included.
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Despite the abovementioned, D-Pinitol, and D-Pinitol-containing products of Carob,
have several advantages over other insulin-regulating plant products, due to the following
reasons:

(A) D-Pinitol content of Carob (pods) is the highest of all plants [64].
(B) D-Pinitol-containing products of Carob such as molasses, have important health

benefits [157].
(C) Compared with most other natural products that have insulin-regulation activity,

such as polyphenols, D-Pinitol is more stable in biological gastric conditions [48]. This
property increases its bioavailability in the human body.

(D) In addition to that which is mentioned in C, D-Pinitol is generally stable, but even if it
undergoes methoxy group hydrolysis, the resulting compound is chiro-Inositol, which
is an active insulin-regulator as well [158]. See Figure 6.

(E) Even though there is a limited number of studies that indicate it, it is evident that
D-Pinitol’s activities are significantly increased when it synergistically acts with other
natural products [25,92,150,159].

(F) D-Pinitol has wide range of medicinal activities (Table 5), so it is a multi-functional
natural product. This property increases its potential as a drug.

6. Conclusions and Future Horizons

Most of the medicinal properties of D-Pinitol have been studied and published. Some
of these have been extensively investigated, while others were limitedly or even not
published. It is very important to conduct further studies of all activities of D-Pinitol, but
activities such as insulin regulation, anti-Alzheimer, antiaging and possible anti-Parkinson
activities must draw more attention.

The synergistic effect of D-Pinitol with other natural products of Carob and other
plants is in its beginnings, so this topic must also be thoroughly studied.

Our group is currently investigating some known and unpublished activities of D-
Pinitol, and we are examining possible clinical and other applications that will hopefully
lead to healthy foods, food-additives, and other healthy products.
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