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Parkinson’s disease detection
based on multi-pattern analysis
and multi-scale convolutional
neural networks
Lina Qiu, Jianping Li and Jiahui Pan*
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Parkinson’s disease (PD) is a complex neurodegenerative disease. At present,

the early diagnosis of PD is still extremely challenging, and there is still a lack

of consensus on the brain characterization of PD, and a more efficient and

robust PD detection method is urgently needed. In order to further explore

the features of PD based on brain activity and achieve effective detection

of PD patients (including OFF and ON medications), in this study, a multi-

pattern analysis based on brain activation and brain functional connectivity

was performed on the brain functional activity of PD patients, and a novel

PD detection model based on multi-scale convolutional neural network

(MCNN) was proposed. Based on the analysis of power spectral density (PSD)

and phase-locked value (PLV) features of multiple frequency bands of two

independent resting-state electroencephalography (EEG) datasets, we found

that there were significant differences in PSD and PLV between HCs and PD

patients (including OFF and ON medications), especially in the β and γ bands,

which were very effective for PD detection. Moreover, the combined use

of brain activation represented by PSD and functional connectivity patterns

represented by PLV can effectively improve the performance of PD detection.

Furthermore, our proposed MCNN model shows great potential for automatic

PD detection, with cross-validation accuracy, sensitivity, specificity, and area

under the receiver operating characteristic curve all above 99%. Our study

may help to further understand the characteristics of PD and provide new

ideas for future PD diagnosis based on spontaneous EEG activity.

KEYWORDS

Parkinson’s disease, disease detection, EEG, multi-pattern analysis, multi-scale
convolutional neural networks

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease
and the most prevalent movement disorder in the world (Surguchov, 2021). Its main
pathological change is the progressive degeneration of neurons in the substantia nigra
pars compacta, which results in a range of motor (e.g., tremor, bradykinesia, rigidity,
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and postural gait disturbance) and non-motor symptoms (e.g.,
depression and sleep disturbance) (Lotankar et al., 2017). These
symptoms become more and more severe with the development
of the disease, which seriously affects the patients’ daily life
and work. Especially in the middle and late stages, patients
basically lose their ability to take care of themselves, and their
follow-up care will bring a heavy burden to the patient’s family
and society. For PD patients, there is currently neither a cure
nor an effective way to slow the progression of the disease.
Most PD patients are usually not diagnosed until the middle
and advanced stages of the disease, when the patient has
missed the optimal treatment period. It is believed that early
diagnosis and effective preventive treatment can delay the onset
of specific symptoms and significantly improve the quality of
life of patients (Ugrumov, 2020). Therefore, it is very necessary
to find an effective and high-accuracy method for the early
diagnosis of PD.

Currently, the diagnosis of PD mainly relies on the medical
observation and clinical symptom evaluation of the patient
by a specialist. E.g., physicians examine patients according to
some clinical diagnostic criteria, such as the Unified Parkinson’s
Disease Rating Scale (UPDRS) (Mantovani et al., 2018).
However, this traditional diagnostic method is susceptible to
subjectivity, leading to possible misclassification. Furthermore,
symptoms of early PD can be mild and unnoticed. Therefore,
the diagnostic method based on symptom observation is difficult
to accurately diagnose early PD. A United Kingdom autopsy
study found that the misdiagnosis rate of PD based on symptom
observation was as high as 24% (Pagan, 2012). Currently, early
diagnosis of PD remains challenging.

With the rapid development of neuroimaging technology,
there are more and more studies using non-invasive brain
functional imaging technology as an auxiliary means to
detect brain diseases, such as positron emission tomography
(PET), functional Magnetic Resonance Imaging (fMRI), and
electroencephalography (EEG) (Arbabshirani et al., 2017).
Among them, EEG technology is very popular in the field of
clinical neuroscience due to its advantages of portability, low
cost and high time resolution, and is widely used in the auxiliary
diagnosis of neurological diseases and the research of brain
function rehabilitation. In recent years, more and more studies
have used EEG for PD detection, and EEG is considered as
a potential diagnostic modality that can identify the unique
features of PD (Wang et al., 2020). Using this modality, the
researchers observed that PD patients had higher rates of EEG
abnormalities than normal older adults. Compared with healthy
controls (HCs), PD patients had slower resting-state changes
in brain oscillatory activity (Soikkeli et al., 1991; Neufeld et al.,
1994) and phase-amplitude coupling (de Hemptinne et al., 2013;
Swann et al., 2015; Gong et al., 2021), as well as reduced
β and γ power (Pezard et al., 2001). Moreover, PD EEG
abnormalities were also manifested in changes in functional
brain connectivity. Compared with HCs, PD patients have

reduced connectivity in the α-β band, increased connectivity in
the γ band (Conti et al., 2022), and exhibit loss of frontotemporal
connectivity (Hassan et al., 2017).

In recent years, with the increasing maturity of artificial
intelligence and pattern recognition technologies, tools based
on computer-aided diagnosis have brought great help to the
early diagnosis of PD. An increasing number of studies were
devoted to coupling various advanced machine learning (ML)
or deep learning (DL) algorithms and EEG signals to detect PD
automatically (Mei et al., 2021). For the ML-based methods,
Menorca et al. (2017) used random forests to classify the EEG
signals of 50 PD patients and 41 HCs with a recognition
accuracy of 78.0%. Based on high-order statistical feature
extraction technology and support vector machine (SVM)
classifier, Yuvaraj et al. (2018) obtained a 99.62% accuracy
in distinguishing EEG signals from PD patients and HCs.
Oliveira et al. (2020) used random forest and feature selection
techniques to obtain over 99% classification accuracy for PD
patients and HCs. Khoshnevis and Sankar (2021) proposed a PD
detection method based on higher-order statistical techniques
and achieved a classification accuracy of 87.00% using an
ensemble RUSBoosted trees classifier in 20 PD patients and
20 HCs. Gunduz (2021) proposed an efficient dimensionality
reduction method to detect PD and reported 95.70% accuracy
using a SVM classifier. Barua et al. (2021) used the proposed
graph-based aspirin feature extractor and k-nearest neighbor
classifier to automatically detect PD, and the results obtained
93.57% accuracy in the classification of healthy and PD off
medication (PD_OFF), and 95.48% in the classification of HC
and PD on medication (PD_ON). Khare et al. (2021a) used
the least squares SVM on five different features extracted
from the tunable Q-factor wavelet transform of a resting-state
EEG dataset to discriminate HC from PD patients with and
without medications at an accuracy of 96% and 97.7%. Most
recently, Anjum et al. (2020) developed a linear-predictive-
coding EEG Algorithm to encode EEG time series into features
for PD detection, and obtained reliable performance with 85.7%
diagnostic accuracy, 85.2% area under curve (AUC) of receiver
operating characteristics (ROC), 85.7% sensitivity, and 85.7%
specificity. Lee et al. (2022) proposed a PD prediction method
using the Hjorth parameter and gradient boosting decision tree
algorithm, which differentiated PD patients from HCs with
89.3% accuracy and 0.912 AUC of ROC.

