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Abstract: Brain metastases are a major cause of death in breast cancer patients. A key event in the metastatic 
progression of breast cancer in the brain is the migration of cancer cells across the blood-brain barrier (BBB). The 
BBB is a natural barrier with specialized functions that protect the brain from harmful substances, including anti-
tumor drugs. Extracellular vesicles (EVs) sequestered by cells are mediators of cell-cell communication. EVs 
carry cellular components, including microRNAs that affect the cellular processes of target cells. Here, we sum-
marize the knowledge about microRNAs known to play a significant role in breast cancer and/or in the BBB 
function. In addition, we describe previously established in vitro BBB models, which are a useful tool for study-
ing molecular mechanisms involved in the formation of brain metastases.  
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1. INTRODUCTION 

 Breast cancer is the most common malignant tumor that causes 
the highest cancer-associated death of women from industrial na-
tions. Cancer metastases have a significant impact on mortality and 
overall survival of these patients. Importantly, the average mortality 
has been significantly reduced in recent years due to differential 
early detection and screening measures as well as advanced preven-
tive examinations. However, despite all this, many patients die 
prematurely due to a pronounced tumor affliction. 

 MicroRNAs (miRs) are short, non-coding RNAs that are ap-
proximately 20 nucleotides in length. They regulate gene expres-
sion post-transcriptionally by degrading mRNA or blocking its 
translation [1]. Only 2% of the genome consists of protein-coding 
sequences, while the non-coding sequences predominate [2]. These 
are the least researched parts of the genome so far and their effects 
on biological processes in the human body, but also in tumorigene-
sis, are not yet well explained. In recent years, various research 
groups have demonstrated that miRs can not only be detected in 
tissue, but also circulate in cell-free body fluids such as plasma or 
serum [3]. More importantly, it has been demonstrated that miRs 
play a prognostic role in cancer of various entities [4-6]. 

 Eukaryotic cells sequester extracellular vesicles (EVs) which, 
depending on their size, are divided into exosomes, activation or 
apoptosis-induced microvesicles and apoptotic bodies. Microvesi-
cles are cell membrane vesicles with a diameter of 100-1000 nm, 
apoptotic bodies are vesicles with a diameter of 1-5 µm, while 
exosomes have a diameter of 30-100 nm [7-9]. Because of their 
small size, exosomes have emerged as a novel approach to drug 
delivery and biomarker research. Exosomes can transfer proteins 
and genetic material [10]. They circulate in body fluids carrying 
active molecules to distant cells in the body where they can 
 

*Address correspondence to this author at the Department of Anaesthesia 
and Critical Care, University of Würzburg, Oberdürrbacher Street 6, 97080 
Würzburg, Germany; Tel: +4993120130046; Fax: +4993120130019;  
E-mail: Burek_M@ukw.de 

incorporate and release their constituents. Exosomes are considered 
to be powerful non-invasive biomarkers because of their high sta-
bility and well-optimized methods for their isolation and characteri-
zation. Tumor cells (TCs) secrete more exosomes than normal cells 
[11, 12]. Due to this fact, expression profiles of exosomes isolated 
from serum/plasma of cancer patients showed different levels of 
numerous miRs as compared to healthy individuals [13]. In the 
advanced stage of the disease, the tumor can spread from the pri-
mary tissue and form metastases. Besides lung cancer (small cell 
and non-small cell), melanoma and renal cancer, the highest inci-
dence to metastasize in the central nervous system (CNS) has been 
described for breast cancer. Exosomes isolated from patients with 
metastases show a different miR expression pattern compared to 
healthy individuals or patients with primary neoplasms [14]. An 
efficient characterization of these tumor signatures may enable the 
development of new classification criteria and novel therapies for 
these pathologies in the future. In particular, cerebral metastases of 
breast cancer have recently been dynamically studied [15]. TCs 
must pass through a highly selective and tight barrier, the blood-
brain barrier (BBB), to form brain metastases. In the brain, TCs are 
“protected” by the BBB, as most effective anticancer drugs do not 
cross the BBB or are pumped out of endothelial cells (ECs) by ac-
tive efflux transporters [16].  This review focuses on miRs differen-
tially expressed in exosomes of breast cancer patients, and de-
scribes miRs that have been shown to affect the BBB. In this con-
text, in vitro BBB models have become a powerful tool to study the 
molecular mechanisms involved in CNS disorders. We summarize 
recent developments in the modeling of the BBB, including a prom-
ising advancement in the use of human cell-based models.  

2. BREAST CANCER 

2.1. Molecular Characteristics  

 The common classification of the subtypes of breast cancer in 
the St. Gallen Classification divides it into four types. The classifi-
cation is based on the analysis of biological markers in the primary 
tumor including estrogen receptor (ER), progesterone receptor 
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(PR), human epidermal growth factor receptor 2 (HER2/neu) and 
proliferation marker Ki67, together with age, tumor size, histologi-
cal grade and lymph node engagement [17, 18]. Four-type-
classification divides breast cancer into luminal A (ER + and/or 
PR+, Ki67 low and HER2/neu-), luminal B (ER + and/or PR+, Ki67 
high and/or HER2/neu+), HER2/neu-positive (ER+/-, PR+/- and 
HER2/neu+) and triple-negative (ER-, PR-and HER2/neu-). This 
classification gives a prediction of disease features, recurrence pat-
tern and disease-free survival.  

