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Devaluation is the key experimental paradigm used to demonstrate the presence of

instrumental behaviors guided by goals in mammals. We propose a neural system-level

computational model to address the question of which brain mechanisms allow the

current value of rewards to control instrumental actions. The model pivots on and shows

the computational soundness of the hypothesis for which the internal representation

of instrumental manipulanda (e.g., levers) activate the representation of rewards (or

“action-outcomes”, e.g., foods) while attributing to them a value which depends on

the current internal state of the animal (e.g., satiation for some but not all foods).

The model also proposes an initial hypothesis of the integrated system of key brain

components supporting this process and allowing the recalled outcomes to bias action

selection: (a) the sub-system formed by the basolateral amygdala and insular cortex

acquiring themanipulanda-outcomes associations and attributing the current value to the

outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative

sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal

neural pathways supporting the selection, and selection learning, of actions based on

habits and goals. The model reproduces and explains the results of several devaluation

experiments carried out with control rats and rats with pre- and post-training lesions

of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and

the dorso-medial striatum. The results support the soundness of the hypotheses of the

model and show its capacity to integrate, at the system-level, the operations of the key

brain structures underlying devaluation. Based on its hypotheses and predictions, the

model also represents an operational framework to support the design and analysis of

new experiments on the motivational aspects of goal-directed behavior.

Keywords: computational system-level model based on leaky firing-rate neurons, goal-directed and habitual

processes, Pavlovian processes, learning, devaluation behavioral experiments with rats, brain system based on

basolateral-amygdala and nucleus-accumbens and multiple basal-ganglia thalamo cortex loops, instrumental

manipulanda and cues, reward satiety and value

1. INTRODUCTION

The capacity to select actions on the basis of desired goals (goal-directed behavior) is a fundamental
evolutionary acquisition of animals’ adaptive flexibility. Goal-directed behavior relies on two
capabilities (Balleine and Dickinson, 1998). First, the capacity to anticipate action outcomes, i.e.,
the effects produced by the execution of actions, on the basis of previously learned action-outcome

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnbeh.2016.00181
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2016.00181&domain=pdf&date_stamp=2016-10-18
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:gianluca.baldassarre@istc.cnr.it
http://dx.doi.org/10.3389/fnbeh.2016.00181
http://journal.frontiersin.org/article/10.3389/fnbeh.2016.00181/abstract
http://loop.frontiersin.org/people/31771/overview
http://loop.frontiersin.org/people/1104/overview
http://loop.frontiersin.org/people/7331/overview


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

contingencies. Second, the capacity to choose between different
anticipated outcomes depending on their current value
computed on the basis of the nature of the rewards and the
animal’s current motivational state. This paper focuses on the
latter process, in particular on instrumental devaluation effects
(IDE). In a typical IDE experiment, rats are first instrumentally
trained in two separate sessions to press two levers to obtain
two distinct rewards, for example a food pellet and a sucrose
solution (“instrumental phase”). In a second phase, one of the
rewards is made freely available to the rat to induce a satiation
state for it (“satiation phase”). In a third crucial phase the animal
is presented with the two levers together for the first time and in
extinction, i.e., with no reward delivery (“devaluation test”). The
typical result of the experiment is that the number of pressures of
the lever associated with the valued food is comparatively higher
than the number of pressures for the other lever (Balleine, 1992;
Balleine and Dickinson, 1998).

Knowledge about the neural substrates of goal-directed
behavior has significantly advanced in the last years. Particularly
important for this work is evidence on the effects on IDE of
brain lesions focused on specific brain structures. Among the
most important ones, lesions of the basolateral amygdala (BLA)
(Blundell et al., 2001; Balleine et al., 2003), the gustatory region
of the insular cortex (IC) (Balleine and Dickinson, 2000; West
et al., 2012), the core part of the nucleus accumbens (NAc)
(Corbit et al., 2001), and the posterior regions of the dorsomedial
striatum (DMS) (Yin et al., 2005), are shown to disrupt IDE (i.e.,
the rats tend to press the levers with the same frequency). This
results are obtained both when the lesions are performed before
or after the initial instrumental training phase. This suggests that
those brain structures play a role both in the acquisition and in
the expression of IDE. However, recent experiments indicate a
more subtle involvement of BLA and IC in these processes and
that they form a closely coupled circuit. In particular, BLA seems
important only for updating the incentive value of outcomes
during the satiation phase (West et al., 2012; Parkes and Balleine,
2013) whereas IC seems needed to store such information and
make it available during the devaluation test (Parkes and Balleine,
2013). Finally, and importantly, the lesion of the prelimbic
cortex (PL; an important part of prefrontal cortex—PFC—, in
particular of the medial PFC—PFCm; Passingham and Wise,
2012) or of the thalamus (Th; in particular the mediodorsal Th—
MD) impairs IDE only when the lesion is made before training
(Corbit and Balleine, 2003; Ostlund and Balleine, 2008; Tran-
Tu-Yen et al., 2009). These results indicate that the PL and
MD are needed for the acquisition but not for the expression
of IDE.

