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Combination of cephalosporins 
with vancomycin or teicoplanin 
enhances antibacterial effect 
of glycopeptides against 
heterogeneous vancomycin-
intermediate Staphylococcus 
aureus (hVISA) and VISA
Chih-Cheng Lai1, Chi-Chung Chen2, Yin-Ching Chuang2,3 & Hung-Jen Tang4,5

Eight heterogeneous vancomycin-intermediate S. aureus (h-VISA) and seven VISA clinical isolates 
confirmed by the population analysis profile/area under the curve ratio (PAP/AUC) were collected. We 
further performed the PAP/AUC, time-killing methods and MIC tests using vancomycin/teicoplanin 
alone or combination with susceptible breakpoint concentrations of cefazolin, cefmetazole, 
cefotaxime, and cefepime for these isolates. The PAP/AUC MIC curve shifted left after addition 
of cephalosporins with vancomycin or teicoplanin for both h-VISA and VISA isolates. With the 
combination of different cephalosporins with vancomycin or teicoplanin, the AUC/Mu3 AUC ratio 
decreased to <0.9 for the standard Mu3 isolate which are compatible with the definition of vancomycin 
susceptible S. aureus. These decreases ranged between 1.81–2.02 and 2.37–2.85-fold for h-VISA 
treated with cephalosporins and vancomycin or teicoplanin, and 2.05–4.59, and 2.93–4,89-fold for 
VISA treated with cephalosporins with vancomycin or teicoplanin. As measured by time-killing assays, 
the combinations of different cephalosporins with vancomycin concentrations at 1/2 and 1/4 MIC, 
exhibited a bactericidal and bacteriostatic effect in VISA. The mean fold of MIC decline for vancomycin 
base combinations ranged from 1.81–3.83 and 2.71–9.33 for h-VISA and VISA, respectively. Overall, 
this study demonstrated the enhanced antibacterial activity of vancomycin/teicoplanin after adding 
cephalosporins against clinical h-VISA/VISA isolates.

Methicillin-resistant Staphylococcus aureus (MRSA) is a prevalent pathogen that causes human infections in com-
munity and hospital settings globally1–3. Moreover, MRSA infection can be associated with high morbidity and 
mortality4. Vancomycin is the most commonly used antibiotic to treat MRSA infections4–6. However, due to the 
increasing use of vancomycin, clinical MRSA isolates with reduced susceptibility to vancomycin have emerged 
recently7–9. Additionally, the clinical outcomes of heterogeneous vancomycin-intermediate S. aureus (h-VISA) 
and vancomycin-intermediate S. aureus (VISA) infections are poor10–12. Most important of all, the treatment 
options for h-VISA/VISA infections are limited13.

Aside from vancomycin, there are some viable alternative antimicrobial agents, such as daptomycin, line-
zolid, ceftaroline, trimethoprim/sulfamethoxazole, tigecycline, and quinupristin/dalfopristin13. Currently, these 
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alternative choices with single antibiotics have not proved to be superior to vancomycin. Therefore, combination 
therapy may provide another option for combating this critical condition caused by h-VISA/VISA14,15. Werth 
et al.15 demonstrated vancomycin plus oxacillin or ceftaroline may improve the activity of vancomycin against 
h-VISA/VISA by enhancing vancomycin-cell wall interaction. Dilworth et al.14 showed the synergistic activity of 
vancomycin with piperacillin-tazobactam or oxacillin against VISA. However, no investigation has assessed the 
activity of combination of any of the four generations of cephalosporins with either vancomycin or teicoplanin 
against h-VISA/VISA. In this report, we conducted a comparative study of the combination of cephalosporins of 
all generations with either vancomycin or teicoplanin against h-VISA/VISA isolates by three laboratory methods 
to evaluate the in vitro antibacterial activity among different glycopeptide/cephalosporin (G/C) combinations.

