
sensors

Communication

Real-Time 2-D Lidar Odometry Based on ICP

Fuxing Li , Shenglan Liu *, Xuedong Zhao and Liyan Zhang

����������
�������

Citation: Li, F.; Liu, S.; Zhao, X.;

Zhang, L. Real-Time 2-D Lidar

Odometry Based on ICP. Sensors 2021,

21, 7162. https://doi.org/

10.3390/s21217162

Academic Editor: Antonia Spano’

Received: 13 September 2021

Accepted: 25 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; lfx_mail@163.com (F.L.); cnc@nuaa.edu.cn (X.Z.); zhangly@nuaa.edu.cn (L.Z.)
* Correspondence: meeslliu@nuaa.edu.cn

Abstract: This study presents a 2-D lidar odometry based on an ICP (iterative closest point) variant
used in a simple and straightforward platform that achieves real-time and low-drift performance.
With a designated multi-scale feature extraction procedure, the lidar cloud information can be utilized
at multiple levels and the speed of data association can be accelerated according to the multi-scale
data structure, thereby achieving robust feature extraction and fast scan-matching algorithms. First,
on a large scale, the lidar point cloud data are classified according to the curvature into two parts:
smooth collection and rough collection. Then, on a small scale, noise and unstable points in the
smooth or rough collection are filtered, and edge points and corner points are extracted. Then, the
proposed tangent-vector-pairs based on edge and corner points are applied to evaluate the rotation
term, which is significant for producing a stable solution in motion estimation. We compare our
performance with two excellent open-source SLAM algorithms, Cartographer and Hector SLAM,
using collected and open-access datasets in structured indoor environments. The results indicate that
our method can achieve better accuracy.

Keywords: 2-D lidar; multi-scale; feature extraction; motion estimation

1. Introduction

Simultaneous localization and mapping (SLAM) technology has developed rapidly
and is widely used. Whether in automated driving [1–3] or unmanned industrial trans-
portation, or service robots, SLAM covers most scenarios from high-speed to low-speed
motion. The field of service robots mainly includes security robots, guide robots, sweeping
household robots, etc. The application scenarios range from a broad outdoor environment
to a limited indoor environment. Localization is the essential task to be completed in the
motion estimation module in SLAM [4]. Although various sensors are used for motion
estimation, such as IMU, GNSS, and camera [5], lidar is still highly competitive in SLAM
applications, thanks to its high measurement accuracy, high anti-interference ability, and
stability to light illumination.

This paper studies the localization of service robots using 2-D lidar in indoor envi-
ronments. For lidar SLAM, filtering-based algorithms were first widely used and applied
to 2-D lidar [6]. The most likely pose of a robot is estimated with the distribution of
sequential sensor data. Such techniques are usually sensitive to computing resources. With
the progress of nonlinear solvers, lidar SLAM gradually adopts optimization methods to
solve motion estimation, such as KartoSLAM [7], HectorSLAM [8], LagoSLAM [9], and
Cartography [10]. These methods do not deliberately extract features when performing
data association but use raw data to perform motion estimation directly. In 3-D lidar SLAM,
downsampling and feature extraction are performed in the data preprocessing stage to
obtain less noisy and more stable data. This difference in data processing is also due to
the fact that 3-D lidar produces more information than 2-D lidar, so it is objectively more
difficult to extract effective and rich features from 2-D lidar data. Moreover, a general
single-scale feature extraction procedure can easily lead to information loss.

Sensors 2021, 21, 7162. https://doi.org/10.3390/s21217162 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4727-0107
https://orcid.org/0000-0002-8846-1666
https://doi.org/10.3390/s21217162
https://doi.org/10.3390/s21217162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217162
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217162?type=check_update&version=1

Sensors 2021, 21, 7162 2 of 13

For localization tasks in indoor structured environments, 2-D lidar SLAM is sufficient
to solve most problems; however, minimal attention has been given to multi-scale feature
extraction of the front-end of 2-D lidar SLAM. Therefore, this paper focuses on a 2-D
lidar-based approach.

2. Related Work

The essence of the localization task is to match the sequential sensor data, known
as scan-matching, which can be solved by the optimization-based method. The method
usually forms a graph model with vertices and edges, in which the vertices are the variables
to be optimized, and the edges are the constraint relationship between the vertices [11],
and then the model can be transformed into a least-squares problem.