With the development of deep learning methods in the last
few years, more and more studies have also explored EEG-based
automatic PD detection (Tanveer et al., 2022). Gil-Martín et al.
(2019) detected PD patients by using a convolutional neural
network (CNN) to analyze subjects’ the drawing movements
and achieved 96.5% accuracy. Oh et al. (2020) proposed a 13-
layer CNN architecture to classify the resting-state EEG signals
of 20 PD patients and 20 HCs with an accuracy of 88.25%.
Khare et al. (2021b) applied a 2D-CNN to the Smoothed Pseudo-
Wigner Ville Distribution transformation on two resting state
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EEG datasets with validation accuracies of 99.9% and 100%.
Loh et al. (2021) have also applied a 2D-CNN on the Gabor
transform of a resting-state EEG dataset in order to classify
subjects into HC and PD_OFF and PD_ON with an accuracy
of 99.5%. Shaban (2021) used an artificial neural network-based
framework and three EEG spatial channels to screen subjects
as PD patients and HCs with 98% accuracy, 97% sensitivity,
and 100% specificity. More recently, they recently introduced
a 20-layer CNN-based deep learning method to identify HC,
PD_OFF, and PD_ON using the wavelet domain of resting-state
EEG with 99.9% accuracy (Shaban and Amara, 2022).

Taken together, there are considerable evidences that
EEG-based brain activation and functional connectivity differ
significantly between PD patients and HCs, and ML and DL
techniques show great potential for automated PD detection.
However, there are still some issues worth further exploration
in this field. First, the functional brain features identified in
the current study that may be used for PD detection are
diverse, lacking valid and reliable characterizations. Second,
most of the previous studies only based on the feature of a
single pattern (activation pattern or brain network pattern) to
characterize and identify PD, which was difficult to fully reflect
the brain functional characteristics of PD patients. Finally, there
is still a lack of efficient and robust automatic PD detection
models. Although many of the previously proposed ML and DL
frameworks have shown great potential for PD detection, most
have only shown good results on a specific research dataset and
have not been generalized to other datasets, making it difficult
to extended to clinical diagnosis of PD patients.

To further investigate the characteristics of brain activity
of PD patients and achieve effective detection of PD patients,
in this study, we investigated the characterization and
identification of PD based on two independent resting-state
EEG data. Specifically, we analyzed the differences in power
spectral density (PSD) and phase-locked value (PLV) between
PD patients and HCs, respectively, and applied the SVM method
and the proposed model to distinguish PD (including PD_OFF
and PD_ON) patients and HCs. The contributions of this study
can be summarized as follows:

(1) The multi-pattern analysis of brain activation and brain
functional connectivity was performed on spontaneous
EEG activity in PD patients, and PD (including PD_OFF
and PD_ON) was identified with high performance by
combining these two complementary patterns.

(2) Two-class and three-class challenges were addressed in two
independent datasets, and multiple evaluation indicators
of accuracy, sensitivity, specificity, and AUC were used to
provide accurate screening for PD patients.

(3) An efficient and robust deep learning-based PD detection
model, multi-scale CNN (MCNN), was proposed to
identify PD and HC subjects with high performance

in two independent datasets, with the highest accuracy,
sensitivity, specificity and AUC were higher than 99%.

Materials and methods

Datasets

A total of 2 public resting-state EEG datasets were used in
this study. The first dataset is from OpenNeuro, obtained in the
Aron lab at the University of California at San Diego, and further
curated by the Swann lab at the University of Oregon (Rockhill
et al., 2020). The second dataset is a public dataset (Anjum et al.,
2020) recorded by the University of Iowa (UI; Iowa City, Iowa).
The following is a detailed description of the two datasets.

UC San Diego dataset
The dataset included EEG data from 15 right-handed PD

patients (8 females, mean age 62.6 ± 8.3 years) and 16 HCs (9
females, 63.5 ± 9.6 years). The patients were recruited from
Scripps Clinic in La Jolla, CA, United States, all with either
mild or moderate PD, and HCs were volunteers from the
local community. In this dataset, each PD patient visited the
laboratory for two sessions, ON and OFF medication. The order
of the visits was counter-balanced between patients. For the
OFF session, the time between the last dose of dopaminergic
medication and the visit was 12 h or more, and for the ON
session, the patients took their usual morning dose before
coming for the session. Therefore, the EEG data of all 15 PD
patients included data on both on and off medication (denoted
in the paper as PD_ON and PD_OFF, respectively). In EEG
measurements, a 32-channel Biosemi Active Two EEG system
was used to collect subjects’ resting-state EEG data at a sampling
frequency of 512 Hz for at least 3 mins. The positions of the 32-
channel EEG electrodes are Fp1, AF3, F7, F3, FC1, FC5, T7, C3,
CP1, CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2,
C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz, and Cz. The details of
these datasets are described in Rockhill et al. (2020).

Iowa dataset
The dataset includes EEG recordings from 14 PD patients

and 14 HCs. The author of this dataset did not clearly state
whether the PD data here belongs to ON medication (PD_ON)
or OFF medication (PD_OFF), so we named it directly as PD in
this article. This EEG dataset was recorded from 0.1 to 100 Hz
sintered Ag/AgCl electrodes at a sampling rate of 500 Hz on a
64-channel Brain Vision system (recorded for at least 2 mins per
subject) with an online reference set to channel Pz as baseline.
Therefore, Pz data is missing from this dataset (Iowa). The
details of these datasets are described in Anjum et al. (2020).

In both datasets, HC participants and PD patients were
demographically matched for age and sex, and there were
no differences in education or any measure of pre-morbid
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intelligence. Moreover, there was no statistically significant
difference in United Parkinson’s Disease Rating Scale (UPDRS
III) scores between PD-OFF and PD-ON in the UC San Diego
dataset (P-value ≈ 0.08). The information of the subjects is
shown in Table 1.