Material and Method
Bacterial isolates.  Eight h-VISA and seven VISA clinical isolates were collected from the Tigecycline  
In Vitro Surveillance in Taiwan (TIST) study, which collected clinical isolates from 22 hospitals between 2006 and 
201016. Staphylococci were identified by colony morphology, Gram stain, and coagulase test. MRSA isolates were 
further confirmed by the tube coagulase test and growth on 6 μ​g/ml oxacillin salt agar screen plates. Vancomycin 
MIC was measured by the agar dilution method. All h-VISA or VISA isolates were confirmed by calculating 
the population analysis profile/area under the curve ratio (PAP/AUC). Isolates were stored at −​70 °C in Protect 
Bacterial Preservers (Technical Service Consultants Limited, Heywood, UK) until use. All eight h-VISA and 
seven VISA isolates were selected from different PFGE types, as previously described17,18.

Antibiotics and MIC measurement.  The MICs of cefazolin (CF), cefmetazole (CMZ), cefotaxime (CTX), 
cefepime (CPO), vancomycin (Sigma, St Louis, MO), and teicoplanin (Sanofi-Aventis, Bridgewater, NJ) were 
determined by agar dilution method, and interpretation criteria were based on the recommendations of the 
Clinical and Laboratory Standards Institute (CLSI)19. S. aureus ATCC 29213 was used as a control strain for MIC 
measurements.

PAP/AUC for vancomycin and teicoplanin.  The PAP/AUC was measured for all isolates by inoc-
ulating serial 10-fold dilutions of the test organism onto increasing concentrations of vancomycin- or 
teicoplanin-containing brain heart infusion (BHI) agar (Becton Dickinson, Sparks, MD, USA). The BHI agar 
plates contained vancomycin at the following concentrations 0, 0.5, 1, 1.5, 2, 3, 4, 6, and 8 mg/L or teicoplanin at 
the following concentrations 0, 1, 2, 4, 8, 16, and 32 mg/liter. Colony growth at 48 h was measured and graphed as 
log10 CFU/ml to obtain vancomycin PAPs (v-PAP) and teicoplanin PAPs (t-PAP). The v-PAP graph was used to 
calculate the AUC of each isolate, and the ratio of the AUC of the test isolate to the AUC of S. aureus Mu3 (ATCC 
700698) was calculated. The AUC of tested isolate/Mu3 ratios were calculated. Ratios less than 0.9 were consid-
ered as VSSA and ratios of 0.9 to 1.3 and >​1.3 were considered h-VISA and VISA, respectively20. Additionally, 
vancomycin criteria were extended to teicoplanin for this study.

v-PAP/AUC and t-PAP/AUC reducing test.  The PAP/AUC were detected with BHI containing vanco-
mycin or teicoplanin alone and combination with susceptible breakpoint concentration of cephalosporins of 
all generations against eight h-VISA and seven VISA clinical isolates with the ratios of tested isolate/Mu3 were 
calculated. The fold decrease of vancomycin or teicoplanin alone with the G/C combinations were also calculated.

Time-kill method.  Eight h-VISA and seven VISA clinical isolates were selected for another in vitro measure-
ment of inhibitory effect of combination regimens as recommended by the CLSI21. In brief, bacterial suspensions 
were diluted to 5.0 ×​ 105 colony-forming units (CFU)/mL in fresh Mueller–Hinton broth. Drug concentrations of 
vancomycin or teicoplanin were adjusted to 1/2xMIC, and 1/4xMIC. Each cephalosporin was used at susceptible 
breakpoint concentrations when in combination with a glycopeptide. Bacterial counts were measured at 8 h and 
24 h by enumerating the colonies in 10-fold serially diluted specimens of 100 μ​L aliquots plated on the nutrient 
agar (Difco Laboratories, Sparks, MD) at 37 °C. All experiments were performed in duplicate.

