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Retinal neurons are not able to undergo spontaneous regeneration in response to
damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens,
and others, induce reactive oxygen species production, resulting in consecutive
alteration of stress-response gene expression and finally can lead to cell apoptosis.
Neurons have developed their own endogenous cellular protective systems. Some of
them are preventing cell death and others are allowing functional recovery after injury.
The high efficiency of these mechanisms is crucial for cell survival. In this review we focus
on the contribution of the most recently studied endogenous neuroprotective factors
involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and
their signaling pathways, processes regulating the redox status, and different pathways
regulating cell death are the most important. Additionally, we summarize currently
ongoing clinical trials for therapies for RGC degeneration and optic neuropathies,
including glaucoma. Knowledge of the endogenous cellular protective mechanisms may
help in the development of effective therapies and potential novel therapeutic targets in
order to achieve progress in the treatment of retinal and optic nerve diseases.

Keywords: retinal ganglion cells, optic neuropathy, endogenous neuroprotection, cell survival, stress-response

INTRODUCTION

Retinal neurons are considered to be a part of the central nervous system (CNS). As a consequence,
they share several properties with CNS neurons, including the inability to undergo spontaneous
regeneration in response to damage. Since there is no possibility to replace cells that become
non-functional due to damage or aging, these long-living cells are likely endowed with specific
mechanisms to protect them from both intracellular and environmental stress (Hayashi and
Takagi, 2015). Retinal neurons, including retinal ganglion cells (RGCs), are exposed to similar
stressors as observed in other cell types, i.e., UV radiation, high temperature, ischemia, hypo-
or hyperoxic conditions, harmful microbes, allergens and environmental pollutants, all factors
able to induce reactive oxygen species (ROS) production and/or release (Bouayed and Bohn,
2010). In addition, retinal neurons are exposed to the glutamate, which in excess concentration
is a neuron-specific toxin. Subsequently, ROS production results in genes expression alteration,
protein misfolding and other events leading to cell stress with apoptosis as the terminal process.
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Since the technologies allowing CNS repair by cell replacement
are still under development, the efficiency of the endogenous
cellular protective systems is a key factor for neuronal apoptotic
susceptibility and survival (Bakalash et al., 2002; Wei Y. et al.,
2011). As a consequence of this, the neurodegeneration can be
described as an imbalance between protective and damaging
factors affecting RGCs (Figure 1).

Retinal ganglion cells projections form the optic nerve (ON)
and conduct the visual signal from the retina to visual centers
in the brain (i.e., lateral geniculate nuclei). RGCs are the
site of numerous primary retinal and optic nerve pathologies
among which glaucoma, ischemic optic neuropathy and Leber’s
hereditary optic neuropathy (LHON) are the most common.
Moreover, there are pathologies with ocular signs, such as
diabetes (Gerber et al., 2015; Wan et al., 2017), Alzheimer’s
disease (AD) (Hart et al., 2016) and brain tumors (Tieger et al.,
2017). Damage to RGCs or the ON results in impairment of
visual signal propagation and subsequent progressive visual field
defects. Since the retina represents a highly organized structure,
with neighboring cells closely interacting with each other, death
of a single RGC can induce self-perpetuating processes affecting
survival of surrounding cells; these detrimental events are
related mostly to the release of intracellular glutamate from
the dying cells that triggers an excitotoxic cascade (Chang and
Goldberg, 2012). Therefore, impairment of RGC endogenous
neuroprotective mechanisms and increased RGC apoptosis
can participate in spreading of pro-death signals resulting in
progressive damage to the retinal cells.

Endogenous neuroprotective mechanisms in neurons,
including RGCs, can be classified in various categories.
Neurotrophic factors and both enzymatic and non-enzymatic
mechanisms of ROS scavenging are well-known players in
RGC homeostasis. In addition, systems of misfolded protein
degradation (i.e., autophagy) and mechanisms controlling
gene expression are gaining increasing attention and represent
potentially interesting targets for therapy and/or prevention of
neurodegeneration. Here, we summarize and describe the most
recently studied endogenous neuroprotective factors involved
in RGC survival, which include (a) neurotrophic/growth factors
(neuronal, vascular, or both), (b) processes regulating the redox
status, and (c) other factors, including pathways regulating
apoptosis/cell death and neuroinflammation modulators
(Figure 1).

NEUROTROPHIC/GROWTH FACTORS
(NEURONAL, VASCULAR OR BOTH)

Neurotrophic Factors
Neurotrophic factors regulate the development and survival
of neurons. They seem to be involved in the endogenous
neuroprotection of RGCs. A variety of studies have
reported that neurotrophic factors, particularly nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF),
neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), glial cell-
derived neurotrophic factor (GDNF), and ciliary neurotrophic
factor (CNTF), protect RGCs in various models of ON injuries

(Johnson et al., 2011; Domenici et al., 2014; Gupta et al., 2014;
Table 1). In agreement with their well-known role in maintaining
neuronal homeostasis, neurotrophic factors have been proposed as
novel therapies for various neurodegenerative diseases, however,
outcomes of known clinical trials were not satisfactory, presenting
only partial or no expected effects (Greenberg et al., 2009;
Allen et al., 2013; Shruthi et al., 2016). Interestingly, some
CNS pathologies, such as AD, Parkinson disease and Huntington
disease, display ocular signs and alterations within RGCs (Batcha
et al., 2012; Ramirez et al., 2017); thus, for these neurodegenerative
diseases, neurotrophic factors promoting the survival of neurons
may be of beneficial at both the central and ocular levels.

Neurotrophins can bind to different receptors and transduce
diverse intracellular signals, finally leading to opposite
outcomes – death or survival. For instance, the binding of
a neurotrophin to the tyrosine-receptor kinase (Trk) promotes
cell survival, whereas interaction with p75 NT receptors
(p75NTR) induces apoptosis (Kimura et al., 2016; Figure 2).

Brain-Derived Neurotrophic Factor (BDNF)
Neurotrophin deprivation, mainly BDNF, is considered as one
of the leading causes of RGC death in glaucoma. BDNF is
synthesized in the superior colliculus and the lateral geniculate
nucleus and retrogradely transported to the RGC bodies.
Moreover, this neurotrophic factor is produced locally in RGCs
(Herzog and von Bartheld, 1998). Exposure to high IOP induces
a two-phase response (a decrease followed by an increase) in
BDNF and NT4/5 expression in RGCs and in the ON head
glia, suggesting the participation of these neurotrophins in
endogenous neuroprotective responses of RGCs (Vecino et al.,
1999; Johnson et al., 2000; Table 1). It is widely accepted that
BDNF upregulation is an early response in RGCs that undergo
axonal injury (Kimura et al., 2016). Several studies indicated
that the therapeutic effects of different neuroprotective agents in
promoting RGC survival are related to their induction of retinal
BDNF expression (Bai et al., 2010; Pietrucha-Dutczak et al., 2017;
Chou et al., 2018). Our previous studies also confirm these results.
Application of extracts from pre-degenerated peripheral nerves
stimulate RGC survival through induction of endogenous retinal
BDNF expression in glaucoma (Pietrucha-Dutczak et al., 2017).
It is important to note that BDNF levels in the serum and tears of
glaucoma patients are significantly lower than in control subjects,
suggesting that deficits in this neurotrophin may participate in
RGC death in glaucoma (Ghaffariyeh et al., 2009, 2011; Oddone
et al., 2017). Furthermore, BDNF inhibits the osmotic swelling of
Müller cells and bipolar cells (Berk et al., 2015) and upregulates
the glutamate/aspartate transporter (GLAST) and Glutamine
Synthetase (GS) expression in Müller cells in the mouse retina,
increasing glutamate uptake during hypoxia (Dai et al., 2012).
To our knowledge, no clinical trials evaluating the potential
therapeutic effects of BDNF in glaucoma have been conducted
so far, however, there have been many attempts and future plans
in developing BDNF-based therapies.