Data processing

Data preprocessing
All EEG data were preprocessed using the EEGLAB

toolbox (Delorme and Makeig, 2004). The EEG data of each
channel were first band-pass filtered at 0.5∼50 Hz, and then
independent component analysis (ICA) was used to remove
noise interference including eye movement artifacts, channel
noise, and heartbeat. For convenient and reliable comparison,
we analyze the data of 32 channels in common in the two
datasets, namely Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5,
P7, P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2, C4, T8,
FC6, FC2, F4, F8, AF4, Fp2, Fz, and Cz. For the Iowa dataset,
since the data of the Pz channel was missing, we averaged the
data of the surrounding 4 channels (i.e., P1, P2, CPz, and POz)
as the data of the Pz channel.

For further analysis, we intercepted the first three and first
2 mins of EEG data for all subjects in the UC San Diego
dataset and the Iowa dataset, respectively. Then, the data in
the UC San Diego dataset (3 mins in length) and the Iowa
dataset (2 mins in length) were divided into 180 time samples
and 120 time samples with a time sample of 1 s. Therefore,
after preprocessing, the EEG data for each subject in the UC
San Diego dataset was collated to a size of 32 × 512 × 180
(channels × sampling points × time samples), while the EEG
data for each subject in the Iowa dataset was organized into a
size of 32× 500× 120 (channels× samples× time samples).

Multi-pattern analysis of spontaneous
electroencephalography activity

In this study, in order to reflect brain function more
comprehensively, we analyzed not only the features that can
reflect the local activation of the brain, but also the features that
can reflect the functional network of the brain. Specifically, we
selected power spectral density (PSD) and phase-locked value
(PLV), which are commonly used in EEG data processing, as
representatives of the two patterns of local brain activation and
brain functional connectivity, respectively.

Power spectral density can reflect the energy distribution of
EEG in each frequency band in each brain region, and PLV can
reflect the phase synchronization relationship of EEG signals
in each brain region (Li et al., 2019). T The activation pattern
represented by the PSD feature can capture the spontaneous
power differences in various regions of the subject’s brain,
while the connectivity pattern represented by the PLV feature
can represent the information synchronization in each region

of the subject’s brain. The combined analysis of these two
complementary patterns can reflect the functional state of the
brain more comprehensively and accurately.

Power spectral density refers to the concept of density to
represent the distribution of signal power at each frequency
point. In the PSD-based feature analysis of this study, we used
a discrete Fourier transform on the preprocessed EEG data to
calculate the power values for each channel in five frequency
bands, i.e., δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (13–
30 Hz), and γ (30–48 Hz). PLV is commonly used to assess the
spread of the distribution of phase angle differences between
EEG electrode pairs over time, which can reflect long-range
synchronous changes in neural activity in the brain (Lachaux
et al., 1999). The connectivity is measured from this spread such
that strongly clustered phase differences between two electrodes
result in the PLV close to 1, which indicates strong connectivity
between the signals. If PLV is 0, there is no phase dependence
between the signals of the two EEG channels (electrodes). To
obtain the PLV, we first filtered the preprocessed EEG data in the
desired frequency band of interest by using a Hamming Plus A
windowed FIR (Finite Impulse Response) filter (Widmann et al.,
2015). In this study, we are interested in five frequency bands
including δ, θ, α, β, and γ bands. Then, the instantaneous phase
of the signal was calculated using the Hilbert transform. Finally,
the PLV between two signals A and B was computed as follow
(Bruna et al., 2018):

PLVA,B =
1
N

∣∣∣∣∣
N∑

n=1

e−i(φA(t)−φB(t))

∣∣∣∣∣
where N is the number of trials (here, we defined 1s of resting-
state data as a trial), and φ (t) is the instantaneous phase angles
of each EEG signal. We calculated the PLV for every second (one
trial) of EEG data for each subject, resulting in a time series of
PLVs calculated from all 32 electrode pairs and five frequency
bands. Note that the Fisher transform was used in the calculation
of the group mean PLV for the subjects tested.

Classification

Based on the analyzed PSD and PLV features, we further
classified PD patients (including PD_ON and PD_OFF) and
HC using traditional ML methods and DL methods. For the
ML method, we applied the traditional SVM algorithm, and
for the deep learning method, we proposed a novel DL model
based on multi-scale CNN (MCNN). Furthermore, to verify the
effectiveness of multi-pattern analysis of activation features and
functional connectivity features for PD detection, we combined
PSD and PLV features together to form a PSD+PLV hybrid
feature for classification. All features used for classification
were normalized before being input to the classification model,
including PSD+PLV hybrid features.
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TABLE 1 Parkinson’s disease and control participant demographics in the UC San Diego dataset and the Iowa dataset.

Condition UC San Diego dataset Iowa dataset

PD Control PD Control

Number 15 16 14 14

Sex (female/male) 8f / 7m 9f / 7m 8f / 6m 8f / 6m

Age (mean years± SD) 63.2± 8.2 63.5± 9.6 70.5± 8.7 70.5± 8.7

NAART 46.1± 6.3 49.1± 7.1 − −

MMSE 28.9± 1.0 29.2± 1.1 − −

MOCA − − 25.9± 2.7 27.2± 1.7

UPDRS 39.2± 9.7
(OFF)/

32.7± 10.4
(ON)

− 13.4± 6.6 −

Year since Parkinson’s diagnosis 4.5± 3.5. − 5.6± 3.2 −

NAART, Scores from the North American Adult Reading Test; MMSE, Mini Mental State Exam; MOCA, Montreal Cognitive Assessment; UPDRS, United Parkinson’s Disease
Rating Scale (motor).

Support vector machine model
Support vector machine is the most classic and one of the

most popular classification algorithms in ML in recent decades,
and has been successfully applied to classification in various
fields of pattern recognition, including PD detection. In this
study, we used an SVM classifier with a linear kernel based on
the popular LIBSVM toolbox (Chang and Lin, 2011) to classify
feature data of PD patients and HCs.

In each classification experiment, all channel data for
classified subjects were stitched together and labeled differently
by group (e.g., PD and HC). E.g., in the two-class classifications
of PD_ON and HC in UC San Diego dataset, HC data was
labeled as 0 and PD_ON data was labeled as 1. When classifying
based on the PSD features of the δ band, the PSD feature data
size of each subject in the δ band is 180 (time samples) × 32
(channels), then the feature data size for PD_ON and HC
classification is [180 × 15(PD_ON) + 180 × 16 (HC)] × 32
(channels), which is 5580 × 32. In the classification process,
the 5580 × 32 feature data was divided into a training set
(5022× 32) and a test set (558× 32) in a ratio of 9:1.