Synergism was defined as a ≥​2 log10 decrease in CFU/mL between the combination regimen and its most 
active constituent after 24 h and the number of surviving organisms in the combination regimen must be ≥​2 
log10 CFU/mL below the starting inoculum. In addition, at least one of the combination drugs must be present at 
a concentration that does not affect the growth of the test organism. Bacteriostatic and bactericidal activities were 
defined as <​3 log10 and ≥​3 log10 reductions in CFU/ml at 24 h, respectively, relative to the starting inoculum21.

MIC change ratios of glycopeptide MICs.  The MICs of vancomycin or teicoplanin alone and combined 
with 1x susceptible breakpoint concentration of a cephalosporin against eight h-VISA and seven VISA clinical 
isolates were determined by agar dilution method. A MIC ratio indicates the fold of the MIC decline of G/C com-
bination versus a glycopeptide alone.

Results
The results of MIC tests.  Table 1 shows the MICs of each cephalosporin, teicoplanin and vancomycin 
against eight h-VISA and seven VISA isolates. The MIC ranges of vancomycin and teicoplanin against h-VISA 
isolates were 1–2 mg/L, and 2–4 mg/L, respectively. For VISA isolates, the vancomycin MIC were all 4 mg/L, and 
teicoplanin MIC ranged from 4–16 mg/L. All of the h-VISA and VISA isolates were resistant to every cephalo-
sporins based on the MIC level.

Figure 1 shows that MIC curve shifts left after addition of different cephalosporins with vancomycin for both 
h-VISA and VISA isolates. Figure 2 shows the change of teicoplanin MIC against h-VISA/VISA after the addition 
of various cephalosporins. A similar phenomenon with vancomycin MIC was noted.
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PAU/AUC methods.  The AUC/Mu3 AUC ratio of the eight h-VISA isolates were all approximately 0.95–1.14,  
which is compatible with the definition of h-VISA. In both hVISA and VISA and for all combinations of cepha-
losporins and vancomycin the PAP/AUC ratios decreased to below 0.9, compatible with VSSA. The v-PAP/AUC 
decreased between 1.81–2.02 and 2.37–2.85-fold after the combinations of cephalosporins for h-VISA and VISA 
isolates, respectively. For teicoplanin, the results were also the similar. With the combination of different cephalo-
sporins with teicoplanin, all ratios decreased (<​0.9), including the standard Mu3 isolate, and all of the tested h-VISA/
VISA isolates are also compatible with the definition of VSSA. The t-PAP/AUC decreased between 2.05–4.59  
and 2.93–4.89-fold after the combinations of cephalosporins for h-VISA and VISA isolates, respectively.

h-VISA VISA MIC breakpoints, mg/L

HV4 HV12 HV15 HV20 HV29 HV32 HV66 HV83 V2 V5 V6 V23 V31 V81 V82 S I R

CF 128 128 128 128 256 128 128 128 128 128 128 128 128 64 64 ≦​8 16 ≧​32

CMZ 64 64 64 128 128 128 128 64 32 64 64 64 64 64 64 ≦​16 32 ≧​64

CTX 512 512 1024 1024 1024 512 512 512 512 512 512 1024 512 512 512 ≦​8 16 ≧​32

CPO 64 128 128 128 128 128 128 128 64 128 128 128 128 64 64 ≦​8 16 ≧​32

TEC 4 2 4 4 2 2 2 2 4 8 16 8 8 16 16 ≦​8 16 ≧​32

VAN 2 2 2 2 1 2 2 2 4 4 4 4 4 4 4 ≦​2 4~8 ≧​16

Table 1.   Minimal inhibitory concentrations (MICs) of four different cephalosporins and two glycopeptides 
against eight h-VISA and seven VISA clinical isolates. Note. CF =​ cefazolin, CMZ =​ cefmetazole, 
CTX =​ cefotaxime, CPO =​ cefepime, TEC =​ teicoplanin, VAN =​ vancomycin.