Nerve Growth Factor (NGF)
Nerve growth factor is another important growth factor affecting
the survival of nerve cells. NGF deprivation can lead to apoptosis
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FIGURE 1 | Schematic diagram illustrating the impact of endogenous neuroprotective mechanisms on RGC rescue after injury. ∗ If factors representing the
endogenous rescue-mechanisms are sufficiently activated they can allow functional recovery of RGCs; however, if these mechanisms are not efficient enough,
irreversible cell death may occur.

preceded by impairment of glucose uptake, an increase in ROS
production, activation of c-Jun N-terminal kinase (JNK) and
its downstream target c-Jun, and caspase activation (Freeman
et al., 2004; Lomb et al., 2009). Mature NGF (mNGF) is derived
from its precursor form (proNGF) after conversion by a protease
cascade within the extracellular space (Bruno and Cuello, 2006).
It has been suggested that disturbance in proNGF to mNGF
turnover can be involved in neurodegeneration, such as AD, as
well as seizures, and cerebral ischemia (Fahnestock et al., 2001;
Bruno and Cuello, 2006). NGF is produced and utilized by RGCs,
bipolar cells and glial cells (Roberti et al., 2014) and can be
involved in neuroplasticity of neurons in the visual cortex and
geniculate nucleus (Maffei et al., 1992). Several studies indicate
that NGF protects RGCs after ON ischemia or transection,
ocular hypertension and glaucoma (Colafrancesco et al., 2011;
Roberti et al., 2014; Aloe et al., 2015; Chen Q. et al., 2015).
The downregulation of NGF and NGF-receptor expression in the
retina and ON is reduced by ocular application of NGF in a rat
model of glaucoma and protects animals from neurodegeneration
(Colafrancesco et al., 2011). Moreover, NGF, similarly to BDNF,
prevents the osmotic swelling of rat Müller glia, by a double
action: directly, by activating autocrine/paracrine FGF signaling,
and indirectly, by inhibiting the swelling of bipolar cells through
induction of cytokine release from Müller cells. The inhibitory

effect is mediated by activation of TrkA but not p75NTR (Garcia
et al., 2014). The binding of NGF to TrkA in RGCs promotes
their survival, while the binding of NGF to p75NTR is mainly
responsible for pro-apoptotic responses (Figure 2); however,
the binding of NGF to both TrkA and p75NTR at the same
time leads to RGC survival, since p75NTR acts in concert with
TrkA-helping receptor (Wang H. et al., 2014). In the context of
potential application of NGF in glaucoma, the safety of an 8-week
treatment with 180 µg/ml recombinant human NGF (rhNGF)
eye drop solution was tested in a masked, randomized, vehicle-
controlled, phase Ib trial of 60 participants with chronic POAG
(NCT02855450); for now, the conclusions of this study have not
yet been published (Table 2 and Figure 3).

Glial Cell Line-Derived Neurotrophic Factor (GDNF)
Glial cell line-derived neurotrophic factor is secreted by glial
cells and binds to the GDNF-α receptor and tyrosine kinase
RET receptor (Figure 2). RET is expressed in the inner nuclear
layer and ganglion cell layer of the mammalian retina, whereas
GDNF-α is expressed in RGCs, Müller glia, and amacrine cells
(Yan et al., 1999; Airaksinen and Saarma, 2002). GDNF promotes
axonal regeneration in the CNS and prevents apoptosis through
the phosphoinositide-3 kinase (PI3K), mitogen-activated protein
kinase (MAPK) and Src kinase pathways (Airaksinen and
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TABLE 1 | Expression of neurotrophins and their receptors in different RGC degeneration models and human glaucoma (↑ upregulation; ↓ downregulation).

Factor Model Observation Methods Used to Analyze Reference

BDNF MOUSE

Microbeads injection ONH:
5 months – nsa
1 year – ↓ BDNF (WT < BDNF−/+)

Western blotting, ELISA Gupta et al., 2014, 2016

NMDA-induced retinal degeneration 14 and 21 days – ↓ BDNF IHC Jindal et al., 2017

Model of spontaneous glaucoma
(DBA/2J)

With age – ↓ BDNF, ↓ TrkB Western blotting Chou et al., 2018

RAT

Episcleral cauterization Retina:
28 days – ↑ BDNF, ↑ mRNA BDNF; TrkB – nsa; ↑
p75

Western blotting, IHC, RT-PCR Rudzinski et al., 2004

Retinal ischemia (acute IOP elevation) RGC:
4 h – ↑ BDNF
RGC and ONH:
4 h – ↑ Trk B

IHC Pease et al., 2009

Hypertonic saline episcleral injections
into aqueous veins

ONH:
7 days – ↓ BDNF
14 days – ↑ BDNF (glia)
Retina:
7 and 14 days – ↓ BDNF
>14 days – ↑ BDNF (RGC soma)

IHC Johnson et al., 2000

Carotid artery occlusion Retina:
3 and 14 days – ↓ BDNF mRNA
3 days – ↑ BDNF
14 and 60 days – ↓ BDNF (GCL)
3, 14, and 60 days – ↓TrkB (GCL)

Western blotting, IHC, ELISA Guo et al., 2014

HUMAN

Tissues from fresh post-mortem
glaucoma subjects

ONH:
↓ BDNF

Western blotting, ELISA Gupta et al., 2014, 2016

NGF RAT

Episcleral cauterization Retina:
7 days – ↑ NGF (transient); ↑ Trk A

Western blotting, IHC, RT-PCR Rudzinski et al., 2004

Hypertonic saline injection 35 days – ↑NGF; ↑ NGF mRNA; ↑TrkA; ↑p75 ELISA, RT-PCR, IHC Coassin et al., 2008

Carotid artery occlusion Retina:
3 and 14 days – ↓NGF mRNA
3 and 14 days – ↓TrkA

Western blotting, IHC, ELISA Guo et al., 2014

HUMAN

POAG Serum:
early and moderate glaucoma – ↓ NGF
advanced glaucoma – nsa

ELISA Oddone et al., 2017

CNTF MOUSE

NMDA-induced retinal degeneration 14 and 21 days – ↑CNTF IHC Jindal et al., 2017

RAT

Carotid artery occlusion Retina:
3 and 14 days – ↑CNTF mRNA

Western blotting, IHC, ELISA Guo et al., 2014

Laser photocoagulation 14 days – ↑CNTF IHC, Immunoblot Ji et al., 2004

HUMAN

POAG Lacrimal fluid – ↓CNTF
Aqueous humor – ↓CNTF

ELISA Shpak et al., 2017

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 834

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00834 November 13, 2018 Time: 18:39 # 5

Pietrucha-Dutczak et al. Endogenous Neuroprotection of RGCs

TABLE 1 | Continued

Factor Model Observation Methods Used to Analyze Reference

GDNF MOUSE

NMDA-induced retinal degeneration 14 and 21 days – ↑GDNF IHC Jindal et al., 2017

RAT

Carotid artery occlusion Retina:
3 and 14 days – ↓GDNF mRNA

Western blotting, IHC, ELISA Guo et al., 2014

NT4/5 RAT

Hypertonic saline episcleral injections
into aqueous veins

ONH:
7 days – ↓ NT4/5
14 days – ↑ NT4/5 (glia)
Retina:
7 and 14 days – ↓ NT4/5
>14 days – ↑ NT4/5 (RGC soma)

IHC Johnson et al., 2000

NT-3 RAT

Episcleral cauterization Retina:
28 days – nsa; ↑ Trk C (Müller cells but not in RGC)

Western blotting, IHC, PCR Rudzinski et al., 2004

Carotid artery occlusion 3 and 14 days – ↓ NT-3 mRNA
3 and 14 days – ↓ TrkC

Western blotting, IHC, ELISA Guo et al., 2014

nsa, no significant alterations; RGC, retinal ganglion cells; GCL, ganglion cell layer; ONH, optic nerve head; POAG, primary open-angle glaucoma; BDNF, brain-
derived neurotrophic factor; NGF, nerve growth factor; CNTF, ciliary neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; NT-4/5, neurotrophin-4/5;
NT-3, neurotrophin-3; Trk A/B/C, the tropomyosin kinase receptor A/B/C; IHC, immunohistochemistry; RT-PCR, reverse transcription-polymerase chain reaction.

Saarma, 2002; Figure 2). GDNF upregulates GLAST in Müller
glia and may indirectly protect RGCs by enhancing glutamate
uptake (Koeberle and Bähr, 2008). It has been suggested that
GLAST impairment may be involved in the pathogenesis of
glaucoma (Kimura et al., 2016). To our knowledge, no clinical
trials evaluating the potential therapeutic effects of GDNF in
glaucoma have been conducted so far.