Multi-scale convolutional neural network
model

To efficiently and reliably detect PD automatically, we
designed a novel deep learning-based PD detection model,
namely the Multi-Scale CNN (MCNN) model, as shown in
Figure 1. CNN is a multi-layer perceptron that uses local
connections and weight sharing to reduce the number of
network training parameters. The CNN models have been
successfully used in recent studies for automatic PD detection
based on EEG signals (Tanveer et al., 2022). Our proposed
MCNN model was improved on the traditional CNN network
LeNet-5 network (Lecun et al., 1998). Compared with the LeNet-
5 model, the improvement of the MCNN model is manifested in

two aspects. On the one hand, the number of network layers is
increased. MCNN contains a total of two network layers, which
can simultaneously extract the information of the input feature
matrix on one-dimensional and two-dimensional scales. On the
other hand, MCNN introduces the idea of residual learning.
Residual learning not only helps to extract deeper features, but
also effectively solves the problem of network degradation. The
detailed improvements are as follows:

(1) Multi-scale convolution:
Traditional CNN models usually perform single-scale

convolution on the input features. However, accurate detection
of diseases usually relies on multi-pattern and multi-scale
information. Therefore, we used two different sub-networks
in parallel in the MCNN model to extract the information
on the one-dimensional and two-dimensional scales of the
input feature matrix, respectively. The two sub-networks are
parallel and have different depths, which can perform nonlinear
transformations on local features with different dimensions
and depths, making them more adaptable and expressive. At
the end of the two sub-networks, the attribute features of
different scales are flattened and spliced to obtain a feature
tensor representation with higher dimension and richer local
detail features.

(2) Residual learning:
Compared with traditional pattern recognition methods,

deep networks have more network layers and more complex
structures, so they can extract deeper features. i.e., to say, the
depth of the network affects the performance of the model.
However, as the depth of the network increases, the network
degenerates, causing the accuracy rate to begin to saturate or
even decrease. To solve this problem, we added a residual block
containing a convolution kernel of size 5 × 5 (shown in the red
box in Figure 1) into the first sub-network convolution process
of the MCNN model to optimize the network degradation
problem. The deep residual network helps to extract deeper
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FIGURE 1

Framework diagram of multi-scale convolutional neural networks (MCNN).

features, and as the depth of the network increases, it can also
effectively reduce the problem of vanishing gradients, resulting
in more efficient use of features and enhanced feature transfer
between convolutional layers.

The overall framework of MCNN is shown in Figure 1,
which contains two sub-networks. We invoke residual learning
after the first convolution pooling in the first sub-network. In
the second sub-network, we only do convolution and pooling.
Moreover, Dropout was added after each fully connected layer
to prevent the model from overfitting, and finally two-class or
three-class classifications were performed. The optimizer used
by this model was the SGD optimizer with a learning rate of
0.001 and a decay rate of 0.1. The model was built using Keras
and Pytorch backend in Python programming. The specific
implementation parameters of this model are shown in Table 2.

Performance evaluation and statistical analysis
In the feature analysis, Student’s t-test is used to test the

significance of differences in comparisons. In the classification
experiments based on the UC San Diego dataset, we performed
three sets of two-class classification using the SVM and MCNN
models, respectively, for the HC group, PD_ON group, and
PD_OFF group, and one set of three-class classifications using
the MCNN model. In the classification based on the Iowa
dataset, we used the SVM and MCNN models to classify the
HC group and the PD group, respectively. Experimental results
were evaluated using multiple metrics of accuracy, specificity,
sensitivity, and ROC. All classification results are ten-fold cross-
validation.

Experimental results

Results of multi-pattern analysis

In this study, we first performed PSD and PLV feature
analysis in five EEG frequency bands (i.e., δ, θ, α, β, and γ

bands) in PD patients and HCs in two datasets. Then the group-
averaged PSD and group-averaged PLV in HC group and PD
group (including PD_ON group and PD_OFF group in UC
San Diego dataset), as well as the ratio of group-average and
the significance of difference between groups were calculated,
respectively. For UC San Diego dataset, we compared the
differences in PSD features and PLV features between PD_ON,
PD_OFF and HC groups, respectively. For Iowa dataset, we
compared the differences in PSD features and PLV features
between PD and HC groups.

Figure 2 presents contrast maps of group-averaged PSD in
five frequency bands for HC and PD (including PD_OFF and
PD_ON in UC San Diego dataset) in two datasets, showing
the ratios of group-averaged PSD of the two groups and the
statistically significant channel between the two groups. The first
three columns in Figure 2 are the PSD contrast maps between
groups in UC San Diego dataset (15 PD_OFF, 15 PD_ON, and
16 HC) for the five frequency bands (i.e., δ, θ, α, β, and γ bands),
and the last column is the PSD contrast maps between groups in
Iowa dataset (14 PD and 14 HC) for the five frequency bands.
The white area in Figure 2 (i.e., the value less than 0 in the
color bar) indicates that the difference between the two groups
in this area is not statistically significant (i.e., P > 0.05), and
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other colors indicate that the difference is statistically significant
(P-value ≤ 0.05). Among them, the yellow-red (values greater
than 1.0 in the colorbar) area represents the ratio’s numerator
with a larger PSD value than the denominator, while the cyan-
blue (values greater than 0 and less than 1.0 in the colorbar)
are the opposite. The darker the color, the greater the difference
in PSD between the two groups. Take the first subplot in the
first column of Figure 2 as an example, which shows the PSD
difference between the HC group and the PD_OFF group in
the δ band in the UC San Diego dataset. The white area in the
figure represents that the PSD of the HC group and the PD_OFF
group is not significantly different in this part of the area.
The red area of the left prefrontal lobe represents a significant
difference between the two groups and the PSD of the HC group
is greater than PD_OFF, the cyan area represents a significant
difference between the two groups and the PSD values of the two
groups are equivalent, and the blue area represents a significant
difference between the two groups and the PSD of PD_OFF is
greater than that of HC. The darker the color, the greater the
difference in PSD between the HC group and the PD_OFF group
in the δ band.

As can be seen from Figure 2, the PSD features of PD
groups (including PD_OFF and PD_ON) and HC are almost
all significantly different (P > 0.05) in the five frequency
bands of both datasets, except for the difference in θ band for
PD_OFF and PD_ON in UC San Diego dataset. PD groups
(including PD_OFF and PD_ON) showed stronger PSD in most
channels than HC group in the θ band, while their PSD in
the frontal regions in the β and γ bands was weaker than
that in the HC group. In other cases, although the PSD of
PD group (including PD_OFF and PD_ON) and HC group

were significantly different in most channels, the activation
amplitudes were comparable. For PD_OFF and PD_ON in the
UC San Diego dataset, most of the channels in the α, β, and
γ bands of PD_OFF show significantly stronger PSDs than
PD_ON, and they are not significantly different in θ band.