Figure 1.  The PAP/AUC curve with vancomycin alone and in combination with susceptible breakpoint 
concentration of four cephalosporins against eight h-VISA (A) and seven VISA (B) clinical isolates with Mu3.

Figure 2.  The PAP/AUC curve with teicoplanin alone and in combination with susceptible breakpoint 
concentration of four cephalosporins against eight h-VISA (A) and seven VISA (B) clinical isolates with Mu3.
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Time-killing methods.  Time-killing assays against each isolate are shown in Table 2. For h-VISA isolates, 
only one of the combination of vancomycin with CMZ exhibited bactericidal synergistic effect. One or two of 
the isolates disclosed bacteriostatic synergistic effect between other cephalosporins with vancomycin. Neither 
bactericidal nor bacteriostatic effect for the combinations of CTX was observed. For VISA isolates, such combi-
nation exhibited bactericidal synergistic effect against one to five of the seven tested isolates, respectively. Such 
combination also exhibited bacteriostatic synergistic effect against one to four of the tested isolates, respectively.

The in vitro activities of combination of CF, CMZ, CTX, CPO and teicoplanin were shown in Table 3. For 
h-VISA isolates, one to five of such combination exhibited bactericidal synergistic effect. One to four of the iso-
lates disclosed bacteriostatic synergistic effect. For VISA isolates, such combinations exhibited bactericidal syn-
ergistic effect against five to six of the seven tested isolates. However, such combinations disclosed bacteriostatic 
synergistic effect against one to five of tested isolates, respectively.

The changes of MIC levels.  The MICs of vancomycin and teicoplanin with and without susceptible break-
point concentration of cephalosporins for h-VISA/VISA isolates were shown in Table 4. The mean fold of MIC 
decline for vancomycin base combinations range from 1.81–3.83 and 2.71–9.33 for h-VISA and VISA, respec-
tively. For teicoplanin base combinations, the mean fold of MIC decline range from 2.25–7.5 and 5.43–21.71 for 
h-VISA and VISA, respectively. The MICs of vancomycin and teicoplanin against h-VISA/VISA isolates lowered 
after combination with cephalosporins compared with single use. The decreases of MICs against h-VISA/VISA 
isolates seems to be highest for the combinations of CMZ and vancomycin or teicoplanin, followed by the CF 
regimen.

Discussion
This study assesses the effect of addition of different cephalosporins with glycopeptides against h-VISA/VISA 
isolates and has several significant findings. First of all, we demonstrated the synergistic effect of glycopeptides 
and cephalosporins against h-VISA/VISA isolates by different methods based on this in vitro study. Initially, we 
used the PAP/AUC method to confirm both of the h-VISA and VISA isolates, and demonstrated the change of 
PAP/AUC curve to fit the criteria of VSSA from h-VISA/VISA after the combination of different cephalosporins. 
This study describes experiments using both vancomycin and teicoplanin. Secondly, the MICs of cephalosporins 
to h-VISA/VISA remained very high. However, when we used susceptible breakpoint concentrations which were 
far lower than MIC, the enhanced synergistic effect persisted even at 1/2, 1/4xMIC vancomycin or teicoplanin. 
Finally, via such combinations, we can also find the mean vancomycin and teicoplanin MIC decreases many folds. 
All of these findings indicated that even though h-VISA/VISA is insensitive to cephalosporins alone, combina-
tions of antimicrobials and very low concentrations of cephalosporins still play important roles in the glycopep-
tide therapy of h-VISA/VISA.