Ciliary Neurotrophic Factor (CNTF)
Ciliary neurotrophic factor binds to CNTFRα receptors and
two signal transducing transmembrane subunits – gp130 and
leukemia inhibitory factor (LIFR). This complex activates
Janus kinase/signal transducer and activator of transcription
(JAK/STAT), mitogen-activated protein kinase (MAPK)/ERK,
and PI3/Akt signaling pathways (Kimura et al., 2016; Figure 2).
CNTF is expressed in the neural retina, retinal pigmented
epithelium and ON head (Beltran et al., 2003; Liu et al., 2007).
The neurotrophic properties of CNTF were tested in several
animal models of retinal diseases (Pease et al., 2009; Rhee et al.,
2013; Mathews et al., 2015) and are currently under evaluation
in clinical trials (Tao, 2006; Kauper et al., 2012; Birch et al.,
2013, 2016; Chew et al., 2015). It has been suggested that the
neuroprotective effects of this factor are mediated especially
by Müller cells that directly respond to CNTF by releasing
other neurotrophic factors such as bFGF (Wen et al., 2008).
Furthermore, CNTF increases secretion of NT3 and decreases
VEGF, IL8, and TGFb2 levels in primary cultures of human
fetal retinal pigmented epithelial cells (Li et al., 2011). After
glaucoma induction, endogenous CNTF levels are elevated for up
to 2 weeks, providing the transient activation of STAT3, which
is important for antiapoptotic signaling (Table 1). Thus, this

endogenous neurotrophic response is not sufficient to protect
the injured RGC. However, administration of exogenous CNTF
significantly extends the activation time of STAT3 (Ji et al., 2004).
The CNTF concentration is decreased in the aqueous humor,
lacrimal fluid and blood serum in patients with primary open–
angle glaucoma (POAG); interestingly, the lowest levels of this
neurotrophic factor positively correlate with a more advanced
state of the disease (Shpak et al., 2017; Table 1). Interestingly,
the NT-501 ECT (encapsulated cell therapy) implant, a device
containing a genetically modified CNTF-secreting cell line, is
under evaluation in 60 POAG patients enrolled in an ongoing
randomized, sham controlled, masked phase II clinical study
(NCT02862938) (Thanos et al., 2004; Barar et al., 2016; Table 2
and Figure 3).

Vascular Endothelial Growth Factor A
(VEGF-A)
Vascular endothelial growth factor A belongs to a superfamily
including VEGF-B, -C, -D, and placental growth factor (PLGF).
Among these members, the VEGF-A family is the most
potent inducer of new vessel formation; more specifically, the
pro-angiogenic VEGF165a isoform has a prominent role in
neovascularization, and vessels permeability-related eye diseases,
such as age-related macular degeneration (AMD) and diabetic
retinopathy (DR) (Ferrara et al., 2003; Bandello et al., 2013;
Amadio et al., 2016a). Beside the effects on vasculature, the
subject of a large number of research studies and reviews, VEGF-
A, in particular the VEGF121 and VEGF165 isoforms, also exhibits
neurotrophic and neuroprotective activities. It has been reported
that in normal conditions, VEGF165b is the predominant isoform
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FIGURE 2 | Neurotrophic factor (NTFs) signaling pathways. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and
neurotrophin-4/5 (NT-4/5) bind to two families of receptors. Tropomyosin kinase (Trk) receptor binds with high affinity to promote cell survival via phospholipase C-γ
(PLC-γ), phosphoinositide-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways (light blue arrows). Binding of NTFs to low affinity p75 receptor
activates cell death through the JNK pathway (light blue and red arrows). Ciliary neurotrophic factor (CNTF) binding to CNTFRα receptor and two subunits – gp130
and leukemia inhibitory factor (LIFRβ) activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) (blue-violet arrows), MAPK and PI3K
pathways (dark blue arrows). Binding of glial cell line-derived neurotrophic factor (GDNF) to the GDNFα receptor and tyrosine kinase RET receptor stimulates PLC-γ,
MAPK and PI3K pathways (green arrows). Akt controls the activities of several proteins important in promoting cell survival, including substrates that directly regulate
the caspase cascade, such as BAD. Phosphorylated BAD prevents its proapoptotic actions (Skaper, 2008) (red arrows). The pathway illustration was based on
Reactome (https://reactome.org/ PMID: 29145629, PMID: 29077811). Represents the pathways responsible for endogenous cell-rescue mechanisms in glaucoma;
these pathways were significantly activated when IOP was elevated, but decreased to baseline levels when IOP was lowered (Levkovitch-Verbin et al., 2007;
Levkovitch-Verbin, 2015).

in human eye tissues and fluids; it is downregulated in the
vitreous fluid of DR patients, where a switch in VEGF splicing
from anti- to pro-angiogenic isoforms (from VEGF165b to
VEGF165a) seems to occur (Foxton et al., 2013). As with
the pro-angiogenic VEGF165a, the anti-angiogenic VEGF165b
exerts neuroprotective effects through VEGFR-2, p44/42 MAPK
activation, and caspase-3 inhibition, but unlike VEGF165a, it does
not involve either p38 MAPK or PI3K (Zachary, 2005; Beazley-
Long et al., 2013). Interestingly, VEGF endogenous expression
has been confirmed in RGCs and amacrine cells in the human
retina, where it participates in RGC neuroprotection mechanisms
(Famiglietti et al., 2003; Saint-Geniez et al., 2008; Beazley-Long
et al., 2013; Foxton et al., 2013). This evidence suggests that
pan-VEGF agents, although rapidly and effectively inhibiting
neovascularization, vascular leakage, and other pathological
changes in AMD or DR patients, exert detrimental effects in
the long-term due to a loss of VEGF physiology at the ocular
level (Amadio et al., 2016a; Gemenetzi et al., 2017; Fogli et al.,
2018). Importantly, anti-VEGF therapies primarily targeting

neovascularization result in thinning of RNFL and lack VEGF-
A-mediated neuroprotection (Brar et al., 2010; Lv et al., 2014; Lee
J.M. et al., 2017; Lee W.J. et al., 2017).

Endogenous Growth Hormone
Growth hormone (GH) is a mitogenic peptide synthetized and
released by somatotrophic cells in the pituitary gland. In addition,
GH can be synthetized and released by neurons within the CNS,
where it participates in stress-response and neuroprotection
(Martínez-Moreno et al., 2018). In the human retina, GH and GH
receptors (GHR) are expressed in RGCs, where the existence of
RGC autocrine regulation by GH has been hypothesized (Sanders
et al., 2006, 2009; Harvey et al., 2009). In their study, Sanders
et al. (2006) demonstrated that following retinal insults, apoptotic
RGCs coincided with GH-negative cells, while GH-expressing
RGCs survived longer times. Further investigations in chick
embryos led to the conclusion that GH neuroprotection is likely
ascribed to anti-apoptotic effects mediated by tyrosine kinase
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FIGURE 3 | Major clinical trials for optic neuropathy therapeutics, including glaucoma.

receptors, Akt phosphorylation, Bax gene regulation and caspase-
3 inhibition (Sanders et al., 2006).

FACTORS REGULATING THE REDOX
STATUS

Oxidative Stress Defense
In recent years, oxidative stress and mitochondrial dysfunction
have been indicated as potential causes of glaucomatous
neurodegeneration. In this multi-factorial disease, both
the anterior and posterior segments of the eye, specifically
the trabecular meshwork (TM)/endothelium and the inner
retina/RGC, can be affected by oxidative damage, finally leading
to visual pathway alteration in a series of closely linked events
that needs to be fully elucidated. An increasing body of evidence
suggests that the phenomena occurring in the anterior chamber,
such as the oxidative stress-induced functional alterations of the
TM, lead to defects in the posterior segment and are considered
as the background of the pathogenesis of glaucoma – particularly,
but not exclusively, high-tension glaucoma (Saccà et al., 2016).
In glaucoma, the cellular and molecular mechanisms leading to
cell death in the TM and RGCs show high similarities; cell loss is
the consequence of apoptosis triggered by oxidative stress (Saccà
et al., 2016). The maintenance of a balance between oxidative
species production and clearance is particularly critical for the
eye’s health. Oxidative stress occurs when concentrations of
ROS rise above physiologic range with no adequate increase
in the activity and/or levels of antioxidant defenses, what leads
to damage of cellular components (proteins, nucleic acids, and
lipids) by oxidation and eventually to cell degeneration/loss
(Halliwell and Gutteridge, 1999). In physiologic conditions,

various antioxidant and detoxifying factors at the ocular level, act
in concert removing effectively ROS; however, harmful stimuli
can lead to changes/malfunctioning in one or more antioxidant
defense systems, what affects the global redox balance and finally
contributes to pathological conditions. As already mentioned for
neurotrophins, several lines of evidence indicate that the protein
levels and enzymatic activities of antioxidant defenses in the
aqueous humor (AH) are significantly altered in glaucoma. It
was shown that global antioxidant potential level in the AH of
glaucoma patients was lower than the mean of control cataract
group (Ferreira et al., 2004), suggesting that a chronic exposure
to ROS contributes in glaucoma to the progressive loss of TM
cellularity and subsequent change of redox balance (Alvarado
et al., 1984). At the systemic level, patients with POAG presented
decreased total plasma antioxidant capacity compared to healthy
subjects (Abu-Amero et al., 2013), what is in agreement with
previous findings of Erdurmuş et al. (2011) in the serum of
patients with POAG and pseudoexfoliative glaucoma (PEG).
Contrary, primary angle closure glaucoma (PACG) patients and
control subjects showed comparable total serum antioxidant
levels (Abu-Amero et al., 2014a).