ICP [12] and its variants [13–16] can be used to match lidar point clouds between
different frames. These techniques vary from point-to-point to point-to-plane in data
correspondence, and some remove obvious outliers with geometric features, such as
normal vector and curvature. Some of them are specially designed for 3-D data. For
example, GICP [14] uses the correspondence between points and planes, and NICP [15]
applies the 3-D structure around the points to form data association. In 2-D lidar data, it is
difficult to find and utilize geometric features, such as a plane or a normal vector to a plane.
Moreover, it is time-consuming for the process of finding the closest points. Tian et al. [17]
proposed a method for the acceleration of data correspondence with an assisted intensity
to reduce the computational cost and avoid divergences.

Apart from scan-matching, some methods focus on the distribution of lidar point
clouds in the environment to estimate the pose of a robot. For example, Gmapping [18] and
CoreSLAM [19] both utilize improved particle filters for localization, but they are sensitive
to computing resources or have poor positioning performance. Ren et al. [20] proposed an
improved correlative scan matching in a probabilistic framework, which can evaluate a
robot’s pose with the distribution of lidar data.

LagoSLAM [9] and KartoSLAM [7] construct an SLAM problem with a pose graph
model, which finds what pose state the robot is in that is most likely to obtain the current
observations. HectorSLAM [8] and Cartographer [10] match the point cloud with the
map. The scan matcher also needs to find the most likely position of the laser point on the
map to retrieve the pose of a robot. The improved HectorSLAM and a control network
constraint-based method [21] focus on reducing the cumulative error in the backend [22].

These scan-matching methods or pose estimation techniques designed for 2-D SLAM
usually do not specially extract features for 2-D lidar data; some non-essential data are
retained when processing lidar data. While feature extraction is common in 3-D lidar
SLAM, it is a crucial part of the front end in LOAM [23] and LeGO-LOAM [24]. LOAM
extracts edge points and plane points and uses the distance from the point to line and
point to plane for data association. LeGO-LOAM segments the point cloud in advance
before feature extraction, which greatly reduces noise and improves the efficiency of feature
extraction. Grant et al. [25] proposed a new planar feature extraction method for fast point
cloud registration. When faced with a large number of dense clouds, one can apply bundle
adjustment to lidar SLAM to handle large-scale edge and plane features [26] or use sliding
windows to increase the speed of the system [27].

These feature extraction procedures only extract features on a single scale, and the
information in the point cloud is not taken into account sufficiently, such as PCA-based
line detection [28]. One of the advantages of multi-scale feature extraction is that various
levels of information can be retrieved. The construction of geometric features is usually
very sensitive to the size of the neighborhood, and the size of the scale is not easy to
control. Conversely, the data structure of multi-scale features can be used to construct an
effective search space or to omit the secondary search process, which greatly accelerates
the speed of data association. Pfister et al. [29] used 2-D lidar data to construct multi-scale
point and line features and adopted a coarse-to-fine strategy to traverse matching points,
significantly reducing the search space for fine-scale features and improving the robustness

Sensors 2021, 21, 7162 3 of 13

of scan-matching. Wu et al. [30] extracted the multi-scale corner features with curvature
detector in 2-D lidar data. To better classify the laser point cloud, Hang et al. [31] extracted
multi-scale features and embedded them in a low-dimensional and robust subspace to
obtain a more compact geometric feature representation and achieve a better classification
performance. Bosse et al. [32] designed a feature descriptor that captured the local structure,
and the descriptor is robust to measurement noise.

This paper considers the influence of noise on sensor data, applies multi-scale metrics
to achieve multi-level and robust feature extraction, and then combines with the ICP and
the proposed tangent-vector pair to obtain robust motion estimation. Due to the multi-scale
data structure, searching and relating data can be carried out quickly, which can save time
in the iterative solution process.

Naturally, during the movement of lidar, one inherent problem is point cloud dis-
tortion. It takes time for lidar to transmit and receive signals, which results in the beams
inevitably being received at different positions during the lidar movement. Moreover, the
more intense the movement, the more pronounced the change. This phenomenon is known
as motion distortion. Generally, auxiliary sensors are required to calculate the distorted
movement of each point by linear interpolation and remove the distortion. Another com-
mon way is to apply the extended Kalman filter (EKF) to integrate lidar, IMU, and other
information [33,34] to the de-skew cloud. However, when the sensor movement is not so
intense, it is acceptable to ignore this movement distortion. Or, it can be assumed that the
sensor moves at a constant speed to calculate the movement of each point. Specifically, in
our case, the lidar moves at a low speed of 0.3–0.5 m/s, so we ignore the distortion.