Changes of colony count, log10 CFU/ml

CF 8 μg/ml CMZ 16 μg/mla CTX 8 μg/mla CPO 8 μg/mla

VA 1/2xMIC VA 1/4xMIC VA 1/2xMIC VA 1/4xMIC VA 1/2xMIC VA 1/4xMIC VA 1/2xMIC VA 1/4xMIC

to start
to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active

h-VISA

  HV4 −​1.25 −​4.17 2.92 0 −​2.08 −​5.00c −​0.63 −​3.55 −​1.48 −​4.40 2.92 0 −​1.88 −​4.80 2.92 0

  HV12 −​0.44 −​3.10 2.66 0 −​0.50 −​3.15 0.66 −​2.00 −​1.14 −​3.80 2.66 0 −​1.43 −​4.09 2.66 0

  HV15 −​0.93 −​4.11 3.18 0 0.04 −​3.14 3.18 0 1.56 −​1.62 3.18 0 2.56 −​0.62 3.18 0

  HV20 0.18 −​2.52 2.70 0 −​2.62 −​5.32c 2.70 0 2.70 0 2.70 0 2.70 0 2.70 0

  HV29 −​1.00 −​3.80 2.80 0 −​1.79 −​4.59 2.80 0 2.80 0 2.80 0 2.80 0 2.80 0

  HV32 −​0.18 −​3.10 2.92 0 −​0.38 −​3.30 2.92 0 2.58 −​0.34 2.92 0 −​0.30 −​3.22 2.92 0

  HV66 −​0.84 −​3.49 2.66 0 −​1.34 −​4.00 2.66 −​2.00 −​0.40 −​3.06 2.66 0 −​0.76 −​3.42 2.66 0

  HV83 −​2.03 −​5.08c 3.05 0 −​3.95 −​7.00b −​2.48 −​5.52c −​1.54 −​4.59 3.05 0 −​2.07 −​5.12c 3.05 0

VISA

  V2 −​3.60 −​5.30b −​0.70 −​3.49 −​3.43 −​5.12b −​3.90 −​6.70b −​3.06 −​4.76b 2.80 0 −​2.73 −​4.43c 1.72 −​1.08

  V5 −​3.05 −​5.44b −​0.95 −​3.70 −​3.05 −​5.44b −​3.00 −​5.74b −​3.05 −​5.44b 1.22 −​1.52 −​2.84 −​5.23c −​1.54 −​4.28

  V6 −​3.63 −​5.70b −​0.14 −​3.21 −​3.93 −​6.00b −​3.93 −​7.00b −​1.68 −​3.74 3.07 0 −​2.35 −​4.42c 2.86 −​0.21

  V23 −​1.40 −​4.06 2.66 0 −​3.14 −​5.80b −​2.20 −​4.85c 0.13 −​2.52 2.66 0 −​0.81 −​3.47 2.66 0

  V31 −​1.49 −​1.35 0.21 −​2.44 −​2.43 −​2.29c −​2.58 −​5.24c −​1.52 −​1.38 1.86 −​0.80 −​1.59 −​1.46 1.07 −​1.59

  V81 −​2.63 −​4.48b −​1.80 −​4.49 −​2.44 −​4.28c −​2.42 −​5.12c −​2.12 −​3.96c 2.53 −​0.17 −​2.27 −​4.12c 1.78 −​0.92

  V82 −​4.15 −​4.20b −​1.73 −​4.59 −​4.15 −​4.20b −​3.85 −​6.70b −​2.94 −​3.00c −​0.80 −​3.66 −​4.15 −​4.20b −​1.48 −​4.34

Table 2.   Eight h-VISA and seven VISA clinical isolates were selected for inhibitory effect of combination 
regimens at 24th hour with 1/2 and 1/4 MIC of vancomycin and different cephalosporins of susceptible 
breakpoint concentration. *Cephalothin, CF; cefmetazole, CMZ; cefotaxime, CTX; cefpirome, CPO. 
aSusceptible MIC breakpoints for MRSA isolates. bBactericidal with synergistic effect were showed in italic. 
cBacteriostatic with synergistic effect were showed in bold.
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However, previous studies14,15,22–25 had conflicting findings regarding the combined effect of glycopeptides and 
various antibiotics against h-VISA/VISA isolates. In Kim et al.’s report22, an antagonistic effect was observed in 
combinations with less than 1 μ​g/ml β​-lactam antibiotics – oxacillin and cefotaxime combined with vancomycin, 
whereas synergistic effects were noticed in combinations with more than 4 μ​g/ml β​-lactams antibiotics. In Aritaka 
et al.’s study23, they noted that when combined with vancomycin, four of the seven tested β​-lactams, including 
ampicillin, oxacillin, imipenem, and cefmetazole, exhibited an additive effect at or near their MICs; however, in 