Endogenous Antioxidant Factors
Among antioxidants and detoxifying factors, glutathione (GSH)
and the enzymes in the GSH pathway (GSH peroxidase,
reductase, and transferase), superoxide dismutase (SOD), and
catalase, are the most studied in relation to RGCs.

Glutathione is a low-molecular weight detoxifying molecule
present in all mammalian tissues. In its reduced state, GSH
is considered the master free radical scavenger, especially at
the mitochondrial level, being used by GSH peroxidase (GPx)
to inactivate hydrogen peroxide. This reaction leads to the
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formation of oxidized GSH, or GSSG; new GSH can be restored
by GSH reductase in the presence of NADPH. GSH can also be
conjugated to harmful xenobiotic substances by GSH transferase
(GST), with the aim of detoxification. Blood GSH levels inversely
correlate with aging in healthy subjects but not in glaucoma
patients; however, independently of age, glaucoma patients
displayed lower GSH content than the healthy individuals
(Gherghel et al., 2005).

SOD converts the highly cytotoxic superoxide anion into
hydrogen peroxide, and it is present in all eye structures. Three
human SOD isoforms (the cytosolic Cu-ZnSOD, also named
SOD1; the mitochondrial MnSOD, or SOD2; and the extracellular
EC-SOD, or SOD3) have been detected in AH (Behndig et al.,
1998). In this fluid, decreased expression of SOD1/2 as well as
of GST were observed in glaucoma patients in comparison to
cataract control group (Bagnis et al., 2012). Conversely in serum,
higher SOD1/2 levels were reported in glaucoma patients than
controls (Erdurmuş et al., 2011). Increased SOD, as well as GPx
activity, has been found in AH of glaucoma patients compared
to cataract patients (Ferreira et al., 2004; Goyal et al., 2014), as
a possible compensating response to higher ROS levels. More
recently, impairment in total serum SOD activity was detected
in the glaucoma group, displaying specifically lower MnSOD
levels than controls (Rokicki et al., 2017). In this study, glaucoma
patients presented with a rise in the total oxidative status but not
in the total antioxidant capacity.

Catalase (CAT) brakes hydrogen peroxide to water and
oxygen. Some studies aimed to evaluate CAT in either AH
or serum, or both, reported no significant differences in this
enzyme (either levels or activity) between glaucoma and control
subjects (Ferreira et al., 2004; Ghanem et al., 2010; Goyal et al.,
2014), while others demonstrated an impairment in CAT in
glaucoma (Majsterek et al., 2011). A significant heterogeneity
in the methods used to detect enzymatic activity can be found
among the literature studies. Some of them measured the “total”
enzymatic activity of the SOD family, others the activity of
the specific isoforms (e.g., SOD1 and SOD2). In addition, the
diversity of glaucoma types evaluated in these studies might be
an additional source of variability and a critical point for the
interpretation of the findings. A recent reviews and meta-analysis
provide a more homogeneous picture of the local and systemic
alterations in glaucoma patients, revealed an overall increase in
oxidative stress markers in chronic glaucoma, in both the serum
and the AH. Despite a general decrease in antioxidant markers
in the serum, SOD and GPx increased in the AH, likely as a
protective response in the eye against oxidative stress (Benoist
d’Azy et al., 2016). A compensatory increase in SOD and GPx
activity in association with increased oxidative processes was also
found in the brains of the mouse model for glaucoma (Ferreira
et al., 2013), supporting idea about the close link and mutual
influence existing between the eye and brain.

In general, discrepancies between expression level and
enzymatic activity are not infrequent, and they are not limited
to compensatory mechanisms, where the decreased activity
of a given enzyme (due to an age-related impairment of
the biological system or any more specific cause) may be
counterbalanced by an increase in its expression. Likewise,

high concentration of an enzyme does not necessarily mean
high activity. Gene polymorphisms of antioxidant enzymes may
indeed be responsible for changes in their activity, possibly
resulting in consecutive effects of glaucoma-induced oxidative
damage.

The most common and best studied SNP of SOD2 is the rs4880
allele. The rs4880 (C47T) (C) and (T) alleles give rise to either
alanine (Ala) or valine (Val), respectively, at codon 16, located
within the mitochondrial targeting sequence of SOD. There are
conflicts in the literature over the effect of this SNP. Val (T)
was associated with a less efficient transport of SOD2 in the
mitochondria and a lower enzyme activity compared to Ala (C)
(Sutton et al., 2005; Tian et al., 2011). However, in another study
on healthy human erythrocytes isolated from Asian or Caucasian
volunteers, SOD2 activity was 33% higher in (T;T) or (C;T)
individuals compared to (C;C) subjects (Bastaki et al., 2006). The
same authors reported significant variation of allele frequencies
between ethnicities; SOD2 enzyme activity was also shown to be
higher (+15%) in females than males. The differences between
the lowest and highest levels of medium enzymatic activity were
relevant not only for SOD2 but also for GSx and CAT (56-fold, 6-
fold, and 8-fold, respectively). We can conclude that antioxidant
enzyme activities show a high inter-individual variability that
may be related to genetic polymorphisms and that gender and
ethnicity probably contribute to discrepancies among the various
studies. The possible role of the C47T SOD2 mutation in normal-
tension glaucoma pathogenesis was investigated in a German
population and no association was found (Wolf et al., 2009).
Similar findings were obtained in Saudi patients with POAG;
however, on the basis of the study results, the authors suggested
that the C47T SOD2 mutation can be a risk factor for various
clinical indices, such as high IOP and severe clinical course (Abu-
Amero et al., 2014b). The possible link between SOD1 35A/C
and the risk of POAG was studied in a Polish population and no
association was found (Malinowska et al., 2016). The same study
found instead that the C/T genotype of both GPx Pro198 Leu and
CAT -262C/T confers major risks to developing POAG.

Antioxidant Therapies for RGC
Degeneration
Based on these studies, several antioxidant agents, as well
as molecules indirectly affecting factors/pathways related to
redox response (such as those blocking glutamate excitotoxicity-
induced oxidative stress), have been shown to provide RGC
protection in in vivo models, and may be of interest for glaucoma
treatment and/or prevention (Song et al., 2015; Nuzzi and
Tridico, 2017). The authors are aware that changes of the
endogenous antioxidant factor levels may represent only one
of the protective effects, and that other underlying molecular
mechanisms may be responsible of the RGC loss prevention
provided by these agents; however, a thorough discussion and
critical interpretation of the cited evidence are beyond the scope
of this review.

It was reported that retinal GSH decreases due to
ischemia/reperfusion (I/R) injury were counteracted by
subcutaneous Vitamin E treatment in guinea pigs (Aydemir
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et al., 2004); similarly, subcutaneous administration of Vitamin
E, as well as carotenoid derivative – Lutein, reversed the
decreased GSH levels in rat retinas with I/R injuries (Dilsiz et al.,
2006). GSH decrease in the retinas of glaucomatous mice was
prevented by oral administration of alpha-Luminol GVT R©, a
compound endowed with antioxidant and anti-inflammatory
properties (Gionfriddo et al., 2009). In rat retinas with I/R
injury, intraperitoneal injection of Methane increased both
the antioxidant enzyme activities (SOD, CAT, GPx) and anti-
apoptotic gene (Bcl2) expression, ultimately decreasing RGC
loss, total retinal layer thinning, and visual dysfunction (Liu et al.,
2016). Intraperitoneal injection of Crocin, a pharmacologically
active component of Crocus sativus L. (saffron), increased GSH
levels and total SOD activity, decreased ROS and counteracted
RGC loss in I/R injury (Chen L. et al., 2015). It was also reported
that a diet supplemented with alpha-lipoic acid (ALA), either
alone (Inman et al., 2013) or in association with SOD (Nebbioso
et al., 2013), was able to protect RGCs in the presence of ocular
ischemic and pressure stress. Transgenic SOD1-overexpressing
mice showed accelerated RGCs death after ON injury and showed
an enhancement of RGC survival when systemically injected with
alpha2-adrenoreceptor agonist brimonidine (Levkovitch-Verbin
et al., 2000). In animal models of rat glaucoma and rabbit
retinal NMDA excitotoxicity, it has been demonstrated that
brimonidine provides neuroprotection by modulating NMDA
receptor function through postsynaptic alpha2-adrenoreceptors
in RGCs; the alpha2-mediated brimonidine effect leads to a
reduction of intracellular cAMP production, the latter being
responsible for NMDA activation in RGCs (Dong et al.,
2008). In vivo evidence confirmed that topical treatment with
brimonidine decreased retinal damage induced by ocular
hypertension and showed that analogous results were obtained
by intraperitoneal administration of N-acetyl cysteine (Ozdemir
et al., 2009). Brimonidine was compared to timolol in the
Low-pressure Glaucoma Treatment Study – LoGTS – with the
aim of evaluating if either treatment protected the optic nerve
and prevented vision loss in adults (Sena and Lindsley, 2017).
After 4 years, the brimonidine group showed less progressive loss
of the visual field than the timolol group; however, since many
people dropped out of the study, especially from the brimonidine
group, and the authors did not report data for visual acuity, the
interpretation of the results was difficult and evidence of the
real effectiveness of brimonidine as a neuroprotective agent in
glaucoma was not provided.