3. System Overview
3.1. Lidar Hardware

As shown in Figure 1, this paper utilizes an RPLIDAR S1 manufactured by SLAMTEC.
The lidar has a horizontal field of view of 360 degrees, a measurement distance of 0.1–40 m,
a scanning frequency of 10 Hz, a measurement resolution of 3 cm, and a measurement
accuracy of ±5 cm. All obtained point clouds are in the lidar coordinate {L} of the left hand.

Figure 1. Single-line mechanical rotating lidar.

3.2. Software System Overview

Downsampling raw data and eliminating outliers can reduce the burden of computa-
tional resources and improve the real-time performance of the system; therefore, this paper
designs a multi-scale feature extraction procedure that can reserve the appropriate data.
In Figure 2, we first classify the lidar data into two parts, smooth collection Ps and rough
collection Pr, according to their curvature defined in Formula (1). Then, the corresponding
point pairs < ps, p′s > and < pr, p′r > are obtained between the sequential sensor data. Re-
spectively, the edge point pe and corner point pc are extracted from the smooth collection and
rough collection according to the constraint conditions we proposed in Formulas (3) and (4).
In addition, the point pairs < pe, p′e > and < pc, p′c > are obtained, and they yield the
tangent-vector pairs < τ, τ′ >. The motion estimation problem is solved by our ICP variant
algorithm proposed in Formula (6). Then, the transformation between two lidar frames can
be obtained, and the current lidar pose-state in the world coordinate is established.

Sensors 2021, 21, 7162 4 of 13

Figure 2. i represents the current frame, and i− 1 represents the previous frame. TL
i−1,i is the transformation matrix between

frame i and i− 1 in the coordinate system {L}.

4. Lidar Odometry
4.1. Feature Extraction

Central to our method is a multi-scale metric procedure that allows feature analysis at
multiple scales, using the local neighborhood’s size as a scale parameter.

On a large scale, we evaluate the smoothness of a point using a neighborhood com-
posed of more points. The calculation process similar to the method in [20] is Formula (1)
and we set |C| to 10. When κ1 > 0.1, a point is classified to rough collection; otherwise, it is
classified to smooth collection. However, the neighborhood’s rough points or sensor noise
can easily affect the actual smooth point, which is detected as a rough point. Although,
when having a large sample size in the calculation, a few misclassified points will not
significantly affect the final result. For example, when we use the ICP method, we will not
deliberately exclude such points because enough correct correspondence pair samples are
involved in the evaluation:

κ1 =
1
|C|

∥∥∥∥∥ ∑
j∈C,j 6=k

(
pj − pk

)∥∥∥∥∥ (1)

When the total sample size becomes smaller, such misclassified points have a more
significant impact. We must consider the data on a smaller scale to utilize two adjacent
points to compute the tangent vector in Formula (2) and then define the straightness similar
to the method of [35] in Formula (3) to evaluate the smoothness of a point in a small area.
Moreover, we use the tangent vector difference in Formula (4) to evaluate the extent of
noise influence on points because the sensor has the measurement accuracy, for example,
the lidar measurement accuracy we use is ±5 cm. When the lidar scans a plane, we clearly
notice that the measuring point is throbbing in a specific range, and this type of point is
easily recognized as a rough point, but it belongs to a point on a straight line. Therefore,
we implement the small-scale extraction for the points classified by the large-scale feature
extraction, and the filtered points are used for rotation estimation in Section 4.2.

In Formula (2), τk is the tangent vector of the k-th point pk. In Formula (3), lk is the
straightness of the k-th point pk. Ck is a collection of the neighborhood and |Ck| is set to two.
In Formula (4), κ2 represents the difference between two sequential tangent vectors:

τk =
pk+1 − pk∥∥pk+1 − pk

∥∥ (2)

Sensors 2021, 21, 7162 5 of 13

lk = τk ·
1
|Ck| ∑

j∈Ck ,j 6=k

(
pj − pk

)
(3)

κ2 =
∠τk−1τk∥∥∥ pk+1−pk

2

∥∥∥+ ∥∥∥ pk−pk−1
2

∥∥∥ (4)

Generally, in the smooth collection, when the straightness of a point is very large
(lk > 1.5), the k-th point and its neighbors should be on a straight line. If the influence of
the noise is small (κ2 < 0.5), the point should be classified as an edge point; in the rough
collection, when the straightness of a point is very small (lk < 1), it may be at corners. If
the “noise” is considerable (κ2 > 1), it means that the tangent vector changes significantly.
The point should be classified as corner points. In this way, we have a small number of
more stable point sets by small-scale classification. Figure 3 illustrates a schematic diagram
of the different results produced by small-scale and large-scale neighborhoods. Multi-scale
classification can exclude some single-scale misclassification points. A specific example is
shown in Figure 4.