Changes of colony count, log10 CFU/ml

CF 8 μg/mla CMZ 16 μg/mla CTX 8 μg/mla CPO 8 μg/mla

TEC 1/2xMIC TEC 1/4xMIC TEC 1/2xMIC TEC 1/4xMIC TEC 1/2xMIC TEC 1/4xMIC TEC 1/2xMIC TEC 1/4xMIC

to start
to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active to start

to most 
active

h-VISA

  HV4 −2.63 −4.48c −1.80 −4.49 −2.44 −4.28c −2.42 −5.12c −2.12 −3.96c 2.53 −0.17 −2.27 −4.12c 1.78 −0.92

  HV12 −3.60 −5.30b −0.70 −3.49 −3.43 −5.12b −3.90 −6.70b −3.06 −4.76b 2.80 0 −2.73 −4.43c 1.72 −1.08

  HV15 −4.15 −4.20b −1.73 −4.59 −4.15 −4.20b −3.85 −6.70b −2.94 −3.00c −0.80 −3.66 −4.15 −4.20b −1.48 −4.34

  HV20 −1.40 −4.06 2.66 0 −3.14 −5.80b −2.20 −4.85c 0.13 −2.52 2.66 0 −0.81 −3.47 2.66 0

  HV29 −1.49 −1.35 0.21 −2.44 −2.43 −2.29c −2.58 −5.24c −1.52 −1.38 1.86 −0.80 −1.59 −1.46 1.07 −1.59

  HV32 −1.28 −4.13 2.85 0 −1.48 −4.34 −1.45 −4.3 −0.77 −3.62 2.85 0 −1.31 −4.17 2.85 0

  HV66 −3.05 −5.44b −0.95 −3.70 −3.05 −5.44b −3.00 −5.74b −3.05 −5.44b 1.22 −1.52 −2.84 −5.23c −1.54 −4.28

  HV83 −3.63 −5.70b −0.14 −3.21 −3.93 −6.00b −3.93 −7.00b −1.68 −3.74 3.07 0 −2.35 −4.42c 2.86 −0.21

VISA

  V2 −4.15 −7.00b −1.41 −4.27 −4.15 −7.00b −2.50 −5.36c −3.24 −6.10b 2.85 0 −3.24 −6.10b 2.85 0

  V5 −3.99 −6.20b −2.16 −5.32c −3.69 −5.90b −2.54 −5.70c −3.09 −5.30b 3.15 0 −3.21 −5.43b −1.43 −4.59

  V6 −3.79 −7.00b −1.38 −4.59 −3.79 −7.00b −2.89 −6.10c −3.19 −6.40b 0.71 −2.49 −3.79 −7.00b −1.86 −5.07

  V23 −2.82 −3.05c −2.44 −5.36c −3.30 −3.52b −2.93 −5.85c −1.44 −1.66 2.92 0 −2.48 −2.70c −1.55 −4.47

  V31 −2.22 −2.22c −1.40 −4.19 −2.57 −2.57c −2.03 −5.25c −3.60 −2.90b 2.60 −0.62 −2.13 −2.13c −1.52 −4.32

  V81 −4.20 −3.00b −3.43 −6.22b −4.20 −3.00b −4.20 −7.00b −4.20 −3.00b −2.60 −5.40c −3.90 −2.70b −3.90 −6.70b