Figure 3 presents contrast maps of group-averaged PLV in
five frequency bands for HC and PD (including PD_OFF and
PD_ON in UC San Diego dataset) in two datasets, showing
the ratio of group-averaged PLV of the two groups and the
statistically significant EEG channel pairs between the two
groups. Here the group-averaged PLVs were obtained by Fisher
transformation. The first three columns in Figure 3 are the PLV
contrast maps between groups in UC San Diego dataset (15
PD_OFF, 15 PD_ON, and 16 HC) for the five frequency bands
(i.e., δ, θ, α, β, and γ bands), and the last column is the PLV
contrast maps between groups in Iowa dataset (14 PD and 14
HC) for the five frequency bands. The colorbar of Figure 3
and the meaning of the color are similar to Figure 2. From
the PLV contrast maps in Figure 3, it can be seen that the HC
group and the PD group (including PD_OFF and PD_ON) show
significant differences (P ≤ 0.05) in PLV for most channel pairs
in θ, α, β, and γ bands. In the Iowa dataset, PD patients exhibited
slightly smaller PLVs in the β and γ bands than HCs. In the UC
San Diego dataset, the difference between PD_OFF and PD_ON
is also more significant in β and γ bands, and PD_OFF shows a
great PLV than PD_ON.

In conclusion, in the analysis and comparison based on PSD
features and PLV features, we found that PD group (including
PD_OFF and PD_ON) and HC group, as well as PD_OFF
and PD_ON, had significant differences in both PSD and PLV
features, especially in β and γ bands are more pronounced. The

TABLE 2 The implementation parameter of the multi-scale convolutional neural network (MCNN) model.

Layer Layer Depth Layer Size Activation Parameter

Sub-Network 1 Input − 32× 32 − −

Convolution 6 5× 5 ReLU Padding = Same

MaxPooling 6 2× 2 − −

Convolution 16 5× 5 ReLU −

Convolution 16 5× 5 ReLU Padding = 2

Convolution 16 5× 5 ReLU Padding = 2

MaxPooling 16 2× 2 −

Convolution 120 5× 5 ReLU −

MaxPooling 120 2× 2 − −

Sub-Network 2 Convolution 32 7× 1 ReLU Padding = Same

MaxPooling 32 2× 1 − −

Convolution 64 5× 1 ReLU −

MaxPooling 64 2× 1 − −

Dropout − − − Rate = 0.5

Dense 84 − − −

Dropout − − − Rate = 0.5

Dense 2/3 − − Sigmoid/Softmax
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FIGURE 2

The contrast maps of group-averaged power spectral density (PSD) in five frequency bands (i.e., δ, θ, α, β, and γ bands) between the Parkinson’s
disease (PD) patient group (including PD_OFF and PD_ON) and the HC group for 2 different datasets. The white areas (values less than 0 in the
colorbar) indicate that the difference between the two groups is not statistically significant (i.e., P > 0.05). The yellow-red (values greater than
1.0 in the colorbar) area represents the ratio’s numerator with a larger PSD value than the denominator, while the cyan-blue (values greater than
0 and less than 1.0 in the colorbar) are the opposite. The darker the color, the greater the difference in PSD between the two groups.

PSD here can reflect the distribution of spontaneous activation
of brain nerves, while the PLV can reflect the synchronization
of spontaneous brain activity among brain regions. Therefore,
the results of the above analysis may imply that PD and
HC have significant differences in brain functional activation
and functional connectivity, and this difference is especially
pronounced in the β and γ bands.

Classification results

In the second part of this study, we classified PD (including
PD_OFF and PD_ON) and HC using traditional SVM algorithm
based on PSD and PLV features, and used metrics such as
accuracy, sensitivity, specificity, and AUC for ROC to evaluate
experimental results. The following two-class classifications
were first performed using SVM based on PSD and PLV

features and their hybrid feature PSD+PLV, respectively: HC
vs. PD_OFF, HC vs. PD_ON, PD_OFF vs. PD_ON for UC San
Diego dataset; and HC vs. PD for Iowa dataset. Among them,
the results of two-class classifications (accuracy, sensitivity
and specificity) based on PSD and PLV features alone in
five frequency bands (i.e., δ, θ, α, β, and γ bands) by using
SVM are shown in Tables 3, 4, respectively. All results were
obtained by ten-fold cross-validation. It can be seen that PD
(including PD_OFF and PD_ON) and HC, as well as PD_OFF
and PD_ON, can be effectively distinguished based on the
features of PSD (Table 3) and PLV (Table 4), especially in the
β and γ frequency bands. In the β and γ frequency bands,
the classification accuracy based on PSD features are above
70%, and the classification accuracy based on PLV features are
above 80% (the highest is 94.36% in HC vs. PD). Moreover,
the classification performance based on PLV features generally
outperforms PSD features.
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FIGURE 3

The contrast maps of group-averaged phase-locked value (PLV) in five frequency bands (i.e., δ, θ, α, β, and γ bands) between the PD patient
group (including PD_OFF and PD_ON) and the HC group for 2 different datasets. The white areas (values less than 0 in the colorbar) indicate
that the difference between the two groups is not statistically significant (i.e., P > 0.05). The yellow-red (values greater than 1.0 in the colorbar)
area represents the ratio’s numerator with a larger PLV value than the denominator, while the cyan-blue (values greater than 0 and less than 1.0
in the colorbar) are the opposite. The darker the color, the greater the difference in PLV between the two groups. The numbers on the abscissa
and ordinate in each subplot represent the channels of the electroencephalography (EEG).

TABLE 3 The results of two-class classifications based on power spectral density (PSD) features in the two datasets by using support vector
machine (SVM) (unit: %, Accu. = Accuracy, Sens. = Sensitivity, Spec. = Specificity).

HC vs. PD_OFF (UC San
Diego dataset)

HC vs. PD_ON (UC San
Diego dataset)

PD_OFF vs. PD_ON (UC
San Diego dataset)

HC vs. PD (Iowa dataset)

Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

δ 66.77 51.02 81.57 67.69 74.84 61.09 61.24 77.66 44.74 51.77 74.49 48.38

θ 73.13 60.84 84.62 74.35 64.42 83.69 58.70 75.92 41.59 76.90 64.63 89.17

α 73.15 57.78 87.60 71.37 55.83 85.93 62.15 84.00 40.33 71.07 54.72 87.42

β 78.69 72.75 84.24 82.33 82.50 82.18 72.21 77.97 66.48 75.36 65.46 83.45

γ 76.05 67.66 83.97 81.51 86.27 76.96 73.28 78.09 68.54 78.08 68.61 87.52

Moreover, we also integrated the PSD features and PLV
features of each frequency band separately to form new feature
matrixes PSD+PLV, and used SVM for classification, the results
are shown in Table 5. Compared to using PSD and PLV

features alone, combining PSD and PLV resulted in improved
classification accuracy, sensitivity, and specificity, especially
in the β and γ bands, as shown in Figure 4. In the cases
of HC vs. PD_OFF, HC vs. PD_OFF and HC vs. PD (Iowa
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TABLE 4 The results of two-class classifications based on phase-locked value (PLV) features in the two datasets by using SVM (unit: %,
Accu. = Accuracy, Sens. = Sensitivity, Spec. = Specificity).