Notwithstanding the large number of experiments on IDE,
there are still few works proposing comprehensive system-level
accounts of the neural basis of IDE and its role in goal-directed
behavior (e.g., see Yin et al., 2008; Balleine et al., 2009; Balleine
andO’Doherty, 2010). These works have an important theoretical
value but do not achieve the operational detail of computational
models. Here we address this problem and in particular we
focus on two key questions: (a) how does an animal recall
the motivational value of outcomes in IDE experiments? (b)
how does this value support the selection of goals? We also

start to address the question: what is the brain system through
which the selection of goals translates into the selection of
suitable actions to pursue them? These questions are important
as they are at the core of our understanding of goal-directed
behavior, in turn playing a central role for animals endowed with
flexible cognition (Balleine and Dickinson, 1998; Mannella et al.,
2013).

This work contributes to answer these questions by presenting
a computational model that incorporates most of the constraints
from the lesion experiments on IDE mentioned above and that
accounts for them in terms of the underlying system-level brain
mechanisms. The main hypothesis of the model is that during
the instrumental and satiation phases the system formed by BLA
and IC (henceforth “BLA/IC”) associates the perception of the
manipulanda (e.g., the levers) with the motivational value of the
outcomes, and then during the devaluation test it transfers such
value to goal representations via the BLA/IC-NAc connections
(cf. the proposal of Donahoe et al., 1997, which, however,
differs from our hypothesis for its stimulus-response theoretical
framework, see Section 2.2.1).

The model also incorporates and operationalizes additional
hypotheses related to how the selected goal leads to bias the
selection of actions to perform: (a) the brain system underlying
IDE and goal-directed behavior is based on three basal ganglia-
cortical (BG-Ctx) loops involving ventral basal ganglia-PFC
(BGv-PFC; “limbic loop,” called here “goal loop” for the focus
on goal-directed behavior), dorsomedial BG-posterior parietal
cortex (BGdm-PPC; “associative loop”), and dorsolateral BG-
motor cortex (BGdl-MC; “motor loop”) (Yin and Knowlton,
2006; Baldassarre et al., 2013b; Fiore et al., 2014); (b) goals
are stored and selected within the goal loop (Passingham and
Wise, 2012), in particular involving NAc and PL, and value
information is conveyed to it from BLA/IC through NAc
(Mannella et al., 2013); (c) learning processes involving the
BLA/IC-NAc-PL axis are guided by cortico-cortical pathways
encompassing MC, PPC, and PFC, and encoding action-
outcome associations (Mannella and Baldassarre, 2015); (d) goals
selected by the goal loop bias action selection processes via
goal-action associations encoded in both sub-cortical pathways
(involving dopaminergic spirals and dorsomedial striatum—
DMS; Belin et al., 2009) and cortico-cortical pathways (involving
PL, PPC, and MC; Caligiore et al., 2010; Baldassarre et al.,
2013a). These hypotheses derive from: (a) empirical evidence
concerning the brain structures involved in IDE; (b) general
neuroscientific knowledge related to such brain structures; (c)
the cited modeling/theoretical works; (d) the computational
constraints generated by the model during its construction and
test.

The rest of the paper is organized as follows. Section 2 presents
the model structure and functioning and the biological evidence
supporting them. In particular, Section 2.1 expands the evidence
on lesions involving IDE addressed with the model. Section 2.2
further elaborates the main hypothesis at the core of the model.
Section 2.3 explains the other hypotheses incorporated by the
model. Section 2.4 explains themodel at a computational detailed
level. Section 3 shows how the model accounts for the target
experiments. In particular, Section 3.1 illustrates the simulated
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TABLE 1 | Summary of the lesion studies considered here.

Lesioned Impairment of Impairment of References

structure IDE: lesion IDE: lesion

before learning after learning

BLA V V Blundell et al., 2001

Balleine et al., 2003

IC V V Balleine and Dickinson, 2000

Parkes and Balleine, 2013

NAc V V Corbit et al., 2001

NAs X X Corbit et al., 2001

PL V X Corbit and Balleine, 2003

Tran-Tu-Yen et al., 2009

Ostlund and Balleine, 2008

DMS V V Yin et al., 2005

OFC X X Ostlund and Balleine, 2007

Hip X X Corbit and Balleine, 2000

BLA-PL X X Coutureau et al., 2009

“V” and “X” indicate respectively the necessity or the lack thereoff of the structure to have

IDE. BLA-PL refers to a lesion study involving the disconnection of BLA and PL through

the controlateral lesion technique.

environment, rats, and experiments used to test the model.
Section 3.2 addresses the standard devaluation experiment
with two manipulanda. Section 3.2 addresses a devaluation
experiment using only one manipulandum. Section 3.4 presents
some predictions of the model. Finally, Section 4 discusses
the results and draws the conclusions. The acronyms used
in the paper and the model parameters are indicated in the
Appendix .