2.2. Current Therapies of Primary Breast Cancer  

 The different oncological societies worldwide regularly renew 
the recommended gold standard of care after the newest published 
state-of-art and clinical trials. There are active discussions about the 
best and valid treatments of breast cancer subtypes [19]. The treat-
ment of breast cancer usually includes surgery, mostly radiation, 
and subtypes of higher risk systemic chemotherapy (adjuvant, neo-
adjuvant, or even both) or anti-hormone therapy with subtypes of 
endocrine origin [20]. The main portion (approximately 75%) of the 
breast cancer types belong to estrogen receptor (ER) positive breast 
cancer and are classified into the luminal A and luminal B subtypes. 
The division into one or the other luminal-like group has major 
consequences for the treatment of the patient. The luminal A sub-
type is usually characterized by a favorable prognosis compared to 
the luminal B subtype. Systemic therapy is therefore limited to 
endocrine therapy for at least 5 years after the initial treatment (one 
or another kind of surgery and eventually radiation). In contrast, the 
luminal B subtype is distinguished by a high proliferation rate 
and/or a high histological grade, therefore it is suggested to treat 
those patients after surgery and mostly radiation with systemic 
chemotherapy followed by endocrine therapy for at least 5 years 
[21]. Endocrine therapy differs between the premenopausal and 
postmenopausal patients. For premenopausal patients, tamoxifen is 
recommended for about 5-10 years after the treatment, whereas 
postmenopausal patients should be treated with aromatase inhibitors 
[22]. Luminal B, HER2/neu and triple-negative tumor patients are 
recommended to get systemic chemotherapy. The regimes differ in 
the kind of applied chemotherapy or antibodies and the time when it 
is applied (adjuvant or neo-adjuvant) and in which dosing [22]. 
There is a wide range of different regimes. In general, it is recom-
mended to treat luminal B tumors (tumors ER + with high risk) 
after surgery and mostly radiation with adjuvant chemotherapy 
based on anthracycline and taxane or a dose-intensified therapy 
[20]. The HER2/neu positive subtype of breast cancer is therefore 
mostly treated with a neo-adjuvant chemotherapy, which includes at 
least one systemic chemotherapy compound and either one anti-
HER2/neu- antibody or even two (subtype with higher risk). After 
neo-adjuvant treatment and surgery plus radiation, the antibody 
(one or two) is given adjuvant for one year. Triple-negative breast 
cancers (abbreviated TNBC) are those cancer subtypes, which do 
not express ER, PR or HER2/neu [23]. TNBC is a molecularly very 
heterogeneous cancer, which is considered to be hard to treat, be-
cause of its aggressive characteristics. The risk of a secondary tu-
mor spread and metastasis is higher in comparison to the other sub-
types. The treatment in the curative situation of surgery and radia-
tion plus systemic chemotherapy (neo-adjuvant or adjuvant treat-
ment) with anthracyclines and/or taxanes are used in general as the 
first-line therapy [24]. Because of its heterogeneity and aggressive-
ness, major efforts were made in the past to subclassify the TNBC 
and find a targeted therapy [25].  

2.3. Current Therapies of Metastatic Breast Cancer 

 The recurrence of TCs not locoregional but in other organs 
characterizes a systemic tumor disease. The consequence for pa-
tients is a life-long therapy of one or other kind. One of the first 
organs to suffer from a metastatic disease of breast cancer is the 
bones. A bone stabilization therapy with bisphosphonates or 
RANKL-antibody is recommended. There are different subtypes of 

therapy which are either applied intravenously, subcutaneously or 
orally. These have a bone stabilization effect, as they inhibit bones 
resorbing osteoclasts. Bone metastases with fracture risk, functional 
impairment, bone pain or neuropathic bone pain should be treated 
by radiotherapy [26]. Other organs, which are often affected by 
metastatic spread, are distant nodal metastasis, liver, bone, brain 
and lungs [27]. The metastatic breast cancer is again subdivided 
into the classification of luminal, HER2/neu and TNBC. Therefore 
it is necessary to regain a new histological sample, as there is al-
ways the possibility of a receptor switch. Afterwards, the decision 
of systemic therapy has to be made. The treatment of metastatic 
breast cancer is discussed intensively and regularly by the different 
oncological societies worldwide. New specific substances and 
medications regularly capture the market of oncological therapy 
[28]. Metastatic luminal-like tumors are treated with endocrine 
therapy or extended endocrine therapy (CDK4/6 inhibitors). At the 
state of a so-called “visceral crisis”, a systemic therapy with taxane, 
but also VEGF- antibodies is given. The so-calledd second or fur-
ther chemotherapy lines include substances like anthracylines or 
microtubule-inhibitor. There is the possibility of mono- or poly-
chemotherapy regime. It is always necessary to consider the pre-
treated adjuvant therapies, the side-effects and conditions for choos-
ing a therapy regime [24]. Patients who suffer from a breast cancer 
early onset (BRCA) gene mutation and a TNBC metastatic breast 
cancer can achieve an oral treatment with poly(ADP-ribose)-
polymerase (PARP)-Inhibitor. Metastatic HER2/neu breast cancers 
are treated with two HER2/neu- antibody compounds and a sys-
temic chemo-compound of the taxane group. After reducing tumor 
progression, the antibodies should be further applied until the pro-
gression of the disease. For the second-line therapy and further 
therapy lines, trastuzumab-emtansin (T-DM1) is often used, a com-
bined chemotherapeutic molecule of HER2/neu-antibody and a 
systemic chemotherapy compound, capecitabine, a prodrug of 5-
fluorouracil or tyrosin-kinase inhibitor (Lapatinib). It is very impor-
tant to consider the pretreated adjuvant therapies and the side-
effects of the therapy. The metastatic TNBC (mTNBC) tumor is a 
very challenging kind of cancer. Next to very innovative new thera-
pies of phase-1 study trials, systemic chemotherapy compounds in 
mono- or poly-therapy regimes, there is a new way of medication 
with immune-checkpoint inhibitors given next to systemic che-
motherapeutic compound [29]. Brain metastasis is associated with a 
poor prognosis, as treatment options are limited. Options of treat-
ment involve multimodality approaches including surgery, radio-
therapy, radiosurgery and sometimes systemic therapy [30]. Over-
all, upcoming therapies, especially targeted therapies and/or im-
mune modulation, must show whether they suppress further metas-
tatic progress, thus extending the overall survival of the patient. 