HC vs. PD_OFF (UC San
Diego dataset)

HC vs. PD_ON (UC San
Diego dataset)

PD_OFF vs. PD_ON (UC
San Diego dataset)

HC vs. PD (Iowa dataset)

Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

δ 55.66 54.14 57.08 56.76 52.93 60.34 54.17 51.66 56.71 62.59 68.22 56.99

θ 69.98 68.86 71.07 68.33 67.25 69.32 61.87 62.60 61.15 76.01 76.70 75.31

α 76.24 74.50 77.88 75.91 75.22 76.61 66.06 65.74 66.45 84.17 84.38 84.04

β 83.44 82.68 84.11 85.66 85.52 85.80 80.6 77.97 79.14 92.16 92.29 92.04

γ 88.12 87.11 89.07 90.30 89.88 90.66 82.63 82.82 82.47 94.36 94.10 94.63

dataset), the accuracy, sensitivity and specificity obtained based
on PSD+PLV features in the γ band were all above 90%,
where HC vs. PD (Iowa dataset) had the highest classification
performance with 96.43% (accuracy), 96.58% (sensitivity), and
96.28% (specificity). Figure 4 shows the comparison of the
classification accuracy, sensitivity and specificity of SVM based
on PSD, PLV and PSD+PLV in the β and γ bands. It can be
observed from Figure 4 that in the β and γ bands, PLV can
provide better classification performance than PSD, and the
combination of PSD and PLV can provide better classification
performance than PSD and PLV alone.

In the third part of this study, we proposed a DL-based
automatic PD detection model, the MCNN model, to classify
PD (PD_OFF and PD_ON) and HC based on PSD+PLV
features. Here we applied the MCNN model to perform two-
class and three-class classifications on the UC San Diego
dataset, respectively, and perform two-class classifications on
the Iowa dataset. All results are ten-fold cross-validated, and
the results for two-class classifications are shown in Table 6.
It can be observed from Table 6, our proposed MCNN model
can not only effectively discriminate PD (including PD_OFF
and PD_ON) and HC, but also provides better classification
performance than the SVM method. Similar to the SVM results,
the best classification results appeared in the β and γ bands,
especially the γ band, with over 90% accuracy, sensitivity, and
specificity. The best classification performance was in HC vs.
PD (Iowa dataset) with 99.75% accuracy, 99.42% sensitivity
and 99.74% specificity. Figure 5 shows the comparison of the
classification accuracy, sensitivity and specificity of SVM and
MCNN based on PSD+PLV in β and γ bands. As can be seen
from Figure 5, in the β and γ bands, the classification results of
MCNN model outperformed SVM model in all cases. The case
of PD_OFF vs. PD_ON (γ band) had the largest improvement,
with 7.87%, 7.37%, and 8.16% higher accuracy, sensitivity and
specificity than SVM.

In addition, we also compared the ROC curves and their
corresponding AUC of the SVM and MCNN models in the
two-class classification based on the PSD+PLV feature of the
γ-band. As shown in Figure 6, In the four-group classification
based on PSD+PLV features, the AUCs of ROCs obtained

by SVM model are 0.957 (HC vs. PD_OFF), 0.970 (HC
vs. PD_ON), 0.916 (PD_OFF vs. PD_ON), and 0.951 (HC
vs. PD), respectively, while the AUCs of ROCs obtained by
the proposed MCNN model are 0.992 (HC vs. PD_OFF),
0.993 (HC vs. PD_ON), 0.976 (PD_OFF vs. PD_ON), and
0.999 (HC vs. PD), respectively. Obviously, the proposed
MCNN model can effectively utilize complementary multi-
pattern features (PSD+PLV) to accurately detect PD patients
(including PD_OFF and PD_ON), and perform better than the
traditional SVM model.

Moreover, we further applied the proposed MCNN to
perform three-classification experiments on HC, PD_OFF and
PD_ON in UC San Diego dataset based on the PSD+PLV hybrid
feature, and the accuracy rates obtained in the five frequency
bands were 68.71% (δ band), 79.20% (θ band), 82.42% (α band),
94.77% (β band), and 95.50% (γ band). In order to verify the
reliability of the proposed MCNN model, Figure 7 shows the
training and testing process of the PD vs. HC (Iowa dataset)
classification experiment of the MCNN model based on the
PSD+PLV features of the γ-band, where the ratio of the training
set and the testing set was 9: 1. It can be observed that the
MCNN model takes about 20 epochs to reach its maximum
performance, i.e., the highest accuracy (Figure 7A) and the
smallest loss (Figure 7B).

Discussion

There is still a lack of consensus on the brain
characterization of PD, and a more efficient and robust
PD detection method is needed. Therefore, in this study, we
performed a multi-pattern analysis based on brain activation
and brain functional connectivity on resting-state EEG data of
PD patients to explore abnormal brain activity in PD patients,
and proposed a new PD detection model, MCNN model, to
achieve high-precision identification of PD patients.

Findings from previous studies based on various features
in the time, frequency, and time-frequency domains suggest
that the resting-state EEG of PD patients was altered compared
to HCs, and that both EEG-based spectral and connectivity
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TABLE 5 The results of two-class classifications based on PSD+PLV features in the two datasets by using SVM (unit: %, Accu. = Accuracy,
Sens. = Sensitivity, Spec. = Specificity).

HC vs. PD_OFF (UC San
Diego dataset)

HC vs. PD_ON (UC San
Diego dataset)

PD_OFF vs. PD_ON (UC
San Diego dataset)

HC vs. PD (Iowa dataset)

Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

δ 64.01 60.82 67.10 66.49 65.69 67.30 59.35 62.20 56.50 54.11 67.53 41.10

θ 76.03 74.14 77.79 74.22 73.22 75.15 62.25 61.79 62.77 85.46 85.63 85.31

α 80.20 79.34 81.03 79.37 78.80 79.90 68.29 69.25 67.34 86.33 86.29 86.41

β 87.64 86.91 88.29 89.96 89.74 90.24 83.49 83.14 83.83 95.20 95.37 95.05

γ 91.33 90.72 91.93 92.63 92.29 92.95 85.98 86.50 85.48 96.43 96.58 96.28

FIGURE 4

Accuracy, sensitivity, and specificity for the classification based on PSD, PLV, and PSD+PLV features in the β and γ bands by using support vector
machine (SVM) for the four comparison groups (i.e., HC vs. PD_OFF, HC vs. PD_ON, PD_OFF vs. PD_ON in UC San Diego dataset, and HC vs.
PD in Iowa dataset).
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TABLE 6 The results of two-class classifications based on PSD+PLV features in the two datasets by using MCNN model (unit: %, Accu. = Accuracy,
Sens. = Sensitivity, Spec. = Specificity).