Figure 3. The blue triangle is an edge point, and the red square is a corner point. When classified at a
large scale, the edge point is likely to be classified into corners.

Figure 4. The result of the multi-scale metric procedure. In dotted box 1, the raw points are not
strictly distributed in a straight line due to the influence of noise, and we find large-scale metric
results in misclassified points. The yellow rectangle should not belong to rough points. In dotted
box 2, the red corner points and green edge points are in the correct category.

4.2. Motion Estimation

The raw data are classified into four categories: smooth collection, rough collection,
edge point, and corner point. The large-scale metric classified data, smooth collection and
rough collection, are used as the input of the ICP method. In ICP, the KD-tree is used
to construct a search space to find the relevant point, that is, the nearest point, and then
iterated until convergence or the maximum number of iterations is reached. During the
iteration, the method first finds the closest point and then generates a preliminary related
point pair, and Formula (5) must be met; otherwise, the point pair is discarded:∥∥κ1 − κ′1

∥∥ < εκ1 (5)

Sensors 2021, 21, 7162 6 of 13

In our experimental setup, we set εκ1 to 0.005. Then, all the point pairs < ps, p′s > and
< pr, p′r > build up the set P . We use M1 ∈ SE(3) to represent the transformation matrix
and the corresponding Lie algebra is ξ ∈ se(3). The formula of ICP is written in the form:

r1(P , ξ) = pn − exp
(

ξ̂
)

p′n (6)

where exp
(
ξ̂
)
→ M1 is the mapping from Lie algebra to Lie group, and < pn, p′n > is the

pair in P .
For small-scale classified point cloud data, edge points and corner points are collected

from the points extracted from large-scale features, and the relationship between points is
built. However, all point pairs must meet the conditions of the following Formulas (3) and (4)
or are discarded: ∥∥κ2 − κ′2

∥∥ < εκ2 (7)∥∥lk − l′k
∥∥ < εlk (8)

In practice, εκ2 and εlk are set to 0.05. However, this paper does not directly use
edge points and corner points but uses these points to calculate the tangent-vector pair to
estimate the degree of freedom of rotation. First, we explain how to use the tangent-vector
pair to calculate the rotation angle. In the left of Figure 5a, there are several feature points,
which can be edge points or corner points, and then their tangent vectors are calculated. In
this paper, these tangent vectors are connected end to end. These feature points are stable,
so the shape of the formed polygon is also stable, which is why the points generated by the
large-scale classification method are not used. It can be assumed that a polygon rotates
slightly on the plane. If we know the rotation angle of each side, then the rotation angle
of the polygon can be easily calculated. Here, the sides of the polygon are the tangent
vectors. For the convenience of presentation, all unit tangent vectors are moved to the
origin of the coordinate system to form a tangent indicatrix, which can abstractly represent
the distribution state of polygon sides, and further omit line segments and simplify into
an indicatrix. In practice, the shape of the polygon represented by the indicatrix extracted
from the previous frame and the indicatrix of the current frame should be basically the
same, but the rotation angle is different, which is why the tangent-vector pair can estimate
the degree of freedom of rotation. A specific example is shown in Figure 5b,c.

For the rotation matrix R2 ∈ SO(3), exp
(
φ̂
)
→ R2 , and the relative transformation

matrix M2 ∈ SE(3) in Formula (9). The corresponding tangent vector pair is < τk, τ′k >.
The solution for rotation of tangent-vector pairs is in Formula (10) and < τm, τ′m >∈ T :

M2 =

[
R2 t2
0> 1

]
, t2 = 0, M2 ∈ SE(3) (9)

r2(T , φ) = τm − exp
(
φ̂
)
τm
′ (10)

The full motion estimation solution is in Formula (11), where ρ is the Cauchy kernel
function. The Lie algebra perturbation model is used to solve the Jacobian matrix of two
error terms Formulas (6) and (10):

min
ξ,φ

{
N
∑‖r1(P , ξ)‖2 +

M
∑ ρ‖r2(T , φ)‖2

}
(11)

J1 = ∂r1
∂δξ = −

(
exp

(
ξ̂
)
p′n

)� (12)