3. CIRCULATING EXOSOMES AND MICRORNAS IN 

BREAST CANCER 

3.1. Exosomes in Breast Cancer 

 Exosomes are nanovesicles, which are secreted and produced 
by almost all cell types. The approximate size is 30 to 100 nm in 
diameter and they play a role in the endosomal pathway by 
paracrine and autocrine cell communication [31]. Exosomes are 
loaded with a lot of different charges like proteins, lipids, mRNAs, 
miRs, long-noncoding RNA and DNA [9, 32]. Analyzing the con-
tent of exosomes might further affect the study of diseases and play 
a role in the understanding of those related to cancer research [33]. 
Exosomes are playing a role in tumor escape and also cancer im-
mune surveillance through communication between immune cells 
and cancer cells [34]. Next to that, exosomes play a role in the sig-
naling cascade from cancer cells to other cancer cells in order to 
induce cell growth, transformation, and survival signals. This could 
be shown through the use of exosomes from patients and breast 
cancer cell lines that induced transformation and tumor formation in 
non-tumorigenic mammary cells [35]. Exosomes travel in order to 
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fulfil their metastatic spread to healthy organic sites to prime the 
environment as future metastatic niche [36]. They interfere in the 
glucose metabolism of normal healthy cells in order to influence the 
precancerous environment [36]. Exosomes can fuse preferentially 
with resident cells at their predicted destination using specific in-
tegrins at their surface. Integrins in tumor exosomes differ and de-
termine their organotropic metastasis and could be used to predict 
organ-specific metastasis. In addition, exosomes can activate spe-
cific signaling pathways in resident cells in order to establish a 
favorable microenvironment that promotes the growth of dissemi-
nated TCs [37]. Riches et al. could show in an in vitro model, that a 
breast cancer cell line secretes higher amounts of exosomes than 
non-tumorous cell lines and that exosomes from normal mammary 
epithelial cells also inhibit exosome secretion by breast cancer cells 
in a tissue specific manner [38]. Exosomes derived from highly 
metastatic breast cancer can transfer increased metastatic capacity 
to a poorly metastatic tumor [39]. 

 Exosomes can cross the BBB and influence signaling in TCs as 
well as in brain microvascular ECs of brain vessels. Circulating 
cancer cells can traverse the BBB and colonialize the brain [40]. 
Brain metastatic cells express protocadherin 7 (PCDH7), which 
promotes the assembly of carcinoma–astrocyte gap junctions allow-
ing for passage of cGAMP from cancer cells to astrocytes [41]. 
This activates signaling pathways in astrocytes leading to a produc-
tion of inflammatory cytokines that support growth and chemoresis-
tance in brain-metastatic cells [41]. Also brain microvascular ECs 
express multiple protocadherin genes, which might be involved in 
the interaction of ECs with TCs [42]. The mechanism of breaching 
the BBB by exosomes is mainly unknown. Morad et al. postulated 
that exosomes breach the intact BBB by transcytosis [43]. 
Exosomes circumvent the low physiological rate of transcytosis in 
the BBB by decreasing the expression of the endosomal GTPase 
Rab7 that controls endosomal trafficking [43].  Other authors pub-
lished that exosomes can cross the BBB only under inflamed condi-
tions but not under normal conditions [44]. Exosomes promote 
cancer cell colonization in brain metastasis by upregulation of pro-
inflammatory cytokines, which promote brain vascular remodeling 
[45]. Circulating exosomes carry miRs with potential regulatory 
functions at the BBB. For example, cancer-derived EVs containing 
miR-181c promote the destruction of the BBB through the abnor-
mal localization of actin. This is achieved by downregulating the 
miR-181c target gene PDPK1 and then downregulating phosphory-
lated cofilin, which leads to a modulation of actin dynamics in-
duced by cofilin [46]. A number of different miRs have been impli-
cated to directly regulate targets in brain ECs. Expression of miR-
155 was strongly upregulated by inflammatory cytokines in brain 
microvascular ECs and led to an increase in permeability. Genes 
involved in cell contact organization such as claudin-1 (CLDN1), 
annexin-2 (ANXA-2), DOCK-1 and syntenin-1 have been identi-
fied as direct targets of miR-155 in brain microvascular ECs [47]. 
Similarly, in addition to CLDN1, miR-212/132 also targets other 
endothelial junction complex genes, such as junctional adhesion 
molecule 3 (JAM3) and tight junction-associated protein 1 (TJAP1) 
leading to increased endothelial permeability [48]. MiR-150 di-
rectly targets angiopoietin receptor Tie-2 at BBB and its overex-
pression leads to increased endothelial permeability, while its inhi-
bition contributes to BBB protection [49]. BBB-stabilizing effects 
also inhibit miR-143, which targets p53 upregulated modulator of 
apoptosis (PUMA) [50]. Overexpression of miR-210 results in in-
creased endothelial permeability by downregulation of miR-210 
targets within the junctional complex, occludin (OCLN) and β-
catenin (CTNB1) [51]. MiR-34a regulates BBB by targeting several 
mitochondria-associated genes such as cytochrome c [52]. All miRs 
that can target genes from brain ECs can be used by TCs to cross 
the BBB. However, more studies on tumor and endothelial miRs 
are required to use miRs profiles as prognostic markers.    