HC vs. PD_OFF (UC San
Diego dataset)

HC vs. PD_ON (UC San
Diego dataset)

PD_OFF vs. PD_ON (UC
San Diego dataset)

HC vs. PD (Iowa dataset)

Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.

δ 74.59 73.23 75.86 70.67 67.20 73.74 63.45 67.37 59.24 71.96 68.71 74.63

θ 80.63 79.52 81.57 78.45 78.09 78.61 65.99 71.92 59.93 84.91 83.24 86.74

α 82.73 80.10 85.18 79.96 76.67 82.81 69.03 74.93 62.72 92.39 91.72 92.93

β 95.01 95.03 95.04 94.40 93.98 94.77 86.78 86.55 86.87 98.47 98.94 98.03

γ 97.15 96.62 97.47 98.27 98.01 98.49 93.85 93.87 93.64 99.82 99.68 99.91

FIGURE 5

Accuracy, sensitivity, and specificity for the classification based on PSD+PLV features in the β and γ bands by using SVM and MCNN for the four
comparison groups (i.e., HC vs. PD_OFF, HC vs. PD_ON, PD_OFF vs. PD_ON in UC San Diego dataset, and HC vs. PD in Iowa dataset).
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FIGURE 6

Receiver operating characteristic curve (ROC) and their Area Under Curves (AUC) for the SVM and proposed MCNN model used to classify
subjects into HC, and PD (PD_OFF and PD_ON) based on PSD+PLV features.

markers are helpful in distinguishing HC and PD patients
(Cozac et al., 2016). However, most of these studies are
only based on the analysis of a single pattern (spectral or
connectivity) to study the brain activity of PD and identify
PD, which is difficult to fully reflect the brain functional
characteristics of PD patients. In the present study, we
performed a multi-pattern analysis of spontaneous brain activity
in PD patients with PSD and PLV representing brain activation
and brain functional connectivity, respectively. Among them,
PSD can reflect the power distribution of spontaneous brain
activity in each brain region, and PLV can reflect the
information interaction between brain regions, both of which
have been proved to be helpful for PD detection (Lee et al.,
2019; Anjum et al., 2020). The results of our multi-pattern
analysis showed that the HC group and PD group in the two

datasets were significantly different in PSD (Figure 2) and PLV
(Figure 3) features, especially in the β and γ bands. Specifically,
PD patients had slightly weaker functional connectivity and
frontal activation than HC in β and γ bands, while PD patients
without medications exhibited stronger functional connectivity
than PD without medications in most brain regions and local
activation in β and γ bands. Our results are consistent with the
findings of some previous studies. E.g., Gong et al. (2021) found
abnormal phase-amplitude coupling between β and broadband-
γ activities in PD patients based on resting EEG data from PD
patients (Gong et al., 2021). Pezard et al. (2001) found that PD
patients have reduced power in the β band by investigating non-
linear properties of multichannel EEG in the early stages of PD.
Wan et al. (2020) analyzed the PSD and phase lag index (PLI)
of different sub-bands of the resting-state EEG in PD patients
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FIGURE 7

(A,B) Loss and accuracy of MCNN models during training and testing process in HC vs. PD (Iowa dataset) classification based on γ-band
PSD+PLV features.

and found that β and γ rhythms in PD patients exhibited lower
relative powers as compared to the HC group. There were also
significant differences in the synchronization of the β bands
between the two groups (Wan et al., 2020). George et al. (2013)
found that dopaminergic therapy in PD decreases cortical β

band coherence in the resting state. In addition, the classification
results based on SVM also verified that PSD and PLV are very
effective in the identification of PD patients (see Tables 3, 4).
Among them, the classification accuracy based on PSD features
is as high as 82.33%, and the classification accuracy based on
PLV features is as high as 94.36%. It can also be observed from
the results that the classification performance of PLV features
is generally better than that of PSD features, which confirmed
the conclusion of previous studies that phase features play a
greater role than spectral power in the model classification (Lee
et al., 2021). The above findings may imply that spectral and
connectivity analysis of spontaneous EEG activity, especially in
the β and γ bands, may be useful for the characterization and the
accurate detection of PD.

The brain activation patterns capture activity differences
among multiple brain regions, while the functional connectivity
pattern reflect information interactions between brain regions.
The activation distribution and connectivity patterns are
complementary, reflecting different aspects of brain function.
It has been demonstrated that the performance of emotion
recognition can be improved by combining power spectral
activation patterns and phase-related connectivity patterns
based on EEG data (Li et al., 2019). Compared with single-
pattern features, multi- pattern features are more likely
to improve PD detection accuracy (i.e., provide more
discriminative information). However, few studies have
combined these two complementary patterns for PD detection.
In this study, we combined PSD features and PLV features to

distinguish HC from PD patients, and found that compared with
PSD and PLV alone, based on hybrid features (i.e., PSD+PLV)
can effectively improve the performance of PD detection (see
Figure 4 and Table 5). Among them, HC vs. PD in the Iowa
dataset obtained a high classification performance dataset with
96.43% accuracy, 96.58% sensitivity, 96.28% specificity and
AUC 0.951 using the SVM model based on PSD+PLV features
(γ band). Our results imply that integrating information from
local power activities and network patterns helps improve the
performance of PD detection.