2. MATERIALS AND METHODS:
BIOLOGICAL EVIDENCE, HYPOTHESES,
AND COMPUTATIONAL DETAILS

2.1. Evidence from Lesion Experiments
The results of a large number of lesion experiments furnish strong
constraints on the brain system underlying IDE, so they have
been used to build the system-level architecture of the model. As
argued by some researchers (e.g., Passingham and Wise, 2012),
lesion studies are a primary source of information to indicate
if a brain structure is actually necessary to express a certain
behavioral function. Table 1 summarizes the main results of the
lesion experiments considered in this work and discussed in
this section. The table does not consider the lesions performed
after satiation, in particular involving BLA and IC, as they
are not directly addressed by the model. However, these are
further discussed below. Note that also negative results on lesions,
indicating that IDE persist after lesioning a certain structure, are
important as they rule out a role of such structure in the behavior
under study and hence restrict the range of possible explanations
of it.

Lesions of the BLA (Blundell et al., 2001; Balleine et al.,
2003), the NAc (Corbit et al., 2001), the IC (Balleine and
Dickinson, 2000), or the DMS (Yin et al., 2005), performed

both before or after instrumental training, impair IDE, i.e., the
ability of recalling actions differentially based on the current
value associated to their outcomes. The same work showing the
importance of NAc (Corbit et al., 2001) also shows that nucleus
accumbens shell (NAs) is not needed for IDE. Interestingly,
lesions of PL (or the MD, through which PL forms loops with
BGv) impair IDE only when the lesion is made before the
instrumental training but not after it, thus showing that the PL
is needed for the acquisition but not for the expression of IDE
(Corbit and Balleine, 2003; Ostlund and Balleine, 2008; Tran-
Tu-Yen et al., 2009). Instead, the lesion of the orbitofrontal
cortex (OFC) does not impair IDE, even though it impairs
Pavlovian outcome devaluation effects (PDE), namely it prevents
the reduction of Pavlovian responses to conditioned stimuli after
the devaluation of the related unconditioned stimuli (Ostlund
and Balleine, 2007). Lesions of the hippocampus (Hip) before
or after instrumental learning do not impair IDE, both in rats
(Corbit and Balleine, 2000) and in monkeys (Chudasama et al.,
2008). Using a disconnection technique involving a combined
controlateral lesion of two connected brain structures, Coutureau
et al. (2009) showed that disrupting the recurrent projections
between BLA and PL does not impair IDE, thus demonstrating
that the direct interaction between the two is not necessary for
IDE.

Recent experiments indicate a complex involvement of BLA
and IC in IDE and suggest that they closely interact to form
an important sub-system for outcome-related incentive learning.
In particular, transient inactivation of BLA during satiation
has been shown to prevent IDE, whereas its inactivation after
satiation leaves IDE intact (West et al., 2012). In addition,
a study using a novel disconnection technique based on
controlateral lesions of BLA and IC shows that the two
regions form a closely coupled circuit. In particular, BLA
is important for updating the incentive value of outcomes
during the satiation phase, but not to exhibit IDE. Instead,
IC is needed to store incentive information and make it
available during the devaluation test (Parkes and Balleine,
2013). Since the interplay of BLA and IC and their specific
interactions with other brain structures appear very challenging,
the model presented here abstracts over their specific role in
IDE and represents them as operating as a whole subsystem
underlying both the acquisition and encoding of the value of
outcomes.

2.2. The Main Hypothesis of The Model:
Stimulus-Stimulus Pavlovian Associations
of BLA/IC and the Current Motivational
State of the Animal Bias Goal Selection
The main hypothesis of the model is that (a) the evaluation
processes of the rewards involving IDE are based on the
associations between the representations of external stimuli
involved in the instrumental conditioning, in particular the
manipulanda, and the representations of action outcomes, in
particular the rewarding foods, and that (b) the value attributed
to such outcomes depends on the current state of the animal.
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These associations rely on mechanisms pivoting on the BLA/IC
subsystem.

The amygdala complex (Amg) is a core part of the appetitive
and aversive motivational system in vertebrates (Balleine and
Killcross, 2006; Mirolli et al., 2010). One main function it plays
is to associate the representation of biological relevant stimuli
from the outer world, e.g., the sight of objects (cues, levers, etc.),
with information about internal body states, e.g., related to pain,
thirst, hunger, satiety, and sexual excitation (Pitkänen et al., 1995;
DeOlmos et al., 2004). This function relies on the particular input
and output connections of Amg and on the associative learning
processes taking place within it.

Information on external objects and cues reach the Amg
through connections with the terminal areas of the brain
ventral visual pathway, such as the temporal cortex (TC)
encoding objects through abstract features (Pitkänen et al., 1995;
Price and Drevets, 2010). Information on internal states reach
Amg through recurrent connections with mesencephalic and
diencephalic nuclei, in particular the parabrachial nucleus, the
nucleus of the solitary tract, and part of the hypothalamus
(Hyp; in particular the ventromedial hypothalamus): these nuclei
are directly involved in the primary processing of visceral
and metabolic information (Pitkänen et al., 1995; Gauriau and
Bernard, 2002; King, 2006a,b; Knapska et al., 2007).