 

3.2. MicroRNAs in Breast Cancer as Potential Biomarkers 

 MiRs are single-stranded short (about 19 to 25 nucleotides) 
RNA molecules, negatively regulating gene expression. They bind 
to the 3’-untranslated region (3’-UTR) of their specific target 
mRNA and repress the initiation of translation or destabilize the 
target mRNA leading to its degradation [53].  

 Breast cancer is a heterogeneous disease in which each patients’ 
tumor has specific and different genetic characteristics [54, 55]. 
Those already known characteristics nowadays play a main role in 
the treatment, prognosis, and handling of the disease. In spite of all 
the existing knowledge and treatments, breast cancer becomes a 
life-threatening disease when cancer spreads from the origin breast 
tissue to other places and organs of the body (metastasis) [56]. At 
primary diagnosis,  specific molecular characteristics are used to 
identify if the cancer has already spread and transformed, therefore 
in a systemic, mostly incurable disease. This raises the question, 
whether in addition to already established diagnostics and tumor 
characteristics (mammography, mammary Magnetic Resonance 
Imaging, tumor marker CA 15-3 / CEA, histological receptors and 
growth factors, gene analysis), if there are other markers for pre-
dicting the aggressiveness and metastasis potential of the tumor. 
MiRs might be a new and relevant tool to find a better way of prog-
nosis prediction and understanding of metastasis development. In 
the following, we review the up to date published knowledge of 
miR peculiarities in different stages of breast cancer expansion. 

3.2.1. Primary Tumors 
 Different studies show that various breast cancer subtypes pre-
sent different kinds of miR expression [57-60]. Van Schooneveld 
and colleagues described various subtype-specific miRs in a study 
and meta-analyses. The miR-let-7c, miR-10a and let-7f were found 
to be associated with the luminal A type; miR-18a, miR-135b, miR-
93 and miR-155 were shown to be associated with the basal type; 
miR-142-3p and miR-150 were associated with the HER2/neu type 
[58, 60]. Lowery and colleagues postulated in their study that with 
miR signatures ER, PR and HER2/neu, receptor status is predict-
able. Especially miR-342 should have a high expression in the ER-
positive/HER2-positive tumors [3]. In in vitro cell culture investiga-
tions, Fkih M’hamed and colleagues showed that miR-10b, miR-
26a, miR-146a and miR-153 could be possible TNBC biomarkers 
in  the future [61]. In a very detailed overall systematic review, 
Adhami and colleagues postulated that especially two miRs (miR-
21 and miR-210) were upregulated consistently. MiR-21 was 
upregulated in six profiling studies. In contrast, six miRs (miR-145, 
miR-139-5p, miR-195, miR-99a, miR-497 and miR-205) were 
downregulated consistently in at least three studies of the eleven 
regarded [62]. In a small clinical study, the authors used miR as a 
complementary tool in the diagnosis and prediction of treatment 
response under neoadjuvant chemotherapy and showed that espe-
cially before neoadjuvant therapy, exosomal miR-21 and miR-105 
expression levels were higher in metastatic versus non-metastatic 
patients and healthy probands [63]. It could also be shown that 
higher levels of exosomal miR-21, miR-222, and miR-155 were 
significantly associated with the presence of circulating TCs [63]. 
There are also reports showing that a downregulation of miR-
221/222 corresponds to an enhancement of tamoxifen sensitivity in 
TCs [64, 65]. 