In the panorama of gene therapy, intravitreal, adeno-
associated. virus-mediated pretreatment with SOD2 attenuated
oxidative stress and reduced mitochondrial dysfunction in RGCs
and the ON in glaucoma (Jiang et al., 2016). In comparison
with wild-type counterparts, RGC survival and up-regulation of
antioxidant enzymes (such as SOD2, CAT, GPx), were observed
in I/R retinas of mice overexpressing Frataxin, a mitochondrial
protein serving important functions in iron homeostasis and
oxidative stress responses (Schultz et al., 2016). Protection of
RGCs was also obtained in a mouse model of partial ON-crush
following oral administration of Persimmon leave (Diospyros
kaki) extract; this extract rich in several bioactive compounds,
exerts antioxidant and pro-survival activities by modulating the

expression of defensive and apoptotic genes (by increasing SOD1,
GST, GPx; or by decreasing PPAR, p53, respectively) (Ryul Ahn
et al., 2017). Oral administration of Ginkgo biloba extract seems
to provide beneficial effects on RGCs in a glaucoma animal
model (Hirooka et al., 2004) and to ameliorate pre-existing visual
field damage in some patients with normal-tension glaucoma
(Quaranta et al., 2003; Lee et al., 2012). However, Guo et al.
(2014) did not show a statistically significant difference in visual
field outcomes after Ginkgo biloba supplementation in Chinese
patients. These conflicting reports suggest that racial differences
may also play an important role (Kang and Lin, 2018). In addition
to antioxidant properties, Ginkgo biloba increases blood flow
through vasodilation and reduces blood viscosity (Kang and Lin,
2018). The safety and efficacy of a combination of antioxidants
and anti-inflammatory agents in OAG patients are currently
under evaluation in a phase I clinical trial (NCT02984813)
(Table 2).

In vivo evidence of neuroprotection, mainly in favor of RGCs,
have been reported for other antioxidant/antiapoptotic agents,
such as Lycium Barbarum Lynn extracts (Chan et al., 2007),
Stanniocalcin-1 (Kim et al., 2013), Oryzanol (Panchal et al., 2017),
Resveratrol and Riluzole, tested either alone or in combination
in glaucoma models (Lindsey et al., 2015; Pirhan et al., 2016).
Interestingly, evidence in a mouse model of normal-tension
glaucoma showed that caloric restriction promotes retinal cell
survival by increasing the expression of CAT and neurotrophic
factors and by reducing global oxidative stress (Guo et al., 2016).
Another antioxidant – taurine protects cells against oxidative
stress by upregulating enzymes such as thioredoxin reductase,
glutathione peroxidase and SOD. It is suggested that a decrease in
retinal blood perfusion in glaucoma may reduce taurine uptake
and cause degeneration of RGCs (Yildirim et al., 2007; Froger
et al., 2012, 2013).

It is important to have different therapeutic approaches
to counteract glaucoma progression, for instance some
drugs currently used to control the disease, such as timolol
and dorzolamide, display antioxidant properties, possibly
contributing to their therapeutic effects (Izzotti et al., 2008;
Sacca et al., 2011). Pronounced oxidative stress is a feature
of mitochondrial optic neuropathies, including LHON (Man
et al., 2002). In this group of inherited diseases, a genetic defect
within RGC mitochondrial proteins results in a functional
problems in mitochondrial oxidative phosphorylation and
subsequent decrease of energetic substrates availability leads
to RGC degeneration (Carelli et al., 2004). Supplementation
of coenzyme Q10 analog idebenone enables electron transfer
through complex I-III of the mitochondrial respiratory chain,
reduces ROS production and energy disbalance and provides
sufficient neuroprotection and RGC recovery in certain groups
of LHON patients (El-Hattab et al., 2017; Yu-Wai-Man et al.,
2017). It is worth mentioning that two phase IV clinical trials on
idebenone (Raxone R©) in LHON patients started in 2016 and are
currently ongoing (NCT02774005).

NF-E2-Related Factor 2 (Nrf2)
In the constellation of novel potential neuroprotective therapies,
the modulation of expression of enzymes/proteins/factors may
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be a strategy to increase antioxidant defenses. In this regard,
many antioxidant and detoxifying enzymes, such as GST, SOD,
are regulated by neuroprotective NF-E2-related factor 2 (Nrf2), a
transcription factor activated by oxidative stress and electrophilic
molecules and whose relevance in many ocular diseases including
glaucoma has been recently reviewed (Batliwala et al., 2017).
Nrf2 deficiency is characterized by increased oxidative stress
and neuronal degeneration and aggravates RGC loss in animals
subjected to either ON damage (Himori et al., 2013) or I/R injury
(Wei Y. et al., 2011).

Interestingly, among in vivo evidence for potential
neuroprotective agents, the Nrf2 activator triterpenoid 1-
(2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl) imidazole
(CDDO-Im) reduced ON crush-induced RGC death in mice
by upregulating the expression of antioxidant and phase II
detoxifying enzymes (Himori et al., 2013). Similar findings
were reported for CDDO-Im in mice subjected to I/R (Xu
et al., 2015). Treatment with Trimetazidine, an anti-ischemic
drug and metabolic modulator endowed with neuroprotective
properties, attenuated retinal damage and RGC death in an acute
glaucoma animal model by activating the Nrf2-pathway (Wan
et al., 2017), further suggesting that pharmacologic induction of
the Nrf2-pathway may represent a novel neuroprotective tool in
retinal diseases. In agreement, the Nrf2 modulator monomethyl
fumarate, the biologically active metabolite of dimethyl fumarate,
displayed neuroprotective effects and decreased neuronal cell
loss in the ganglion cell layer of mouse retinas after I/R injuries
(Cho et al., 2015). New achievements in gene therapy allowed
to spatio-temporal regulation of Nrf2 expression by specifically
targeting RGCs at risk of degeneration in murine ON injury,
thus preventing death of stressed cells and limiting undesired
off-target effects on healthy neurons (Fujita et al., 2017).

FACTORS AND PATHWAYS
REGULATING APOPTOSIS/CELL DEATH
AND NEUROINFLAMMATION

P53
One of the important regulatory proteins involved in apoptosis
of RGCs is the tumor suppressor protein p53. This protein is
a transcription factor which upregulates the expression of the
proapoptotic gene Bax and downregulates the expression of
the antiapoptotic gene Bcl2 (Daugherty et al., 2009; Fan et al.,
2010). It is suggested that p53 gene polymorphisms may be
involved in POAG pathogenesis. It has been shown that the
properties of p53 change depending on the residue occupying
position 72 in the peptide chain. In particular, the codon 72
polymorphism involves a proline (Pro) to arginine (Arg) amino
acid substitution at position 72 (Pro72Arg). The Arg72 isoform
more efficiently induces apoptosis, while Pro72 shows greater
ability to arrest the cell cycle in response to DNA damage (Lin
et al., 2002; Neamatzadeh et al., 2015; Gohari et al., 2016).
However, some of the abovementioned studies concerning the
association between the codon 72 polymorphism and POAG are
in disagreement, suggesting that ethnic differences may affect

genetic predisposition to this disease (Neamatzadeh et al., 2015;
Gohari et al., 2016). In particular, some evidence indicates that the
p53 codon 72 polymorphism may be associated with increased
risk of POAG in Asian but not in Caucasian populations (Guo
et al., 2012; Neamatzadeh et al., 2015; Gohari et al., 2016),
while others have not confirmed these results (Mabuchi et al.,
2009). Furthermore, some reports suggest that the Arg72Pro
polymorphism of the TP53 gene may be related to progression of
POAG rather than with risk of occurrence of this disease (Nowak
et al., 2014).

Heat Shock Proteins
Heat shock proteins (Hsp) represent a family of proteins
playing the role of molecular chaperones – regulating proper
macromolecule turnover in the cytosol (Ikwegbue et al., 2017).
Hsp are involved in oxidative stress defense, inhibition of
proinflammatory cytokines and inhibition of apoptotic pathways.
They supervise protein folding and unfolding, as well as
degradation of irreparably misfolded proteins (Srivastava, 2002;
Kaarniranta et al., 2009; Fontaine et al., 2016; Kampinga and
Bergink, 2016). Regarding RGCs, the function of Hsp70 and
Hsp27 are the most widely documented (Chidlow et al., 2014;
Piri et al., 2016). Induction of Hsp can inhibit apoptosis
both directly – via suppression of proapoptotic factors, i.e.,
p53 and a wide range of Bcl2 family members, including
Bax, Bid, Akt and Apaf-1, – and indirectly – by suppressing
proinflammatory cytokines, i.e., IL17, IL1β, TNFα, or IL-8 and
inhibiting oxidative stress (Jacquier-Sarlin et al., 1994; Ravagnan
et al., 2001; Takayama et al., 2003). Fatal cellular effects of
oxidative stress alleviated by Hsp include repair of misfolded
proteins, prevention of protein aggregation, and reduction of
ROS-dependent genotoxicity (Jacquier-Sarlin et al., 1994; Mayer
and Bukau, 2005). In humans, Hsp70 gene polymorphism is
related to a higher risk of POAG development, confirming the
relevance of this Hsp in endogenous neuroprotection of RGCs
(Nowak et al., 2015).