The functions played by Amg rely on two kinds of associative
processes (Hatfield et al., 1996; Balleine and Killcross, 2006;
Mirolli et al., 2010). The first process allows stimuli (conditioned
stimuli—CS) to acquire a motivational value as rewards
(unconditioned stimuli—US) and relies on BLA. This process
relies on the association between CS representations and US
representations (this is a stimulus-stimulus CS-US association).
This association allows the “transfer of the current appetitive or
aversive motivational value” of the US to the CS in the sense that
all reactions associated to the US (see below) can be triggered by
the CS. The test of the PDE is a means to establish that these
forms of associations have been established as it shows that the
responses triggered by the CS are sensitive to the manipulation of
the US value (Hatfield et al., 1996; Johnson et al., 2009). Below we
show how these associations are very important for IDE.

The second learning process directly associates the CS to
unconditioned responses (UR; these are CS-UR associations).
Once formed, when a CS is perceived these associations allow
Amg to directly trigger UR without the mediation of the US
representation. An experiment revealing the presence of this
type of association involves the lesion of the BLA within a PDE
experiment. When this is done, the CS still triggers the UR even
if the related US has been devalued (Hatfield et al., 1996; Blundell
et al., 2003). The additional lesion of the central nucleus of Amg
(CeA) abolishes this process revealing that this Amg component
is necessary for the expression of this association.

The information processed by Amg and its associative
learning processes allow it to trigger various responses and
modulations affecting action directed toward the outer world
(see Mirolli et al., 2010, for a review). In particular, Amg can
trigger a number of innate responses to cope with various
biologically-relevant conditions, e.g., with threatening conditions
(Davis, 1992; Killcross et al., 1997; LeDoux, 1998; Shi and Davis,

1999; Medina et al., 2002; Rosen, 2004), to drive the recall of
episodic memories (Phelps, 2004; LaBar and Cabeza, 2006), and
to bias the selection of goal-directed behaviors, as expanded
in this work (Parkinson et al., 2000; Blundell et al., 2001;
Balleine and Killcross, 2006). At the same time, the associations
within Amg allow it to also trigger “responses” directed to
regulate body and the overall brain functioning. In particular,
Amg regulates emotional body states (e.g., the blood pressure,
heart rate, energy consumption; Jolkkonen and Pitkänen, 1998;
Iversen et al., 2000; Davis and Whalen, 2001) and contributes to
control the production of various neuromodulators (dopamine,
noradrenaline, achethylcoline, and serotonin) in turn regulating
the brain overall states and learning processes (Fudge and Haber,
2000; Davis and Whalen, 2001; Fudge and Emiliano, 2003;
Knapska et al., 2007).

The retrieval of the incentive value of outcomes during
instrumental behavior has been shown to involve the gustatory
region of the anterior insular cortex (IC; Balleine and Dickinson,
2000). In particular, in devaluation experiments bilateral lesions
of IC abolish IDE with satiety outcome devaluation when
assessed in extinction tests (but not if food is delivered),
suggesting that the IC is critical for recalling the incentive value
of outcomes during choice. The roles of BLA and IC in learning
and storing information on incentive value of outcomes might be
based on their strong reciprocal connections (Yamamoto et al.,
1984; Augustine, 1996; Nieuwenhuys, 2012). These connections
suggest the existence of a close interplay of the two structures
as also shown by the direct test for which the stimulation
of the BLA affects the response of IC neurons (Piette et al.,
2012). The importance of BLA for learning and IC for storing
information is in particular supported by evidence showing
that a tetanic stimulation of BLA causes an NMDA receptor-
dependent long term potentiation in the ipsilateral IC (Escobar
et al., 1998; Jones et al., 1999; Escobar and Bermúdez-Rattoni,
2000). Disconnecting BLA and NAc by lesioning the BLA of one
brain emisphere and the controlateral NAc abolishes IDE (Shiflett
and Balleine, 2010; Parkes and Balleine, 2013) so suggesting that
BLA-IC-NAc might form a three-stage circuit responsible for
encoding, storing, and dispatching the value of outcomes. Indeed,
the technique for disconnecting two brain structures based on the
lesion of their controlateral components is equivalent to ruling
out not only their direct connections but also their indirect ones,
so it also eliminates the functions played by intermediate stages
(e.g., IC) of the circuit starting and ending with the two targeted
regions (e.g., BLA and NAc). More direct evidence on the
importance of the synergistic action of the two structures comes
from another devaluation experiment (Parkes et al., 2015). Here
the disconnection of the two structures, performed after satiation
and before the devaluation test by injecting IC with GABAA
agonist muscimol and NAc with a µ-opioid receptor antagonist,
again abolished IDE. Notwithstanding this evidence, the specific
mechanisms through which BLA and IC specifically contribute to
support their interdependent functioning and learning processes
are not well understood (Parkes and Balleine, 2013). For this
reason, and also for its focus on the system-level aspects of
IDE, the model presented here abstracts over the specific roles
of BLA and IC and considers them as a whole structure. The
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specific mechanisms through which the two structures play their
differential functions in IDE might be addressed in a future
targeted research.