3.2.2. Bone Metastatic Tumors 
 In advanced stages of breast cancer, patients suffer often from 
bone metastases, which also describe the incurability of the disease 
[66, 67]. Bone-only disease with bone as a single metastatic site has 
a better prognosis than those with visceral or both bone and visceral 
disease [68]. In the recent years, miR has become a subject of in-
vestigations analyzing the role of miR in the development of bone 
metastasis [69-72]. In in vitro studies, Cai et al. postulate that in 
mice models, especially miR-124 inhibits bone metastasis of breast  
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cancer by repressing interleukin-11 [73]. MiR-124 is described as a 
tumor suppressor in the development of bone metastasis [74, 75]. 
Next to miR-124, also miR-214 is strongly increased in the bone 
specimen of breast cancer patients with osteolytic bone metastases 
[76, 77]. In another study, five types of miRs (miR-33a, miR-133a, 
miR-141, miR-190, and miR-219) were shown to regulate tumor-
induced osteoclast differentiation [78]. MiR-135 and miR-203 in-
teract with the protein RUNX2, which plays a role in normal bone 
formation but is often dysregulated in bone-metastatic breast cancer 
cells [79, 80]. In another clinical trial, Zhao and colleagues showed 
that especially miR10b shows an overexpression in contrast to pa-
tients with no bone metastasis. They postulate therefore that miR-
10b could be a useful biomarker in the future [81]. 

3.2.3. Visceral Metastatic Tumors  
 The dispersal of TCs in organs further manifests the systemic 
character of the disease. Also here, miR-10b is discussed as a po-
tential marker to play a major role in the spread of metastasis, as it 
promotes metastasis in otherwise non-metastatic breast cancer cells 
[82]. This was shown by Ma et al. in in vitro models of metastatic 
breast cancer. He and his colleagues also postulate that the level of 
miR-10b expression in primary breast carcinomas correlates with 
the clinical progression of the disease. Ell and colleagues showed in 
in vitro models that the miR-23b/27b/24 cluster promotes breast 
cancer lung metastasis by targeting metastasis-suppressive gene 
prosaposin [83].  Huang et al. postulated that miR-373 and miR-
520c are metastasis-promoting miRs, which are involved in tumor 
migration and invasion [84]. The infiltration of lymph nodes is 
often the first sign of metastatic spread. Chen and his colleagues 
investigated nodal positive patients and found a signature of four 
miRs, consisting of miR-191-5p, miR-214-3p, miR-451a, and miR-
489, which seem to play a role in cell proliferation, migration, and 
invasion abilities [85]. MiR-21 is also discussed to be associated 
with advanced clinical stage, lymph node metastasis and patient 
poor prognosis [86].  

3.2.4. Cerebral Metastatic Tumors  
 At least 10-30% of the breast cancer patients develop brain 
metastases, which is associated with a very poor prognosis with a 
one-year survival of 20% [87, 88]. Therefore, the need for specific 
biomarkers like miRs to identify potentially metastatic tumors in 
the early stage of the disease is very high, especially for high-risk 
patients such as HER2/neu positive and triple-negative patients. As 
a result of improved therapy opportunities, the development of 
brain metastases has become the most limiting factor in relation to  
time and quality [89]. During the formation of cerebral metastasis, 
there is an exceptional situation where single circulating tumor cells 
have to pass the BBB. There are many recent studies on up- or 
downregulated miRs in the metastatic tissues because of the impor-
tance of early detection and development of new therapies for cere-
bral metastasis. Analysis of a data-set with carcinoma patients and 
patients with cerebral metastasis showed that miR-17-5p and miR-
16-5p have the highest association with targeted mRNAs (such as 
B-cell lymphoma 2 (BLC-2), SMAD3 and SDOSCS1) and regulate 
processes of metastatic progression [88]. Moreover, there was a 
negative correlation between miR-17-5p and the total observed 
viability of patients [88]. Heparanase (HPSE), which is considered 
to be an important enzyme in tumor-formation and metastatic pro-
gression, is overexpressed in brain metastatic tissue. It was shown 
that miR-1258 inhibits HPSE and therefore, a low amount of it 
correlates with highly aggressive brain metastatic breast cancer 
[90].  

 Furthermore, in a report about the miR profile of cancer stem 
cells, which are considered to be a key player in metastatic tumors, 
a significantly lower level of miR-7 was shown. MiR-7 modulates 
the activity of KLF4, which is an important stem-cell gene. In addi-
tion to that, a high level of miR-7 inhibits the development of brain 
metastasis in animal models [91]. Plasma level of specific miRs 

could be a predictive biomarker of chemotherapy resistance in me-
tastatic breast cancer. As shown by Shao et al., plasma levels of 
miR-200a and miR-210 showed high diagnostic accuracy for dis-
tinguishing chemotherapy-sensitive from chemotherapy-resistant 
patients [92]. MiR-20b showed increased expression in brain metas-
tases of breast cancer patients, compared to primary breast tumors 
and patients without brain metastasis [93]. More research is needed 
to identify more potential biomarkers of brain metastatic breast 
cancer as well as therapeutic targets.  