J2 = ∂r2
∂ϕ =

(
exp

(
φ̂
)
τ′m

)̂
(13)

where δξ and ϕ are small perturbations of ξ and φ, respectively. We obtain the transfor-
mation between frames in Formula (14). s is the number of edges and corner pairs. ε is a
threshold and set to 50:

TL = M1 ⊗M2 ,
[

R1 t1
0> 1

]
⊗

[
R2 t2
0> 1

]
=

[
R t1
0> 1

]
, R =

{
R1, s < ε

R2, s ≥ ε (14)

Sensors 2021, 21, 7162 7 of 13

Therefore, the problem of motion estimation can be solved by the L-M method in
Formula (15):

TL ← TL −
(

J>J + λD>D
)−1

J>r(·) (15)

where D is a non-negative diagonal matrix, which is taken as the square root of the diagonal
elements of J>J. λ is a parameter defined in the L-M method. After evaluating the motion
between frames in the lidar coordinate, we obtain the relationship of the sensor’s ego-
motion in the world coordinate in Formula (16). The motion estimation algorithm is shown
in Algorithm 1. Finally, continuous motion estimation constitutes a 2-D lidar odometry.

Ti = TL
i−1,iTi−1 (16)

Figure 5. The illustration of the tangent-vector pair for steadily solving rotation DoF. (a) Left shows
an example when the tangent vector is computed by two points, so the tangent vector is end-to-
end. (b) The tangent-vector pair is in the white ellipse, the angular deviation of the vector pair is
0.63 degrees, and the average angle deviation of all the vector pairs is 0.98 degrees. The sensor is
almost not rotating. (c) In the white ellipse, the angular deviation of the vector pair is 4.52 degrees,
and the average angle deviation of all vector pairs is 3.80 degrees. The sensor is rotating.

Sensors 2021, 21, 7162 8 of 13

Algorithm 1: Motion Estimation

Input: smooth collection Ps, rough collection Pr
Output: transformation matrix TL

1: set TL to the identity matrix
2: for i = 0 to max iteration do
3: for each smooth point ps in Ps or rough point pr in Pr do
4: Find the closest point p′s and p′r for ps and pr in last scan regarding

to smooth collection and rough collection, respectively.
5: All the point pairs < ps, p′s > and < pr, p′r > yield to Formula (5)
6: end for
7: Compute τk, lk, κ2 for all points in < ps, p′s > and < pr, p′r >.
8: for each point ps in < ps, p′s > and pr in < pr, p′r > do
9: Classify point as edge pe when lk > 1.5 and κ2< 0.5,
10: Classify point as corner pc when lk< 1 and κ2 > 1.
11: All the point pairs < pe, p′e > and < pc, p′c > yield to Formulas (7) and (8).
12: end for
13: Compute new τk for all the points in < pe, p′e > and < pc, p′c >,

then obtain < τ, τ′ >.
14: Use < ps, p′s > and < pr, p′r > as input of Formula (6).
15: Use < τ, τ′ > as input of Formula (10).
16: Update TL for next iteration.
17: if the convergence is satisfied then
18: Return TL

19: end if
20: end for

5. Experiment

We performed algorithm verification in an Ubuntu system (18.04 LTS) running Robot
Operation System (ROS in Melodic version) on an Intel 3.7 GHz, 6-core CPU, 16 GiB memory
computer. The algorithm uses no more than two cores and no more than 2 GiB memory.

5.1. Our Datasets

We collected three datasets in different areas of the underground garage and one dataset
in our lab. We used tape to plan the trajectory points every 2.5 m and then held the lidar to
walk clockwise along with the trajectory points in straight lines. In the underground garage,
the lidar was above the car’s roof all the way to ensure that the collected data were all relative
to walls and pillars. In the lab, people were walking around. The starting point and ending
point were at the same location. The trajectories of the four groups were 65, 92.5, 9, and 25 m,
and the walking speed was about 0.3–0.5 m/s.

We recorded the starting and ending positions and calculated the distance between the
two positions, representing the displacement’s total drift. Chart 1 shows the four algorithm
results, including the ICP, Cartographer, HectorSLAM, and our method. In general, the
smaller the loop, the smaller the accumulated error. Our method outperformed the others.
We omitted some data with an error of more than 10%. As shown in the trajectory in
Figure 6 drawn by EVO [36], ICP and HectorSLAM did not perform very well in some
datasets B, C, D and A, B, C, respectively. The HectorSLAM usually failed in rotation while
our method performed well. Specifically, in scene D of Figure 6d, we collected the data
when people were walking around in the lab and found that in general, the algorithms
performed better in the static environment than in the dynamic environment but the error
of our method was about 2%, and our method performed better than others.