The BCL-2 Family
A major role in the apoptotic process of RGCs during glaucoma
is played by members of the BCL-2 family. In glaucoma, the
decreased expression of the pro-survival bcl-2 and bcl-xl genes
is accompanied by an increase in pro-apoptotic bax and bad
gene expression. The proapoptotic BCL-2 family of proteins
promotes the release of cytochrome c from the mitochondrial
intermembrane space into the cytoplasm. Cytochrome c binding
to apoptosis inducing factor-1 (Apaf-1) and procaspase-9
activates caspase-9 and then caspase-3 and -7 causing apoptosis.
Bcl-2 inhibits this pathway by blocking the activation of bax
and bak (Levkovitch-Verbin, 2015; Gauthier and Liu, 2017).
Overexpression of bcl-2 prevents RGC loss in a rat axotomy
model (Kretz et al., 2004; Malik et al., 2005). Moreover, changes
in expression of transcription factors such as immediate early
genes (IEGs) which regulate the transcription of bax and bcl-
2 genes, are observed in various experimental glaucoma models
and the changes in the expression of these genes can be associated
with both RGC apoptosis and survival (Kwong and Caprioli,
2006; Levkovitch-Verbin et al., 2007; Levkovitch-Verbin, 2015).
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In addition, overexpression of bcl-2 leads to an increase in the
cellular content of GSH, whose involvement in the antioxidant
defense system has already been mentioned (Moon et al., 2013).
Bax deficiency completely prevented RGC death in DBA/2J mice
because the RGC death pathway is Bax-dependent, whereas the
axonal degeneration pathway is Bax-independent. Additionally,
Bax deficiency delays IOP elevation in glaucoma (Libby et al.,
2005). Furthermore, activation of caspases 3, 6, 7, and 9 may
be endogenously counteracted by inhibitor of apoptosis proteins
(IAPs) (Levkovitch-Verbin, 2015; Gauthier and Liu, 2017). It is
suggested that members of the IAP family (IAP1 and XIAP)
may represent endogenous neuroprotective mechanisms that are
activated in the retina in response to elevated IOP. Expression of
IAPs decreases in glaucomatous retinas and correlates with age,
suggesting that an impairment in the IAP system increases the
retina’s vulnerability to elevated IOP (Levkovitch-Verbin et al.,
2013). It is worth mentioning that an siRNA against caspase
2 mRNA, QPI-1007 (Quark Pharmaceuticals) received orphan
designation by FDA for optic neuropathy and it is currently under
evaluation in phase II clinical trial for glaucoma (NCT01965106)
(Figure 3).

RNA-Binding Protein HuR
The expression of defense genes can also be modulated by post-
transcriptional mechanisms, such as RNA-binding proteins –
RBPs – and microRNAs, which allow punctual, rapid and
localized changes in gene product levels. This control of gene
expression is particularly relevant in neurons, whose projections
can extend for long distances from the nucleus. A derangement in
these mechanisms may thus seriously endanger the physiological
cellular response to changing external conditions, representing a
critical point of failure in endogenous neuroprotection. Changes
in RBPs have been associated with various neurodegenerative
diseases (Pascale and Govoni, 2012; De Conti et al., 2017);
in particular, the RBP HuR/ELAVL1 regulates the expression
of hundreds of genes, including stress response proteins (such
as SOD1, p53, Hsp70) (Mazan-Mamczarz et al., 2003; Amadio
et al., 2008; Milani et al., 2013) and pro- and anti-inflammatory
factors (Nabors et al., 2001), playing a key role in cell
survival/apoptosis under stress conditions (Lebedeva et al.,
2011). Under endogenous or external stimuli (growth factors,
inflammatory stimuli, hypoxia, oxidative stress and many others),
HuR protein is activated and moves from the nucleus to the
cytoplasm, where it favors the stability and/or translation of target
RNAs (Abdelmohsen et al., 2008; Doller et al., 2008; Zucal et al.,
2015). Lately, the involvement of HuR in mechanisms underlying
ocular pathologies has received increasing interest (Amadio et al.,
2010, 2012, 2016b; Joseph et al., 2012; Viiri et al., 2013). Relevant
for our context, in vitro studies showed that HuR was activated
by oxidative stress in TM cells (Mochizuki et al., 2012). More
recently, in vivo evidence by our group revealed that changes in
HuR subcellular localization (i.e., nuclear-cytoplasmic shuttling)
within RGCs occurred at early times after IOP induction in
an animal model of glaucoma; these effects were followed at
longer times by a progressive decrease of cytoplasmic HuR levels,
including the expression of proteins essential for cell homeostasis
(p53, Hsp70) and likely contributes to chronic IOP-induced

RGC degeneration (Smedowski et al., 2018). Similar alterations
in HuR content and subcellular localization were found in
human POAG samples, in support of the involvement of HuR
in glaucoma (Smedowski et al., 2018). A relevant role of HuR
in neuroprotection was also described in brain neurons (Skliris
et al., 2015). The potential of HuR as a new pharmacological
target is shown by an increasing interest in medicinal chemistry
by the field (for a review, see Nasti et al., 2017). There is also some
evidence of altered microRNA expression in the AH of glaucoma
patients (Jayaram et al., 2017); however, the role of microRNAs,
as well as of RBPs and, more generally, of post-transcriptional
mechanisms controlling gene expression in glaucoma, needs to
be further explored.

Metallothioneins
Metallothioneins I-IV (MT I-IV) are a family of four
metalloproteins that have multiple activities, such as antioxidant
(ROS scavenging), regulation of metal homeostasis (mostly Zn,
potential heavy metals scavenger), and transcription factors
synthesis (MT are a source of Zn for enzymes). MT I, II and III
have been documented to have a pivotal role in stress response
in neurons (Suemori et al., 2006; Pedersen et al., 2009). In
healthy retinas MT I/II and III are expressed mostly in RGC
axons (retinal nerve fiber layer) and the inner plexiform layer
(Suemori et al., 2006). Similarly, isoforms MT I and III have been
detected in proteomic analyses of ON homogenates (Smedowski
et al., 2018). In stress conditions, expression of MT has been
shown to increase within RNFL and RGC bodies, suggesting its
role as an endogenous neuroprotective factor (Suemori et al.,
2006). Beside their scavenging properties MT play an important
antiapoptotic role (through inhibition of p53, caspase 1, 3,
9 and cytochrome c leakage) and anti-inflammatory activity
(by decreasing expression of proinflammatory cytokines, and
inhibiting macrophages differentiation). Finally, MT have a
strong impact on neuroregeneration and axonal regrowth via the
megalin (LRP2) receptor, by increasing the expression of growth
factors (NGF, BDNF, GDNF, NT, VEGF) in CNS (Pedersen et al.,
2009). This phenomenon was also found and confirmed in RGCs
(Fitzgerald et al., 2007).