  V82 −3.90 −5.62b −3.60 −6.70b −3.60 −5.32b −3.90 −7.00b −3.60 −5.32b −1.28 −4.38 −3.90 −5.62b −2.90 −6.00c

Table 3.   Eight h-VISA and seven VISA clinical isolates were selected for inhibitory effect of combination 
regimens at 24th hour with 1/2 and 1/4 MIC of teicoplanin and different cephalosporins of susceptible 
breakpoint concentration. *Cephalothin, CF; cefmetazole, CMZ; cefotaxime, CTX; cefpirome, CPO. 
aSusceptible MIC breakpoints for MRSA isolates. bBactericidal with synergistic effect were showed in italic. 
cBacteriostatic with synergistic effect were showed in bold.

Control CF, 8 μg/ml CMZ, 16 μg/ml CTX, 8 μg/ml CPO, 8 μg/ml

Vancomycin

h-VISA

  MIC range, μ​g/ml 1–1.5 0.75 0.38 0.75–1 0.5–1

  Mean ±​ SD, μ​g/ml 1.44 ±​ 0.18 0.75 ±​ 0 0.38 ±​ 0 0.81 ±​ 0.11 0.81 ±​ 0.12

  Mean fold of MIC decline — 1.92 3.83 1.81 1.81

VISA

  MIC range, μ​g/ml 3–4 0.5–0.75 0.25–0.5 1–1.5 0.75–1.5

  Mean ±​ SD, μ​g/ml 3.28 ±​ 0.49 0.71 ±​ 0.09 0.36 ±​ 0.05 1.29 ±​ 0.27 0.96 ±​ 0.27

  Mean fold of MIC decline — 4.76 9.33 2.71 3.67

Teicoplanin

h-VISA

  MIC range, μ​g/ml 2–4 1 0.25–0.5 1–2 1–2

  Mean ±​ SD, μ​g/ml 2.75 ±​ 1.04 1.00 ±​ 0 0.38 ±​ 0.13 1.25 ±​ 0.46 1.13 ±​ 0.35

  Mean fold of MIC decline — 2.75 7.50 2.25 2.50

VISA

  MIC range, μ​g/ml 4–16 1 0.5 2 1–2

  Mean ±​ SD, μ​g/ml 10.86 ±​ 5.01 1.00 ±​ 0 0.5 ±​ 0 2 ±​ 0 1.86 ±​ 0.38

  Mean fold of MIC decline — 10.86 21.71 5.43 5.71

Table 4.   The MICs of vancomycin or teicoplanin in the absence and presence of susceptible breakpoint 
concentration of cephalosporins for h-VISA and VISA isolates. SD =​ standard deviation; cephalothin =​ CF; 
cefmetazole =​ CMZ; cefotaxime =​ CTX; cefpirome =​ CPO.
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contrast, all of the tested β​-lactams showed an antagonistic effect at lower sub-MIC levels. Therefore, their find-
ings indicated that β​-lactam antibiotics may not provide a significant advantage in combination with vancomycin 
against Mu3-like hetero-VISA strains. In contrast, we find the synergistic effect exist between cephalosporins and 
glycopeptides even at very low cephalosporin concentrations. The differences between the present work and pre-
vious investigations may be due to the different antibiotics we used for combination and different concentrations 
of antibiotics we used in this study.