The connections of BLA and IC with other structures, and
the evidence of focused lesions of such structures reviewed in
Section 2.1, support the idea that BLA and IC are sufficient
to store the current motivational values of outcomes in IDE
experiments, and to transfer it to NAc for the selection of goals.
BLA (Pitkänen et al., 1995; Savander et al., 1995, 1996) and
IC (Augustine, 1996; Nieuwenhuys, 2012) exchange reciprocal
connections with Hip, PL, and OFC but these areas are not
necessary for IDE. In particular, BLA and IC are heavily
connected with the Hip via reciprocal connections and through
them they support Hip learning and recall of episodic memories,
in particular in relation to their emotional aspects (Pitkänen et al.,
1995; Augustine, 1996; McDonald, 1998; Janes, 2015). However,
Corbit and Balleine (2000) showed that lesioning the Hip does
not impair IDE. Second, the interaction between Amg and IC
with various areas of PFC have a great role in complex decision
making processes (Bechara et al., 1999; Sterzer and Kleinschmidt,
2010; Moraga-Amaro and Stehberg, 2012). However, the lesion
of PL after instrumental learning does not impair the expression
of IDE (Coutureau et al., 2009). Last, several studies show that
OFC, another cortical region broadly connected with BLA in
a reciprocal manner, has an important role in PDE (Ostlund
and Balleine, 2007) and its connections with IC are important
for several cognitive processes (Augustine, 1996; Nieuwenhuys,
2012). Notwithstanding this, Ostlund and Balleine (2007) showed
that OFC is not needed for the expression of IDE. Overall,
this evidence shows that BLA and IC can store and retrieve
information on the value of outcomes in IDE experiments
without the support of those other structures.

Feedforward projections from BLA and IC to the NAc
thus seem to be the main connections needed to broadcast
incentive value information to downstream structures (Zahm,
2000; Voorn et al., 2004). In particular, the NAc bridges BLA/IC
to ventromedial PFC (Zahm, 2000), and in this respect it
represents the striatal region taking part to the basal ganglia-
thalamo-cortical loops involving PL (Voorn et al., 2004). In
agreement with this, Corbit et al. (2001) showed that NAc is
necessary for the production of IDE. Overall, this supports the
idea that NAc is the gate through which BLA/IC send outcome
value information to the PFC to support goal-directed behaviors
(Mannella et al., 2013). We expand this idea, important for the
model, in Section 2.3.

We can now restate more in detail the core hypothesis of
the model based on the empirical evidence illustrated this far.
The hypothesis is sketched in Figure 1. During the instrumental
phase, a number of relevant learning processes take place in
parallel. Instrumental learning creates the association between
the sight of the context (e.g., the Skinner box) and stimuli (e.g.,
the lever), on one side, and actions (e.g., pressing the lever)
suitable to obtain the reward (e.g., food pellets), on the other
side (these associations are not in the figure). In parallel, and
pivotal for the main hypothesis of the model, when instrumental
learning starts to create a stimulus-reward temporal contingency
also Pavlovian learning processes take off. In particular, the same

FIGURE 1 | Interactions between BLA/IC, NAc, and PL (PFC). (1) Within

BLA/IC, stimuli related to the manipulanda become associated with the stimuli

related to food through Pavlovian learning processes, and at the same time

the food representations are evaluated on the basis of the animal current

internal states. (2) The PFCm, in particular PL, “proposes” the possible future

outcomes that actions might cause from the current situation: the

representation of these outcomes form potential goals. (3) The connections

from BLA/IC send NAc information on the current value of possible outcomes

(e.g., foods): based on this value, the NAc-PL loop selects a specific outcome

to pursue (goal).

sight of the stimulus (e.g., the lever) and the reward stimulus (e.g.,
the food pellets) that take part in instrumental learning also play
the role of respectively CS and US in Pavlovian learning processes
implemented in BLA/IC (Figure 1(1)). Successively, in particular
in the third phase of the devaluation experiment, the associations
so formed allow BLA/IC to: (a) anticipate the outcome (US; e.g.,
food) when the CS (e.g., lever) is perceived; (b) modulate such
information based on the current animal’s internal state.

As we have previously proposed (Baldassarre et al., 2013b;
Mannella et al., 2013), we hypothesize that before receiving
information on the value of outcomes the NAc-PL loop tends to
activate the representations of the possible effects of actions that
the animal could accomplish in the current context (Figure 1(2)).
PFC, of which PL is part, can anticipate such effects thanks
to its connections, in particular those exchanged with Hip and
associative cortical areas like TC and PC (Passingham and Wise,
2012).

In the instrumental learning phase of the devaluation
experiment, when BLA/IC recall the outcome representation in
the presence of the CS, and at the same time the NAc-PL loop
activates the representation of the possible effects of the selected
actions, a third learning process can take place. This links the
motivationally salient representations of outcomes in BLA/IC
with the goal representations in the NAc (Figure 1(3)): the NAc
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thus becomes a nexus between incentive value information stored
in BLA/IC and goal representations in PFC (Mannella et al.,
2013). Later, in particular in the third phase of the devaluation
experiment, this link allows the outcome value representation in
BLA/IC, whose level of activation depends on the current internal
state of the animal, to bias the goal-selection process taking place
within the NAc-PL loop.