Tumor Necrosis Factor Alpha (TNFα) and
Neuroinflammation
Neuroinflammation is one of the processes involved in the
neurodegeneration, also in the retina and the optic nerve
(Soto and Howell, 2014; Williams et al., 2017). TNFα is
considered the critical regulator of neuroinflammation both
in the retina and optic nerve, which together with its target
receptors TNFR1 and TNFR2 may regulate homeostasis as
well as pathophysiological processes. The involvement of TNFα

gene and protein alteration in retina has been reported in
animal model of glaucoma and human primary open angle
glaucoma (Yang et al., 2011; Xin et al., 2013; Wilson et al.,
2015). In retina and optic nerve, TNFα is rapidly release from
glial cells (i.e., microglia, Müller cells) as a response to cell-
stress inducing factors, like increased intraocular pressure (Cueva
Vargas et al., 2015). It has been shown that soluble TNFα
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fraction is responsible for detrimental pro-inflammatory and
pro-degenerative effects in RGCs and is related to binding with
TNFR1, while stimulation of TNFR2 can exhibit protective effects
(Cueva Vargas et al., 2015). The molecular pathways of the
TNFα-depended neurodegeneration relay on increasing of Ca2+

permeability of AMPA receptor (AMPAR) and accumulation of
Ca2+ in cytosol, mitochondrial damage and ROS production
(Arundine and Tymianski, 2003; Crish and Calkins, 2011).
On the other hand, binding of TNFα to TNFR1 can directly
mediate apoptotic response via Fas-Associated Death Domain
(FADD) and caspase-3/caspase-8 pathways activation (Agarwal
and Agarwal, 2012). Moreover, TNFα by binding to TNFR2
can also trigger the activation of survival signals through the
stimulation of a transcription factor NF-KB, which inhibit
apoptosis. Besides TNFα induces another protection mechanism
represented by HSPs (Tezel, 2008). From the excitotoxic
point of view, overexpression of TNFα favors the activity of
excitatory synapses, inhibits uptake of glutamate by astrocytes
and increases release of glutamate from microglia, which all
leads to overload of extracellular space with this mediator
and results in self-perpetuating excitotoxic insult (Olmos and
Lladó, 2014). Despite of growing evidences of involvement of
TNFα pathways in RGC degeneration, there is a clear lack of
targeted anti-TNFα, neuroprotective therapies. The promising
attempts were done using the inhibitors of soluble TNFα fraction,
achieving alleviation of RGC damage in ocular hypertension
model (Cueva Vargas et al., 2015). Applying of non-selective
anti-TNFα agent (etanercept) suppressed microglial activation
and provided optic nerve axons neuroprotection in the rat
ocular hypertension model (Roh et al., 2012). Interestingly,
there are several known TNFα cross-interacting pathways,
with described neuroprotective factors. ELAVL1/HuR protein
regulates the expression of TNFα, as well as other pro-
and anti-inflammatory cytokines, like IL-1, IL-6, IL-8, IL-10,
participating in cellular homeostasis (Smedowski et al., 2018).
TNFα expression is also regulated by erythropoietin, however,
the mechanism of this cross-pathway depends on the way of
inflammatory process activation (Hines-Beard et al., 2016). In the
inflammation induced by lipopolysaccharide (LPS), the release
of TNFα by microglial cells was proved to be controlled by
systemic erythropoietin gene delivery (Yazihan et al., 2008).
This approach was ineffective in case of neuroinflammation
associated with optic neuropathy, where macroglial cells are
the major source of TNFα (Tezel and Wax, 2000). In the
last case, local erythropoietin gene delivery (i.e., intravitreal)
seems to be more efficient option (Hines-Beard et al., 2016).
The neuroprotective effects mediated by down-streaming of
TNFα and other proinflammatory cytokines was also reported
for endocannabinoids and metallothioneins (Helal et al., 2009;
Krishnan and Chatterjee, 2012).

Erythropoietin and Erythropoietin
Receptor
Erythropoietin (EPO) is a hematopoietic cytokine known as a
stimulant of erythropoiesis in response to hypoxia (Erslev and
Caro, 1986; Shih et al., 2018). However, more recently, in addition

to bone marrow, the receptor for EPO (EPO-R) has been identified
in multiple tissues, including the retina and, more specifically, in
RGCs (Becerra and Amaral, 2002; Shah et al., 2009). Stimulation of
neuronal EPO-R plays an important role in response to stress and
injury and prevents neuronal apoptosis by alleviation of effects of
hypoxia, glutamate excitotoxicity and growth-factors deprivation
(Junk et al., 2002). In their study, Junk et al. (2002) proved the
existence of an endogenous neuroprotective system consisting
of EPO/EPO-R that participates in stress response in retinal
ischemia/reperfusion. Fu et al. (2008) studied specific localization
of endogenous EPO/EPO-R expression and demonstrated that in
healthy conditions, endogenous EPO is expressed among others
in the RNFL (RGC axons) and EPO-R in RGC bodies; the
expression of both the cytokine and the receptor increases in
the rat retina following a glaucoma-mimicking injury. In a DR
model, it has been suggested that the molecular basis of EPO
activity in RGC is related to its antioxidant action – by increasing
the activities of SOD, GSH-Px, and CAT and by preventing
the generation of pro-apoptotic signals what improves RGC
survival (Wang Y. et al., 2014). Protective EPO activity has also
been demonstrated in other models of RGC death, i.e., NMDA
excitotoxicity, neurotrophic factors deprivation, inflammatory
insults, ON crush and glaucoma (Zhong et al., 2007, 2008; Rong
et al., 2011; Chang et al., 2013). In RGC axotomy, EPO-mediated
neuroprotection can be related to extracellular signal-regulated
kinases (Kilic et al., 2005). Beside neuroprotection, stimulation
of EPO-R can also induce axonal regeneration within RGCs by
upregulating growth associated protein-43 and downregulating
RhoA and ROCK (Tan et al., 2012a,b). It is worth remembering
that RhoA/ROCK signaling modulates AH outflow; ROCK
inhibitors lower intraocular pressure (IOP) via a direct effect on
TM and Schlemm’s canal, and they are currently under clinical
evaluation in glaucoma (Wang and Chang, 2014). Interestingly,
it has been reported that topical administration of a ROCK
inhibitor promotes RGC survival and axon regeneration after ON
injury in vivo (Shaw et al., 2017), suggesting that the beneficial
effects of this class of inhibitors may go beyond their action on
IOP.

The role of EPO in the eye, its potential for treatment of
ocular disorders, and some clinical trials on EPO and EPO
derivatives in various ocular disorders other than glaucoma, have
been reviewed by Shirley Ding et al. (2016). However, to our
knowledge, there are no ongoing clinical trials of EPO therapy
for glaucoma.

Endocannabinoids
Endocannabinoids (eCBs, i.e., anandamide and 2-
arachidonoylglycerol) are physiological ligands for the
cannabinoid receptors CB1 and CB2. They represent
arachidonate-based retrograde neurotransmitters playing a
relevant role in a variety of physiological processes in the central
and peripheral nervous systems, including neuroprotection and
synaptic plasticity (Xu and Chen, 2015). In the eye, beside the
effect of lowering the intraocular pressure (i.e., anandamide),
the eCBs system in RGCs modulates neurotransmitter release,
enhances processing and integration of visual signals by
interacting with the TRPV1 channel and Ca2+ and K+ ion
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channels (Pate et al., 1995; Cécyre et al., 2013; Miraucourt
et al., 2016; Jo et al., 2017). Nucci et al. proved that the
rat retina has a complete and functional endocannabinoid
system involving synthesis, transport, hydrolysis and binding
of anandamide (Nucci et al., 2007; Schwitzer et al., 2016).
Moreover, a decrease of anandamide in retinal ischemia
may be involved in RGC loss (Nucci et al., 2007). Although
both CB1 and CB2 receptors are present in the retina, the
neuroprotective activity of eCBs has been investigated in various
models of RGC pathology and seems to be related to CB1
receptor (Kokona et al., 2016). In I/R and excitotoxic models of
retinal degeneration, stimulation of the CB1 receptor provided
neuroprotective effects in different retinal neuron populations
(Kokona et al., 2016). The effect was related to reduction of
excitotoxic insult via modulation of glutamate release and
activation of antiapoptotic pathways involving PI3K/Akt and
MEK/ERK1/2 (Wartmann et al., 1995; Gómez del Pulgar et al.,
2000; Karanian, 2005; Molina-Holgado et al., 2005; Ozaita
et al., 2007). In a glaucoma model, activation of CB1 and
TRPV1 receptors by the agonist methanandamide, provided
RGC neuroprotection and created a possible new target for
glaucoma therapy (Nucci et al., 2007). In the streptozotocin-
induced DR model, CB treatment provided better preservation
of the blood-retina barrier and anti-inflammatory effects of
downstream proinflammatory cytokines, i.e., TNFα (El-Remessy
et al., 2006).

Neuroglobin
Neuroglobin (Ngb) is an oxygen-binding heme protein
containing iron, represents the neuronal counterpart of
blood hemoglobin. Ngb plays a crucial role in endogenous
neuroprotection in CNS and RGCs (Yu et al., 2012). Ngb
can reversibly bind oxygen; thus, it is associated with
mitochondrial metabolism and the respiratory chain; Ngb
can also supply oxygen to neurons (Lechauve et al., 2012).
Due to its high oxygen affinity, Ngb can scavenge ROS,
modulating NO-related processes and inducing stress-
response in cells due to hypoxia (Wei X. et al., 2011). In
RGC pathology, i.e., retinal ischemia and glaucoma, Ngb
participates in the stress-response by having an impact on
RGC integrity and survival by preventing mitochondrial
protein damage and energy failure due to respiratory chain
impairment (Wei X. et al., 2011; Cwerman-Thibault et al.,
2017). RGC degeneration may be linked with decreased Ngb
content, and supplementation with exogenous Ngb is shown
to alleviate RGC death and even to induce axonal outgrowth
after ON crush (Sugitani et al., 2017). In DBA2J mice, where
glaucomatous-like ON pathology is directly linked with failure
of mitochondrial bioenergetics and decreased Ngb content,
exogenous delivery of Ngb can slow down progression of
RGC degeneration or even reverse it, which brings up a
promising application in mitochondrial ON diseases, i.e., LHON
(Cwerman-Thibault et al., 2017).