Sensors 2021, 21, 7162 9 of 13

Chart 1. Relative errors of motion estimation drift for different algorithms. A, B, C represent the
datasets of different scenes in the garage. D is the dataset of lab.

Figure 6. Cont.

Sensors 2021, 21, 7162 10 of 13

Figure 6. (a–c) Static scenes from the underground garage. (d) The dynamic scene from the lab.

To verify the real-time performance, the wall clock time of our method is recorded in
Table 1, and the algorithm can achieve up to 2.9 times the real-time performance, and the
minimum is 1.1 times. It can be noticed that the real-time performance drops in datasets
E and F, mainly because the scanning frequency of the lidar used in these two data sets
was 40 Hz, which is four times that of our lidar. This means that more data needs to be
processed in the same period of time. In Table 2, we compute the runtime of the two
main modules of our method in dataset B. For the large-scale feature extraction and data
association, the average time per frame is about 56 ms; for the small-scale feature extraction
and data association, the average time is about 26 ms. As one scan of RPLIDAR S1 takes
100 ms, our algorithm achieves real-time performance. We can also figure out that a small-
scale feature extraction module takes less time than a large-scale feature extraction module
due to the multi-scale data structure.

Table 1. Real-time performance of our method.

Dataset Time of Bag/s Wall Clock Time/s Real-Time

A 192.5 67.2 2.9
B 245.3 145.4 1.7
C 134.3 75.1 1.8
D 81.9 47.9 1.7
E 145.4 129.2 1.1
F 105.2 89.6 1.2

Table 2. Runtime of the two main modules.

Module Max (ms) Min (ms) Mean (ms)

Large-scale feature and data association 89.3 10.7 56.1
Small-scale feature and data association 64.9 5.1 25.9

Sensors 2021, 21, 7162 11 of 13

5.2. Open-Access Datasets

We used the open-access datasets in [8]. To verify the low drift of the algorithm in
this paper, we selected a large loop dataset located in the building of Schloss Dagstuhl and
another with a small loop in a long and narrow corridor. The displacement’s total drift
is shown in Chart 2, and our method outperformed Cartographer and HectorSLAM in
dataset F. We omitted the data with an error of more than 10%.

Chart 2. Relative errors of motion estimation drift for different algorithms. E and F are different
open-access datasets.

In dataset F, we regarded the wheel odometry data as ground truth and used EVO
to calculate the absolute pose error (APE) and relative pose error (RPE). In Table 3, we
learn that our method’s maximum absolute error of trajectory is 3.27 m, and the root mean
square error (RMSE) is 1.71 m, the maximum relative error of trajectory is 0.19 m, and
RMSE is 0.03. Few features can be extracted from the lidar data for the long and narrow
corridor in dataset F. Therefore, we could find more displacement drift in the y-direction of
Figure 7b. Since dataset F has IMU information, we first tried to apply IMU to remove the
distortion of the point cloud with the reading of the accelerometer and gyroscope. Then,
we used translation provided by IMU to assist our method to overcome the displacement
drift in the long and narrow corridor. In Figure 7b, our method with IMU performed better
than that without IMU.

Table 3. Absolute pose error and relative pose error.

Dataset Error Max/m Min/m Mean/m RMSE/m

F
APE 3.27 0.01 1.42 1.71
RPE 0.19 <0.01 0.02 0.03

Figure 7. Trajectories for datasets E and F. (a) The trajectory of scene E, (b) The trajectory of scene F.

Sensors 2021, 21, 7162 12 of 13

6. Conclusions

This paper presents a real-time and low-drift 2-D lidar odometry algorithm for the
indoor environment. We proposed a multi-scale metric procedure to extract robust features
to utilize the 2-D lidar cloud information at multiple levels. Furthermore, the small-
scale feature extraction component is less time-consuming due to omitting the secondary
searching process. The proposed tangent-vector pair achieves robust performance when
evaluating the rotation of the motion. The algorithm was validated on different datasets
and compared with outstanding open-source algorithms. The results showed that our
method can achieve better accuracy.

In future work, we intend to carry out research on multi-sensor fusion localization and
mapping based on IMU and add a loop closure module to further improve the accuracy
of the system.