A further parallel learning process leads to the formation
of the action-outcome/outcome-action associations
(contingencies). This learning process is studied in contingency
degradation, another experimental paradigm used to
operationalize goal-directed behavior alongside devaluation
(Balleine and Dickinson, 1998). This learning process is not
simulated in the model due our focus on IDE, so the associations
it creates are assumed as already formed in the model.

2.2.1. Actions Are Not Directly Recalled by Pavlovian

Values but via the Representations of Outcomes: The

Devaluation Experiment with One Manipulandum
Previous studies, most notably Donahoe et al. (1997), already
proposed to interpret IDE based on the idea that manipulanda
can recall the outcome incentive value. Balleine and Ostlund
(2007) criticized this proposal as it tries to explain IDE within
a stimulus-response (S-R) instrumental learning framework,
where actions are triggered by the perception of stimuli, rather
than in terms of goal-directed behavior, where actions are recalled
by the anticipated re-activation of outcome representations that
might be achieved with those actions. The problem of S-R
interpretations is that they cannot account for the effects on
behavior of the outcome value manipulations typical of IDE. It
is important to clarify that the core hypothesis of the model
proposed here is not an S-R hypothesis. As shown in Figure 1, the
bias to select a specific action pivots on the differential activation
of goals within the NAc-PL loop. Thus, the stimulus (e.g., the
lever) does not directly recall actions, as in S-R frameworks, but
rather the representation of the outcome within the BLA/IC-NAc
circuit. The activation of this representation has an intensity that
depends on the internal current state of the animal (e.g., hungry
vs. satiated); that is, it encodes the current value of the outcomes,
and this value differentially biases the selection of goals within
the NAc-PL loop. The recalled outcome (O) biases the selection
of the goal within the goal loop, and in turn this, and not the
stimulus (S), biases the selection of actions (A) in lower BG-Ctx
loops (O-A link).

To empirically rule out a possible S-R interpretation of
IDE experiments, Balleine and Ostlund (2007) carried out a
devaluation experiment where, in the first instrumental phase,
the rats learned (in separate experimental sessions) to perform
two different actions on one manipulandum, and these actions
led, as usual, to two different outcomes. The two different actions
consisted in pushing a pole either toward one direction or toward
the opposite direction. As in standard devaluation experiments,
the experimenters later satiated the rats for one reward,
performed the devaluation test using the unique manipulandum,
and measured which action was performed more frequently. The
results showed that the rats performedmore frequently the action

associated with the valued outcome notwithstanding they were
exposed to the unique ambiguous stimulus (the pole).

Balleine and Ostlund (2007) interpreted these results by
proposing that stimulus-outcome pairs form whole different
representations that get associated to distinct actions. If actions
are associated with different outcomes, valued outcomes will
bias the selection of the associated action. This explanation
opens up a fundamental problem: what does activate the valued
outcome representation? The model presented here posits that
this activation relies on Pavlovian processes as these are potent
mechanisms continuously forming S-O associations that regulate
behavior in an adaptive fashion depending on the current
animal’s internal states. In particular, the model hypothesizes that
during the instrumental phase the representation of the unique
stimulus (pole) within the BLA forms Pavlovian associations with
both outcomes. On this basis, during the test phase the stimulus
(pole) tends to activate the representations of both outcomes.
However, only the valued outcome representation can actually be
activated as internal satiation inhibits the other. The association
of the active outcome representation with the goal representation
in the NAc-PL loop, illustrated above, will then trigger the
suitable action even in the presence of the ambiguous external
stimulus (the pole). This is possible because the proposed model
is not an S-Rmodel (where S would recall both actions). Rather, it
is an S-O-A model where actions are triggered via the activation
of the related outcomes (goals) which are “suggested” by the
current environment situation (within PFC circuits) but are then
“filtered” by the animal internal states attributing differential
incentive values to them (through the BLA/IC-NAc-PL neural
pathway).

2.3. Biology and Main Components of The
Model
This section introduces five additional hypotheses that we
used to structure the system-level architecture of the model
within which we embed the key hypothesis presented in the
previous section. While doing this, the section overviews
the model architecture and functioning whereas Section 2.4
presents the model computational details. The hypotheses
captures the system-level organization of key brain structures
supporting the behavioral expression of IDE and involve
in particular the functioning of: the BLA/IC, the striato-
cortical macro-loops, the cortico-cortical connectivity, the
striato-nigro-striatal pathway, and the dopamine system
(Figure 2).