4. BLOOD-BRAIN-BARRIER 

4.1. BBB Characteristics  

 The BBB is a physical and metabolic barrier formed by special-
ized brain microvascular ECs, together with other components of 
the neurovascular unit (NVU) such as pericytes, astrocytes, micro-
glia, neurons and extracellular matrix (ECM). Brain microvascular 
ECs express high levels of tight junction (TJ) proteins, efflux and 
influx transporters that selectively regulate the movement of mole-
cules through the BBB [94]. TCs interact with brain ECs affecting 
them in different ways [95, 96]. For example, breast cancer cells 
expressing low levels of claudin-3, -4 and -7 metastasize with a 
high probability to the brain [97]. Other molecules, such as heparin-
binding EGF-like growth factor (HB-EGF) and cyclooxygenase 2 
highly expressed by TCs facilitate brain metastasis process [40]. 
The key players of metastasis forming can be identified at a mo-
lecular level in animal models or in vitro by using isolated cells of 
NVU.  

4.2. In vitro Models for Studying Mechanisms of Breast Cancer 

Metastasis  

 During the last two decades, many in vitro BBB models have 
been developed due to the increasing need to facilitate cerebrovas-
cular research and drug development [98]. However, none of these 
cell culture models fully reflect the complexity of the BBB struc-
ture and its dynamics due to the  limitations of an in vitro system 
[99]. Therefore, data acquired  in studies where such models have 
been applied might be considered with respect to the chosen model. 
The most important cell type of all BBB in vitro models is brain 
microvascular ECs building a highly selective monolayer. Besides 
brain microvascular ECs, other cell types associated or interacting 
with the BBB can be involved in such models. The advantage of co-
cultures comprising two or three different cell types allows break-
ing down the complexity of the BBB into the cell types of interest 
and enables the analysis of cellular processes with regard to a lim-
ited number of parameters. Here, we outline the most widely used 
in vitro BBB models with a special focus on opportunities to study 
the interaction of brain microvascular ECs with TCs. 

 BBB in vitro models can be subdivided into two categories, 
static and dynamic, as schematically depicted in Fig. (1A & B). 

4.2.1. Static In Vitro Blood-Brain Barrier Models 
 Depending on the number of cell types involved, static BBB 
models can be subcategorized into monocultures or co-cultures. 
Moreover, there are primary cell cultures and immortalized cell 
lines used to study the BBB. Besides rodents, which are still the 
most widely used animals in the BBB research, brain ECs have 
been isolated from larger animals, such as bovine, porcine and non-
human primate in order to increase the EC yield [100-104]. How-
ever, problem appearing with the use of brain microvascular ECs 
derived from larger animals is that there are no or only a few re-
spective antibodies available for these species and further, there are 
no transgenic animals available. 

 There are some important requirements that generally applica-
ble BBB in vitro models have to incorporate [105, 106]. The polar-
ized localization of transporters, receptors and enzymes is necessar-
ily required in brain ECs used for BBB studies, but the suitable 
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expression of BBB-specific tight junction (TJ) proteins responsible 
for the characteristically high TEER of brain ECs displays a serious 
problem in the development of suitable BBB in vitro systems [105, 
107-109]. Primarily, low passage brain microvascular ECs were 
identified to display a differentiated phenotype and physiological 
and biochemical properties, that are characteristic for the BBB in 
vivo [102, 110]. Nevertheless, there are some disadvantages of the 
usage of primary brain ECs, which have to be mastered. First, isola-
tion and cultivation of primary brain ECs cultures are limited due to 
the cell number within the brain. Brain microvascular ECs account 
only for 0.1% (v/v) of the brain, meaning that a large number of 
animals might be necessary to generate enough cells for the respec-
tive experiment. Moreover, there is a high probability to contami-
nate the brain microvascular EC culture with other cell types. A 
temporary application of puromycin into the cell culture medium 
has been reported to improve the purity of primary brain ECs [111]. 

 In order to solve the problem of yield and purity, the immortal-
ized brain microvascular EC cell cultures were developed, which 
however, often resulted in a more de-differentiated phenotype [98].  
Moreover, not all immortalized systems achieve the high TEER of 
brain microvascular ECs in vivo due to the minor expression of TJ 
proteins [112]. However, some immortalized BBB systems reflect 
BBB properties known from primary brain EC cultures, and be-
cause of the lower effort in cultivation, they are widely used in the 
research of cerebrovascular diseases [113-118]. 

 A transwell insert mimicking the blood (luminal) and the well 
in which the insert is placed, simulating the parenchymal (ablumi-
nal) side of a vessel can be used as a simple BBB in vitro system 
(Fig. 1A). The pore size of the transwell insert should be 0.4 µm in 
order to allow the exchange of small molecules and growth factors 
secreted by the cells. Furthermore, the relatively small pore size 
functions as a migration barrier for the cells from one compartment 
to the other. The application of transwell inserts allows the co-