Author Contributions: The work described in this article is the collaborative development of all
authors. Data curation, F.L.; Formal analysis, F.L.; Funding acquisition, X.Z.; Methodology, F.L. and
S.L.; Project administration, L.Z.; Software, F.L.; Supervision, S.L.; Validation, S.L.; Visualization, F.L.;
Writing—original draft, F.L.; Writing—review and editing, S.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China(NSFC) Project
under Grants No. 52075260.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Q.; Liang, P.; Xia, J.; Wang, T.; Song, M.; Xu, X.; Zhang, J.; Fan, Y.; Liu, L. A Highly Accurate Positioning Solution for C-V2X

Systems. Sensors 2021, 21, 1175. [CrossRef] [PubMed]
2. Ilci, V.; Toth, C. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle

Navigation. Sensors 2020, 20, 899. [CrossRef] [PubMed]
3. Chiang, K.-W.; Tsai, G.-J.; Li, Y.-H.; Li, Y.; El-Sheimy, N. Navigation Engine Design for Automated Driving Using INS/GNSS/3D

LiDAR-SLAM and Integrity Assessment. Remote Sens. 2020, 12, 1564. [CrossRef]
4. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
5. Su, T.; Zhu, H.; Zhao, P.; Li, Z.; Zhang, S.; Liang, H. A Robust LiDAR-based SLAM for Autonomous Vehicles aided by GPS/INS

Integrated Navigation System. In Proceedings of the 2021 6th International Conference on Automation, Control and Robotics
Engineering (CACRE), Dalian, China, 15–17 July 2021; pp. 351–358. [CrossRef]

6. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; The MIT Press: Cambridge, MA, USA, 2005.
7. Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient Sparse Pose Adjustment for 2D mapping.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Japan, 1–5 November
2010; pp. 22–29. [CrossRef]

8. Kohlbrecher, S.; Von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation. In
Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November
2011; pp. 155–160. [CrossRef]

9. Durrant-Whyte, H.; Roy, N.; Pieter Abbeel, P. A Linear Approximation for Graph-Based Simultaneous Localization and Mapping.
In Robotics: Science and Systems VII; MIT Press: Cambridge, MA, USA, 2012; pp. 41–48.

10. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [CrossRef]

11. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization.
In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 3607–3613. [CrossRef]

12. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.
[CrossRef]

13. Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International Conference on Robotics and
Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25. [CrossRef]

14. Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. Proc. Robot. Sci. Syst. 2009, 2, 435.

http://doi.org/10.3390/s21041175
http://www.ncbi.nlm.nih.gov/pubmed/33562381
http://doi.org/10.3390/s20030899
http://www.ncbi.nlm.nih.gov/pubmed/32046232
http://doi.org/10.3390/rs12101564
http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1109/CACRE52464.2021.9501326
http://doi.org/10.1109/IROS.2010.5649043
http://doi.org/10.1109/SSRR.2011.6106777
http://doi.org/10.1109/ICRA.2016.7487258
http://doi.org/10.1109/ICRA.2011.5979949
http://doi.org/10.1109/34.121791
http://doi.org/10.1109/ROBOT.2008.4543181

Sensors 2021, 21, 7162 13 of 13

15. Serafin, J.; Grisetti, G. NICP: Dense normal based point cloud registration. In Proceedings of the 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 742–749. [CrossRef]

16. Deschaud, J.-E. IMLS-SLAM: Scan-to-model matching based on 3D data. Proc. IEEE Int. Conf. Robot. Automat. 2018, 2480–2485.
[CrossRef]

17. Tian, Y.; Liu, X.; Li, L.; Wang, W. Intensity-Assisted ICP for Fast Registration of 2D-LIDAR. Sensors 2019, 19, 2124. [CrossRef]
[PubMed]

18. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE
Trans. Robot. 2007, 23, 34–46. [CrossRef]

19. Steux, B.; El Hamzaoui, O. tinySLAM: A SLAM algorithm in less than 200 lines C-language program. In Proceedings of the
2010 11th International Conference on Control Automation Robotics & Vision, Singapore, 7–12 December 2010; pp. 1975–1979.
[CrossRef]

20. Ren, R.; Fu, H.; Wu, M. Large-Scale Outdoor SLAM Based on 2D Lidar. Electronics 2019, 8, 613. [CrossRef]
21. Wen, J.; Qian, C.; Tang, J.; Liu, H.; Ye, W.; Fan, X. 2D LiDAR SLAM Back-End Optimization with Control Network Constraint for

Mobile Mapping. Sensors 2018, 18, 3668. [CrossRef] [PubMed]
22. Weichen, W.E.I.; Shirinzadeh, B.; Ghafarian, M.; Esakkiappan, S.; Shen, T. Hector SLAM with ICP Trajectory Matching. In

Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA,
6–10 July 2020; pp. 1971–1976. [CrossRef]

23. Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robot. 2017, 41, 401–416. [CrossRef]
24. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4758–4765. [CrossRef]

25. Grant, W.S.; Voorhies, R.C.; Itti, L. Finding planes in LiDAR point clouds for real-time registration. In Proceedings of the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 4347–4354.
[CrossRef]

26. Liu, Z.; Zhang, F. BALM: Bundle Adjustment for Lidar Mapping. IEEE Robot. Autom. Lett. 2021, 6, 3184–3191. [CrossRef]
27. Zhou, L.; Koppel, D.; Kaess, M. LiDAR SLAM with Plane Adjustment for Indoor Environment. IEEE Robot. Autom. Lett. 2021, 6,

7073–7080. [CrossRef]
28. Opromolla, R.; Fasano, G.; Grassi, M.; Savvaris, A.; Moccia, A. PCA-Based Line Detection from Range Data for Mapping and

Localization-Aiding of UAVs. Int. J. Aerosp. Eng. 2017, 14. [CrossRef]
29. Pfister, S.T.; Burdick, J.W. Multi-scale point and line range data algorithms for mapping and localization. In Proceedings of the

2006 IEEE International Conference on Robotics and Automation. ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 1159–1166.
[CrossRef]

30. Wu, D.; Meng, Y.; Zhan, K.; Ma, F. A LIDAR SLAM Based on Point-Line Features for Underground Mining Vehicle. In Proceedings
of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 2879–2883. [CrossRef]

31. Huang, R.; Hong, D.; Xu, Y.; Yao, W.; Stilla, U. Multi-Scale Local Context Embedding for LiDAR Point Cloud Classification. IEEE
Geosci. Remote. Sens. Lett. 2020, 17, 721–725. [CrossRef]

32. Bosse, M.; Zlot, R. Keypoint design and evaluation for place recognition in 2d lidar maps. Robot. Auton. Syst. 2009, 57, 1211–1224.
[CrossRef]

33. Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multi-sensor fusion approach applied to MAV
navigation. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan,
3–7 November 2013; pp. 3923–3929. [CrossRef]

34. Gao, Y.; Liu, S.; Atia, M.M.; Noureldin, A. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments
using Hybrid Scan Matching Algorithm. Sensors 2015, 15, 23286–23302. [CrossRef] [PubMed]

35. Liu, S.; Martin, R.R.; Langbein, F.C.; Rosin, P.L. Segmenting Geometric Reliefs from Textured Background Surfaces. Comput.-Aided
Des. Appl. 2007, 4, 565–583. [CrossRef]

36. Grupp, M. Evo: Python Package for the Evaluation of Odometry and SLAM. 13 September 2017. Available online: https:
//github.com/MichaelGrupp/evo (accessed on 24 October 2021).

http://doi.org/10.1109/IROS.2015.7353455
http://doi.org/10.1109/ICRA.2018.8460653
http://doi.org/10.3390/s19092124
http://www.ncbi.nlm.nih.gov/pubmed/31071958
http://doi.org/10.1109/TRO.2006.889486
http://doi.org/10.1109/ICARCV.2010.5707402
http://doi.org/10.3390/electronics8060613
http://doi.org/10.3390/s18113668
http://www.ncbi.nlm.nih.gov/pubmed/30380621
http://doi.org/10.1109/AIM43001.2020.9158946
http://doi.org/10.1007/s10514-016-9548-2
http://doi.org/10.1109/IROS.2018.8594299
http://doi.org/10.1109/IROS.2013.6696980
http://doi.org/10.1109/LRA.2021.3062815
http://doi.org/10.1109/LRA.2021.3092274
http://doi.org/10.1155/2017/4241651
http://doi.org/10.1109/ROBOT.2006.1641866
http://doi.org/10.1109/CAC.2018.8623075
http://doi.org/10.1109/LGRS.2019.2927779
http://doi.org/10.1016/j.robot.2009.07.009
http://doi.org/10.1109/IROS.2013.6696917
http://doi.org/10.3390/s150923286
http://www.ncbi.nlm.nih.gov/pubmed/26389906
http://doi.org/10.1080/16864360.2007.10738492
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

	Introduction
	Related Work
	System Overview
	Lidar Hardware
	Software System Overview

	Lidar Odometry
	Feature Extraction
	Motion Estimation

	Experiment
	Our Datasets
	Open-Access Datasets

	Conclusions
	References