2.3.1. The Input and Output Information Flows

Relevant for IDE
On the input side, the motor and associative loops and BLA/IC
receive input signals from “out-of-loop” sensory cortical areas. In
the model, these input cortical areas are not explicitly simulated
and encode the absence/presence of the two levers with two units
each activated with binary positive/zero values (Figure 2(6)).
BLA/IC also receives distinct inputs, again encoded with two
binary units, representing the ingestion or lack thereof of the
two foods (US; Figure 2(7)). Importantly, BLA/IC also receives
two input signals, again encoded with two other binary units,
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FIGURE 2 | Scheme of the main components of the model architecture. The system is composed of three basal ganglia-thalamo-cortical loops performing

respectively: (1) action selection (the yellow ellipse indicates the output of the system); (2) selection of ventral and dorsal associative cortex contents (these functions

are abstracted in the model); (3) goal selection. BLA/IC (5) receive information about: (6) neutral stimuli (CS, e.g., the manipulanda; light blue ellipse); (7) rewards (US,

e.g., food rewards; pink ellipse); (8) internal states of the animal (e.g., satiation for one food; pink ellipse). On this basis, BLA/IC elaborate the value of outcomes and

communicate it to the goal loop (green arrows). Cortico-cortical projections exchange information between the goal loop, the associative loop, and the motor loop (top

brown arrows). Furthermore, a parallel sub-cortical pathway relying on “dopaminergic spirals” (red arrows), formed by re-entrant connections involving different striatal

regions and dopaminergic structures (VTA/SNpc), carry motivational information from the ventral to the medial and dorsal BG regions via tonic dopamine modulation

(4). These same dopaminergic projections also play a second role by carrying learning signals based on phasic dopamine bursts.

representing information on the food-specific satiation internal
states of the animal (Figure 2(8)). VTA and SNpc receive
information about the rewards as an indistinct signal (ingestion

of any type of food) with the mediation of respectively the Hyp
and peduncolopontine nucleus (PPN) each formed by one unit.

On the output side, two neural units of the motor loop cortex
encode respectively two actions: “press the lever” and “pull the
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chain” (or “press lever 1” and “press lever 2”). An action is
selected and performed at each time step where the related
cortical unit is activated above a certain threshold.

2.3.2. Basolateral Amydgdala and Insular Cortex
As seen in Section 2.2, BLA is one main place in brain
where neutral stimuli from the environment get associated with
stimuli having an innate biological appetitive/aversive value
depending on the internal state of the animal. In the model,
the representations of food outcomes are activated either by the
consumption of food or by neutral stimuli previously associated
to them through a Pavlovian process. Previous computational
system-level models have highlighted the importance of Amg
and associative Hebbian learning rules to implement Pavlovian
processes (Armony et al., 1997; Moren and Balkenius, 2000;
Mannella et al., 2008; John et al., 2013; Carrere and Alexandre,
2015). These models represent an important theoretical starting
point for the model presented here, but they have not traced the
relations between Pavlovian processes and devaluation effects.

In themodel (Figure 2(5)), the current value of food outcomes
is encoded by the intensity of activation of their neural
representation. In particular, the satiety state for a specific food
inhibits its neural representation so that its activation, and hence
value, is lower (it is lower both when the food representation is
activated by a food consumption or by an anticipatory cue). An
analogous mechanism has also been used in the model proposed
by Zhang et al. (2009) to represent how internal states can
“modulate on the fly” (i.e., without the need of a new learning)
the incentive motivation value of rewards and their predicting
cues. In this case a mechanism based on multiplication, rather
than inhibition as here, was used, but the functional effect is the
same: satiation suppresses the incentive value of foods or cues
associated to them.

In the model, learning within BLA/IC takes place at the
synaptic level through a time-dependent form of plasticity
(Maren, 2005) modulated by phasic dopamine signals as those
that might be produced by the ingestion of food (Floresco
et al., 2001; Kröner et al., 2005). These processes allow BLA/IC
to associate a certain stimulus perceived at a certain time
(e.g., a lever or a cue) to a reward perceived at a shortly
following time (e.g., food). In the model, this learning process has
been implemented through a dopamine-dependent differential
Hebbian learning rule (Kosko, 1986) capable of strengthening the
connections between CS and US units when a cue is followed by
a food within a certain time window.

2.3.3. Basal Ganglia-Thalamo-Cortical Loops
Basal ganglia form multiple re-entrant neural loops with frontal
and associative cortical areas (Alexander et al., 1986). These
cortical areas project to different subregions of the striatum,
the main input gateway of BG; in turn, these sub-regions of
the striatum project to the internal component of the globus
pallidum (GPi) and substantia nigra pars reticulata (SNpr),
the output gateways of BG, and these project back to the
same cortical areas of origin through the Th. A remarkable
topological segregation is maintained within these pathways so
that multiple basal ganglia-thalamo-cortical neural channels can

be identified within each loop (Alexander et al., 1986; Haber,
2003; Voorn et al., 2004; Romanelli et al., 2005). Within the
single loop, the BG component tend to activate one (or few)
channels and this selectively dishinibits a specific part of the
Th which in turn activates a specific neural population within
cortex that possibly encodes a specific cortical content (e.g., an
action, a perceptual representation, or a goal) (Redgrave et al.,
1999; Grillner et al., 2005; Mannella and Baldassarre, 2015).
Striatum receives not only the “within-loop” cortical connections
described above, but also “out-of loop” connections from frontal
and associative cortical areas encoding stimuli and context
(Alexander et al., 1986; Haber, 2003), a key feature reproduced
in BG computational models supporting their acquisition of S-R
connections by trial-and-error processes (Doya, 2000).