Estrogens and Their Receptors
Estrogens are steroid hormones primarily related to the
reproductive, skeletal and cardiovascular systems (Munaut

et al., 2001). Estrogen receptors α and β (ER α and β) are
expressed within the ocular elements, including the retina,
and especially in RGCs (Munaut et al., 2001). The function
of estrogen signaling has been proven to be related to
cataractogenesis, dry eye syndrome and AMD (Gupta et al.,
2005). Recent studies also showed involvement of ER β receptors
in the endogenous neuroprotection of axotomized RGCs via
activation of the ERK-c-Fos pathway (Nakazawa et al., 2006),
in glaucomatous neurodegeneration via Akt/CREB/thioredoxin-
1, MAPK/NF-kappaB and inhibition of IL-18 (Zhou et al.,
2007; Russo et al., 2008; Prokai-Tatrai et al., 2013). In ischemic
optic neuropathy, estrogens prevent RGC degeneration if
applied before the insult, with no effects of treatment post-
insult (Bernstein et al., 2007). Estrogens can prevent the
effects of oxidative insult in retinal neurons by activation
of PI3K/Akt signaling and exert mitochondrial protection
associated with the attenuation of the proapoptotic Bax gene
(Li et al., 2013; Hao et al., 2014). There is evidence that
topical delivery of 17β-estradiol can prevent RGC death in
a glaucoma model in rats (Prokai-Tatrai et al., 2013). In
another study, Vajaranant and Pasquale (2013) showed that
estrogen deficiency associated with aging, accelerated optic nerve
dysfunction. There is also clinical evidence that postmenopausal
estrogen supplementation in women can significantly reduce
the risk of POAG development (Newman-Casey et al., 2014)
and that ER2 receptor polymorphism can be associated
with increased risk of POAG in men (de Voogd et al.,
2008).

Autophagy – Neuroprotective Aspects
Autophagy is a cellular clearing system for scavenging misfolded
proteins, lipids and other cell components; it prevents protein
aggregation and maintains proper organelle turnover, thus
assuring cell survival. Autophagy prevents dysfunction of cellular
components which may appear due to oxidative insults and
increased mitochondrial membrane permeability (Davis et al.,
2016). In RGCs, the autophagy process has been studied in ocular
hypertension models, retinal and ON ischemia, and transection
or ON crush (Lin and Kuang, 2014). In glaucoma, opposite
changes in the autophagy process can be observed in RGCs when
compared to the ON; in particular, an increase in autophagy
is observed in the cell soma/RGC, and autophagy is impaired
in the axons/optic nerve (Deng et al., 2013; Kleesattel et al.,
2015). The significance of this process in RGC biology has
not been fully determined yet, and at present it is still unclear
whether induction or inhibition leads to beneficial outcomes
(Park et al., 2012; Su et al., 2014; Koch and Lingor, 2016).
Accordingly to this, the effects of autophagy activation may
also depend on the cellular compartment in which it takes
place; i.e., in glaucoma, autophagy may be initially activated
in RGC dendrites and axons, which possibly has protective
outcomes, but under the chronic increase of intraocular pressure,
autophagosomes appear in the cytoplasm of the cell body,
mediating cell death (Lin and Kuang, 2014). Interestingly, some
of the abovementioned factors have been related to autophagy,
suggesting it plays an important role in maintaining RGC
homeostasis.
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Endoplasmic Reticulum Stress
Modulation
Different damaging factors may affect intracellular pathways by
impairing correct proteins turnover, resulting in accumulation of
unfolded and misfolded proteins in the lumen of endoplasmic
reticulum (ER). The cell-stress response to this event, known
as the unfolded protein response (UPR) activates cascade of
reactions and pathways leading to cell death by apoptosis (Xu
et al., 2005). Recently, the UPR has been postulated to be involved
in the pathogenesis of neurodegenerative disorders, including
RGCs neurodegeneration such as glaucoma. In animal model of
optic neuropathy (traumatic injury and chronic glaucomatous
neurodegeneration) it has been shown that inhibition of the
protein kinase RNA-like endoplasmic reticulum kinase (PERK)-
eukaryotic initiation factor 2 alpha (eIF2α)-CCAAT/enhancer-
binding protein homologous protein (CHOP) pathway and
activation of the X-box binding protein 1 (XBP-1) pathway play
neuroprotective role in RGCs by preventing ER stress-induced
protein misfolding, increasing expression of anti-apoptotic Bcl-
2 gene and regulating homeostasis of Ca2+ ions in ER (Hu, 2016;
Yang et al., 2016). Ojino et al. (2015) additionally presented that in
DBA/2J mice, ER stress may participate in optic nerve astrocytes
activation, overlapping the direct involvement in axonopathy.
Targeting the ER stress pathways by gene therapy approach is
considered as a novel and promising direction in neuroprotective
strategies.

Adenosine and Adenosine Receptors
Adenosine is derived from ATP and AMP in the cells and can
be transported extracellularly by the nucleoside transporters. It
plays role in the regulation of the blood flow, inflammatory
cytokine release by T-cells, synaptic function, neuromediators
release and Ca2+ levels in CNS, as well as in neuroprotection
(Sheth et al., 2014). Adenosine receptors (AR) represent class
of four known G protein-coupled receptors distributed within
different tissues including ocular structures. AR1 and AR3
receptors stimulation inhibits adenylyl cyclase and decrease cyclic
adenosine monophosphate (cAMP) synthesis, while AR2A and
AR2B receptors agonists cause activation of adenylyl cyclase
and increase cAMP in the cells (Fredholm et al., 2011; Sheth
et al., 2014). In the aspect of glaucoma, stimulation of certain
subtypes of AR (i.e., agonists of AR1 and AR3, and antagonists
of AR2A) are expected to have beneficial effects on intraocular
pressure reduction or directly on RGC neuroprotection (Zhong
et al., 2013; Nakashima et al., 2018). The neuroprotective aspects
of adenosine are related mostly to AR1 and AR3 receptors.
The molecular neuroprotective effects of AR1/AR3 agonists
are explained by anti-apoptotic effect involving deregulation
of PKB/NF-κB and Wnt signaling pathways, downregulation
of the Fas receptor, and TNFα expressions (Fishman et al.,
2013). Additionally, it has been demonstrated that adenosine
signaling (AR1 and AR3) alleviates excitotoxic insult outcomes
by decreasing Ca2+ influx, mitochondrial damage and apoptosis
related to NMDA or P2X7 receptor stimulation and glutamate
accumulation (Hartwick et al., 2004; Zhang et al., 2006,
2010). In the study conducted on in vitro RGC culture and

rat optic nerve crush model, stimulation of AR3 promoted
RGC neurites outgrowth which proves that agonists of this
receptor may exhibit neuroregenerative activity (Nakashima
et al., 2018). Interestingly, agonists of AR2B promotes axons
elongation in peripheral neurons, what was demonstrated
in corneal nerve plexus in diabetic rats (Zhang et al.,
2018).

CONCLUDING REMARKS

There are many candidate molecules and pathways identified
as potential therapeutic factors for RGCs rescue. It would be
a real challenge to judge and justify which of these represent
the most potent one, since it is highly probable that revealed
effect depends on the pathomechanism of cell damage. Moreover
it is possible that combined therapies might be more effective
than single factor application, what was observed, for example in
neurotrophic factors therapy (Nishi, 1994; Weissmiller and Wu,
2012). It is important to note that majority of described molecules
were tested in animal settings therefore anatomical, physiological
and functional differences with human retinas may be associated
with the discrepancies between the clinical trials conclusions
and animal studies outcomes (i.e., memantine trial in glaucoma
(WoldeMussie et al., 2002; Weinreb et al., 2018). From among the
factors we described in this review, the human antigen R (HuR
protein) seems to be the most promising endogenous target for
experimental and translational therapy. In glaucoma, it has been
shown that there are similar patterns of HuR protein alterations
in both rat and human what allows to expect that effects
of HuR-targeted therapies may have similar, thus translational
outcomes (Smedowski et al., 2018). HuR protein represent the
pleiotropic factor that post-translationally regulates majority
of described intracellular processes and molecules, especially
antioxidant enzymes, growth factors, stress response factors, cell
cycle regulating proteins and autophagy. By modulating single
factor – HuR protein expression and function, it is possible
to affect whole cell stress-response mechanisms. It seems to be
possible HuR protein is a key element managing these complex
mechanisms that determine whether cells survive and remain
fully functional.
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