In the report by Dilworth et al.14, four bloodstream VISA strains, the mean 24-h reductions in VISA inocu-
lum for piperacillin-tazobactam, piperacillin-tazobactam with vancomycin, and oxacillin with vancomycin were 
2.85, 2.93, and 3.45 log10 CFU/ml, respectively, and indicated the synergistic activity against VISA by vancomycin 
with piperacillin-tazobactam or oxacillin. In Leonard’s in vitro pharmacokinetic(PK)/pharmacodynamics(PD)  
study25, 23 (92%) of 25 h-VISA strains showed synergy with the combination of vancomycin and nafcillin in 
time-killing method, and among five selected strains demonstrated an improvement in overall activity and organ-
ism burden at 72 hours in PK/PD model. In Werth et al.’s study15 using time-kill assays, vancomycin plus oxacillin 
was synergistic against 3 of 5 VISA and 1 of 5 h-VISA isolates and vancomycin plus ceftaroline demonstrated 
a synergistic effect against 5 of 5 VISA and 4 of 5 h-VISA isolates. In Hanaki et al.’s study24, they found that 
teicoplanin showed the strongest synergistic effect in combination with imipenem, followed by, in decreasing 
order, panipenem, meropenem, flomoxef, sulbactam/ampicillin, cefoselis, and the average FIC indexes of the 
beta-lactam antibiotics against these strains were 0.113, 0.124, 0.163, 0.230, 0.264 and 0.388, respectively. All of 
the above findings suggest the synergistic effect of glycopeptide and beta-lactam combinations and are consistent 
with our result.

Although the different cephalosporin MIC values of tested h-VISA/VISA isolates remains high, the anti-
bacterial effect was evident by a significant reduction of glycopeptide MICs, if serum achievable concentrations 
(1/2x or 1x SBC) of a cephalosporin were combined with sub-inhibitory concentrations of vancomycin or teico-
planin. Such an in vitro effect of glycopeptide MIC reduction was most obvious for cefmetazole among four 
tested cephalosporins. Therefore, although high cephalosporin resistance in clinical h-VISA/VISA isolates, we 
showed the strong evidence that cephalosporins can enhance the antibacterial activity of two commonly pre-
scribed glycopeptides.

Several studies and meta-analyses have shown the significant association between vancomycin MIC and the 
outcomes of MRSA infections26–29. In Sakoulas et al.’s study28, vancomycin can successful treated for 55.6% of 
MRSA bacteremia while the MRSA isolates with vancomycin MICs <​ 0.5 μ​g/ml, but vancomycin was only effec-
tive for 9.5% of cases in which vancomycin MICs for MRSA were 1 to 2 μ​g/ml. For MRSA pneumonia, Haquel  
et al.27 found that the 28-day mortality could significantly increase while vancomycin MIC increased from 0.75 to 
3 mg/mL (P ≤​ 0.001). One recent meta-analysis of 2439 patients with MRSA infections (1492 high MIC (defined 
as ≥​1 mg/l by BMD or ≥​1.5 mg/l by E-test) and 947 low MIC) concluded that a high MIC to vancomycin is asso-
ciated with increased mortality and treatment failure26. The similar influence of teicoplanin MICs on treatment 
outcomes among patients with teicoplanin-treated MRSA infection were shown in previous investigations and 
teicoplanin MIC ≥​4 μ​g/mL (P =​ 0.0123) had a significant association with treatment failure in such patients30–32. 
In this in vitro study, we showed that vancomycin MICs of h-VISA and VISA isolates could be reduced to  
≤​0.75 μg/ml after combination with different cephalosporins, and even more, these combinations could make 
h-VISA or VISA become VSSA. For teicoplanin, its MIC of h-VISA and VISA isolates could also be reduced to 
≤​2 μ​g/ml after combining with cephalosporins. Although in vitro activity cannot represent in vivo effect, we can 
expect that the outcome improvement of h-VISA and VISA infections is possible to achieve after introduction of 
the glycopeptide/cephalosporin combination therapy based on our findings and previous investigations26–28. Of 
course, the application of such combinations to treat h-VISA/VISA infections needs more clinical investigations.

In conclusions, this is the first in vitro study by different methods to evaluate G/C combinations, and it showed 
the enhanced antibacterial activity against clinical h-VISA/VISA isolates, irrespective of cephalosporin MICs. 
Further comprehensive including in vivo study is warranted to investigate the combination effect between each 
class of antibiotics and glycopeptides.
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