�
Fig. (1). In vitro models to study the blood-brain barrier-tumor cell interactions 
(A) Static Blood-Brain Barrier (BBB) in vitro models involving a single monoculture of brain microvascular ECs in a transwell insert (upper left transwell 
insert); a co-culture system of brain endothelial cells (ECs) grown in the presence of tumor cells (TCs) at the luminal side of the insert; co-culture of brain ECs 
on the luminal indirectly contacting TCs on the abluminal side of the transwell insert (upper right transwell insert); brain ECs grown in the upper compartment 
of the transwell insert and TCs seeded on the bottom of the cell culture vessel in which the insert is placed (lower left transwell insert); luminally grown cere-
brovascular ECs indirectly contacting other BBB associated cell types (astrocytes, pericytes, neurons or microglia cells) and TCs seeded on the bottom of the 
cell culture vessel. (B) Dynamic BBB in vitro models represented by the cone-plate apparatus generating shear stress to brain ECs (left picture) and by the 
microporous hollow fibers connected with a speed pump generating shear stress and with a gas-permeable tubing system allowing O2/CO2 exchange of the 
system (right picture).
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cultivation of two or more different cell types together with brain 
microvascular ECs in one system, thereby allowing a more realistic 
simulation of the BBB [119-121]. Besides the interaction of brain 
ECs with other types of the NVU, which has in part been described 
in this section, transwell insert can be used for co-culturing ECs in 
the presence of tumor-secreted factors or brain TCs/TCs isolated 
from brain metastases, which allows the interaction between both 
cell types and investigation of the signaling pathways. As depicted 
in Fig. 1A, TCs can be grown on the top of the brain EC culture at 
the luminal side of the transwell. This co-culture system might be 
used in order to study the interaction of TCs with ECs during the 
period prior to extravasation from the bloodstream into the CNS. 
The disadvantage of this culture is that there is no possibility to 
separate the cultures from each other. Therefore gene or protein 
expression analysis cannot be performed. However, electrophysi-
ological TEER measurements are still feasible applying a respective 
control culture of brain ECs grown alone on the transwell insert. 
Comparing with that model, the interaction of TCs with the cere-
brovascular endothelium on molecular level would be possible by 
seeding ECs luminally and TCs abluminally, directly on the tran-
swell (Fig. 1A). The advantage of these models is that either elec-
trophysiological measurements or gene and protein expression 
analyses of each culture are feasible. This co-culture model might 
mimic the co-option phase of TCs with brain ECs after invasion of 
the brain parenchyma, since the TCs are in indirect contact with the 
abluminal side of the EC culture. A report where this kind of co-
culture system of immortalized human brain ECs (hCMEC/D3 
cells) with human medulloblastoma cell line (VC312R cells) has 
been applied to study cellular interactions between EC and TCs 
revealed an impact of TCs on permeability and transport properties 
of brain ECs [122]. Similarly to this model, TCs might also be 
seeded at the bottom of the cell culture vessel, as it is demonstrated 
in the left lower transwell Fig. 1A. This technique is even easily 
applicable when compared to the co-culture system described 
above. Following this co-culture system, the impact of mouse 
glioma cell line GL261 on the expression of relevant genes in-
volved in Hedgehog pathway, as well as on the proliferation and 
migration of the brain EC (b.END3 cell line) has been tested [123]. 
Finally, a co-culture model is prepared with luminally grown brain 
ECs, other BBB associated cells, i.e. astrocytes or pericytes seeded 
at the abluminal side of the transwell insert, and TCs seeded on the 
bottom of the cell culture vessel where the transwell insert is 
placed. This co-culture system might allow analyzing a relatively 
physiological BBB in vitro model that interacts with TCs. All cell 
types involved in this model can be analyzed exclusively on a mo-
lecular level. A recent study of Anfuso and colleagues established a 
similar triple-culture model applying primary ECs with abluminal 
cultured pericytes and C6 glioma cells grown on the bottom of the 
culture plate [124]. As controls, brain ECs were also cultured with 
either C6 cells or pericytes alone (double co-cultures). Following 
this technique, the authors of the study investigated the role of peri-
cytes in the interaction with brain microvascular ECs and glioma 
cells, the influence of TCs in the presence of pericytes on EC per-
meability, TJ expression, and prostaglandin production. Moreover, 
pericytes used in this culture system exhibited an important modu-
lating role in the initial stages of angiogenesis driven by brain TCs 
[124].  Brain microvascular ECs in co-cultures with TCs and peri-
cytes or astrocytes are characterized by a different permeability and 
are therefore ideal for cell-cell interaction through growth factors 
released by the cell types that are involved in the system and have 
an impact on the identification and optimization of drugs. The most 
significant disadvantage of these co-culture models is the lack of 
shear stress, being critical for the induction and maintenance of the 
BBB phenotype [125, 126]. 

4.2.2. Dynamic In Vitro Blood-Brain Barrier Models 
 A further parameter reflecting the BBB under physiological 
conditions and having an important impact on brain microvascular 

EC properties is the presence of shear stress. Shear stress affects the 
expression of transporters and cellular contacts directly influencing 
the brain microvascular EC monolayer permeability [127]. There 
are different kinds of dynamic BBB models in vitro, including 
cone-plates and microfluidic in vitro models. Cone-plates transmit 
shear forces on ECs through rotating inside of the cell culture me-
dium (Fig. 1B). The limiting factor in this dynamic model is that 
besides brain microvascular ECs, no other cell types can be applied 
to the experiment, therefore diminishing the significance of data it 
generates and the application for brain metastasis research in vitro. 