There is much evidence that EEG data and ML or DL
techniques can accurately identify disease characteristics or
risk, which is promising for patients with brain disorders such
as PD. However, there is still a lack of effective and robust
automatic PD detection models. To this end, we proposed a
novel deep learning model, multi-scale CNN, to achieve high-
performance detection of PD patients. The MCNN model was
designed based on the classic CNN model LeNet-5 (Lecun
et al., 1998), on which the idea of multi-scale convolution
and residual learning was added. The proposed MCNN can
not only simultaneously extract multi-scale discriminative
information in input features, but also improve the network
degradation problem caused by deeper layers in deep learning.
The experimental results (Figures 5−7 and Table 6) show
that the proposed MCNN model can effectively identify PD
(including PD_OFF and PD_ON) in both datasets, and has
higher classification performance than the SVM method. The
classification accuracy, sensitivity, specificity and AUC of the
MCNN model for PD (including PD_OFF and PD_ON) and
HC, as well as PD_OFF and PD_ON, based on PSD+PLV
features (γ band) in both datasets are all over 93%. Among them,
HC vs. PD (Iowa dataset) achieved the highest classification
performance of over 99% in accuracy, sensitivity, specificity
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and AUC. Moreover, in the three-class classifications on HC,
PD_OFF and PD_ON, MCNN obtained a high accuracy of
95.50%. The results based on the MCNN model are comparable
to other state-of-the-art techniques developed for automated PD
detection using the same EEG database, as shown in Table 7.
Moreover, we also compared the performance of the traditional
LeNet-5 network and the proposed MCNN model on PD
detection, and found that the proposed MCNN model showed
better classification results than the traditional LeNet-5 network
in both datasets (including accuracy, sensitivity, and specificity),
which proves that our improvements based on the LeNet-5
network are beneficial for PD detection.

There are currently few studies using the Iowa dataset (14
PD patients and 14 controls), for which our proposed MCNN
model has a large improvement in classification performance
compared to other related studies (Anjum et al., 2020;
Lee et al., 2022). E.g., our accuracy is about 14.12% higher
than the linear-predictive-coding EEG algorithm proposed by

Anjum et al. (2020), and about 10.52% higher than the Hjorth
parameter and the gradient boosting decision tree algorithm
proposed by Lee et al. (2022). For the UC San Diego dataset
(15 PD patients and 16 controls), the classification performance
(accuracy, sensitivity, specificity, and AUC are above 93% in γ

band) of our proposed MCNN model is comparable, although
not the highest, compared to other related studies (Khare et al.,
2021a,b; Loh et al., 2021; Shaban, 2021; Shaban and Amara,
2022). Some previous work can achieve close to 100% accuracy
(Barua et al., 2021; Khare et al., 2021b). E.g., Khare et al. (2021b)
obtained high accuracies of 99.9% and 100% on HC vs. PD_OFF
and HC vs. PD_ON using 2D-CNN based on the smoothed
pseudo-Wigner Ville distribution, respectively. Barua et al.
(2021) achieved 99.93% and 100% classification accuracy for
HC vs. PD_OFF and HC vs. PD_ON using the proposed novel
aspirin pattern, respectively. Shaban and Amara (2022) used
a continuous wavelet-based deep learning method to obtain
a high accuracy of 99.9% for PD detection. Although these

TABLE 7 Summary of comparison of our work with other state-of-art techniques developed for automated Parkinson’s disease (PD) detection
using the same electroencephalography (EEG) database.

Work Dataset Feature analysis Machine and deep
learning techniques

Classification Accuracy

Khare et al., 2021a UC San Diego Tunable Q wavelet transform Least square SVM HC vs. PD_OFF 96.13%

HC vs. PD_ON 97.65%

Khare et al., 2021b UC San Diego Wigner-ville distribution based
spectrogram generation

2D CNN HC vs. PD_OFF 99.7%

HC vs. PD_ON 100%

Loh et al., 2021 UC San Diego Gabor transform 2D CNN HC vs. PD_OFF 99.44%

HC vs. PD_ON 92.60%

HC vs. PD_OFF vs. PD_ON 99.46%

Barua et al., 2021 UC San Diego Aspirin pattern, statistical
moments, and maximum

absolute pooling

k nearest neighbor HC vs. PD_OFF 99.93%

HC vs. PD_ON 100%

Shaban, 2021 UC San Diego three spatial channels Artificial Neural Networks HC vs. PD_OFF 98%

Shaban and Amara,
2022

UC San Diego Continuous wavelet transforms 2D CNN HC vs. PD_OFF 99.9%

HC vs. PD_ON 99.8%

HC vs. PD_OFF vs. PD_ON 99.6%

Anjum et al., 2020 Iowa Linear predictive coding Hyperplanes HC vs. PD 85.7%

Lee et al., 2022 Iowa Hjorth parameter and Gradient
boosting decision tree

Gradient boosting decision tree HC vs. PD 89.3%

Our work UC San Diego Phase locking value and Power
spectral density

LeNet-5 HC vs. PD_OFF 89.16%

HC vs. PD_ON 92.19%

PD_OFF vs. PD_ON 86.56%

HC vs. PD_OFF vs. PD_ON 84.38%

Iowa HC vs. PD 96.31%

Our work UC San Diego Phase locking value and Power
spectral density

Proposed MCNN HC vs. PD_OFF 97.15%

HC vs. PD_ON 98.27%

PD_OFF vs. PD_ON 93.85%
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studies achieved slightly higher accuracy than our proposed
model, their methods were only validated on a single dataset
and did not generalize to other datasets. The good performance
of our proposed MCNN model for PD detection was verified
in two completely independent datasets (i.e., UC San Diego
dataset and Iowa dataset) and many different classification
experiments (including HC vs. PD_OFF, HC vs. PD_ON and
PD_OFF vs. PD_ON).

Our study showed promising results in PD detection,
however, the following limitations still exist. First, the sample
size of this study is small. Although we have analyzed two
datasets (29 PD patients in total, 30 HCs), the sample size
is small for a deep learning study. Second, we integrated
information from local power activities and network patterns
by splicing features, ignoring the fact that information from
these two patterns may be redundant. Finally, our proposed
PD detection model lacks real-world clinical and experimental
validation. For these limitations, in future studies, we will
strive to advance collaboration with hospitals, hoping to collect
more clinical data and validate our proposed PD detection
model in real-time patient-generated data. Furthermore, we
will explore efficient feature fusion methods to fully utilize the
information of activation patterns and connection patterns to
further improve PD detection performance.

Conclusion

In this study, a multi-pattern analysis based on brain
activation and brain functional connectivity was performed on
the brain functional activity of PD patients, and a novel PD
detection model based on multi-scale CNN was proposed. Based
on the results in two independent resting-state EEG datasets,
PSD and PLV features in the β and γ bands may characterize PD
and be effective for PD (including OFF and ON medications)
detection. Moreover, the combined use of brain activation
and functional connectivity, two patterns with compensatory
information, can effectively improve the performance of PD
detection. Furthermore, our proposed multi-scale CNN model
shows great potential for automatic PD detection with high
cross-validation accuracy and AUC of 99% for sensitivity,
specificity and ROC. Our study may help to further understand
the characteristics of PD and provide new ideas for future PD
diagnosis based on spontaneous EEG activity.
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