 To allow the application of shear stress and incorporate two 
different cell types, brain microvascular ECs and TCs (or other 
BBB-associated cell types), the microporous hollow fibers are used 
[128-131]. In this system, brain microvascular ECs are grown in the 
luminal, the inner porous of the hollow fiber, whereas the TCs are 
seeded on the abluminal, the outer side of the fiber. A variable-
speed pump pumps the culture medium into this culture system and 
generates shear stress that can vary from 5-23 dynes/cm2 [132, 
133]. Further, a gas-permeable tubing system maintains  a stable 
microenvironment by exchanging O2 and CO2. Cucullo and col-
leagues used human aortic ECs and the C6 glioma cell line in order 
to determine the impact of TCs on ECs in the presence of shear 
stress [134]. 

4.2.3 Human Stem-cell Based In Vitro BBB Models  
 The generation of human brain capillary-like EC cultures from 
pluripotent stem cells constitutes the new approach allowing purifi-
cation of a large number of cells of interest as well as characteriza-
tion of BBB function in the direct context of different pathologies 
including brain tumors or metastasis compared to normal individu-
als. So far, there are varying protocols for isolation of brain capil-
lary-like ECs from induced pluripotent stem cells (iPSCs) that re-
lied on non-defined (i.e. containing serum) [135-139] or chemically 
defined media without prior purification of endothelial progenitor 
cells (EPCs) [140, 141]. These methodologies focus on selective 
isolation of brain capillary-like ECs from a heterogeneous cell mix-
ture containing neural progenitor cells using selective media and 
ECM components. Due to the heterogeneity of the cell suspensions, 
serum or ECM mixtures, specification of iPSCs into brain capillary-
like ECs and the cost efficiency remained unsatisfactory and insuf-
ficient. Moreover, the yield and the phenotypic features of the brain 
capillary-like ECs were strongly dependent on the original iPSC 
line applied [135]. In contrast, chemically defined media allow 
better reproducibility, control of the basic experimental conditions 
and the framework of the cell purification but remain cost-
intensive. 

 Qian et al. described the derivation of brain capillary-like ECs 
using an intermediary EPC population and chemically defined me-
dia [142]. The differentiation of iPSCs into EPCs was defined by 
the expression of VEGFR2 and CD31. The specification of EPCs 
into brain capillary-like ECs was assured by retinoic acid. The in-
fluencing role of other soluble or non-soluble signaling and small 
molecules, and growth factors involved in the development of spe-
cific BBB characteristics was however neglected. 

 A recent work of Praça et al. described a complex multifactorial 
experimental setup to derive brain capillary-like ECs followed by a 
molecular and functional characterization of differential BBB prop-
erties [143]. The initial isolation was performed by differentiating 
brain capillary-like ECs from an intermediary EPC population fol-
lowed by modulation of three different signaling pathways: VEGF, 
retinoic acid and WNT and applying chemically defined endothelial 
cell medium. Compared with purification protocols shown by oth-
ers, Praça and colleagues described a method to isolate brain capil-
lary-like ECs with relatively high TEER. Moreover, co-culture 
experiments with pericytes showed a substantial maturation of the 
brain capillary-like ECs through an increase of TEER values and 
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monolayer organization by improving the expression of cell-cell 
contact molecules. 

 As experiments of Praça, Lippmann and Katt have demon-
strated, the control of the Wnt3a, VEGF and retinoic acid signaling 
pathways plays a decisive role in the differentiation of EPCs into 
brain capillary-like ECs and their maturation. Moreover, a defined 
ECM is important to provide physical stabilization and provides 
molecules essential to develop BBB characteristics. Platforms using 
channels structured in thick three-dimensional hydrogels could 
provide a useful tool for multicellular approaches in vitro by mim-
icking tissue structures that play a role in differentiating EPCs 
[144]. On one hand, defined ECM can be achieved by chemically 
applied substrates or by cultivating brain capillary-like ECs with 
other types of cells building the NVU. The decellularized ECM 
components are derived from different animal sources. The impact 
of cell-free ECMs of human origin should be investigated in future 
studies. In this context, iPSCs also play an important role. Patient-
derived brain capillary-like ECs differentiated from iPSCs of breast 
cancer patients versus healthy individuals would be a useful tool for 
studying cellular mechanisms of metastasis forming.  

 Another useful human brain capillary-like ECs model has been 
established from human cord blood-derived hematopoietic stem 
cells [145-147]. The cells were first differentiated into ECs, then 
the BBB properties were induced by co-culture with pericytes. Such 
a model appeared to be very reproducible and easy to establish.  

 In summary, BBB in vitro models play an important role in data 
collection regarding  the BBB function under physiological and 
pathological conditions. In addition, the use of in vitro models al-
lows the study of drugs used in various neurological disorders, in-
cluding brain tumors. Knowing the advantages and disadvantages 
of the BBB models presented here, the appropriate cell culture sys-
tem relevant to the study must be selected and the generated data 
might be adequately interpreted. 

CONCLUSION AND FUTURE PERSPECTIVES  

 Treatment for brain metastasis is the most challenging. Finding 
novel therapies to prevent the metastatic progression of breast can-
cer and treat brain metastases require a better understanding of the 
biology and molecular mechanisms behind this process. The in 
vitro models, especially those based on cells from human origin, 
may contribute to gaining more knowledge and finding novel bio-
markers of metastatic brain disease.   
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