The main architecture of the model is based on three loops:
the motor loop, the associative loop, and the goal loop (Haber,
2003; Yin and Knowlton, 2006). The motor loop (Figure 2(1))
involves the dorsolateral striatum (DLS) and the primary motor
cortex, the premotor cortex, and the supplementary motor areas
(here referred to as motor cortex as a whole, MC) (Romanelli
et al., 2005; Redgrave and Gurney, 2006). This loop learns by
trial-and-error to select instrumental actions based on current
stimuli (S-R). In the model, the motor loop selects one of the two
available actions.

The associative loop (Figure 2(2)) involves the dorsomedial
striatum (DMS) and parts of the PFC (in particular the dorsal
PFC), the PPC, and the TC. This loop subserves the identification
of locations of stimuli in space and overt/covert attention
processes (Hikosaka et al., 2000; Corbetta and Shulman, 2002;
Cheatwood et al., 2003; Buschman and Miller, 2007), the
selection of affordances (Jeannerod et al., 1995; Buneo and
Andersen, 2006), and the selection of the representations of the
perceived objects (Middleton and Strick, 1996; Seger, 2008). In
the model, the cortical component of the associative loop only
links the representations of the motor loop with those of the
goal loop (A-O and O-A associations) but it does not perform a
specific processing of information. Indeed, the model does not
reproduce the actual sensorimotor interactions of the animal
with the environment, so objects are represented in an abstract
fashion and space is not simulated. As a consequence it was not
necessary to simulate attention, affordance detection, and object
recognition processes taking place within the cortical areas of the
associative loop.

The goal loop (Figure 2(3)) involves NAc and the orbital
and medial areas of PFC (Zahm, 2000). Among these areas,
the model focuses on PL as this cortical area has been shown
to play a key role in goal-directed behavior and IDE (Balleine
and Dickinson, 1998). PL exchanges important connections with
various components of the limbic brain (NAc, Amg, Hip), and
other frontal cortex areas that inform it on context and actions
(Passingham andWise, 2012). We have previously proposed that,
based on this information, neural populations of PL and other
close areas of PFC might represent the possible states of the
environment that could be caused by the execution of the actions
in the current situation (Mannella et al., 2013). The goal loop then
uses incentive value information from the BLA to select and keep
active some of those pre-activated representations that can hence
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become the animal’s goals (cf. Cardinal et al., 2002; Passingham
and Wise, 2012).

In the model, the BG are implemented starting from the
model proposed in Gurney et al. (2001) (the main difference
is that the connections carrying signals from the within-loop
cortex to the striatum, simply assumed in the original model, are
actually implemented in the model proposed here: see Section 2.4
for details). The BG model implements a neural competition
between different possible options encoded in the target cortex on
the basis of a neural circuitry that reproduces the main features
of the real BG micro-architecture.

The selective function of BG is not innate but is acquired
through trial-and-error learning processes (Graybiel, 1998,
2005). These processes are guided by dopaminergic phasic bursts
generated by VTA, mainly targeting NAc, and SNpc, mainly
targeting DLS/DMS (Schultz, 2002; Badre and Frank, 2011). In
computational neuroscience (Houk et al., 1995), trial-and-error
learning processes are often reproduced through the actor-critic
reinforcement learning model, and in particualr the TD-learning
rule (Sutton and Barto, 1998), capable of reproducing the typical
dynamics of phasic dopamine during learning (Schultz, 2002).
In the model, BG trial-and-error learning is simulated, within
all the three BG-Th-Ctx loops, through a Hebbian learning
process biased by dopamine. This is a simpler version of the TD-
learning rule sufficient to form the needed S-R connections in
the simulated rat experiments used to test the model. Dopamine
phasic signals are directly produced by the VTA/SNpc on the
basis of rewarding stimuli (foods) in the ways explained below.
To foster exploration processes at the basis of trial-and-error
learning, noise was injected into the Th component of the three
loops. This noise represents in an abstract way the multiple
cortical signals received by Th from various cortical sources. As
an effect of learning, within the goal loop NAc representations
of possible environment states get associated with the outcome
representations in BLA (Figure 2(4)); within the associative loop
and motor loop, respectively the DMS and DLS get associated
with the current stimuli (Figure 2(4)).

2.3.4. Cortico-Cortical Pathways
Information on desirable outcomes processed in medial and
orbital PFC (part of the goal loop) is transferred to dorsal PFC
(associative loop) via connections within PFC (Yeterian et al.,
2011; Passingham andWise, 2012). Information processed within
the dorsal PFC affects action control via two main cortico-
cortical pathways. First, through a direct pathway, involving the
supplementary motor areas and MC (Babb et al., 1984; Caligiore
et al., 2010), allowing PFC goals to directly affect action selection
within the motor loop. Second, via the connections from the
dorsal PFC to the PPC (both part of the associative loop), and
the connections from the PPC to the MC. These connections are
important for attention control and hence to establish the targets
of action (Fox et al., 2003; Buschman and Miller, 2007) and for
the top-down goal-based selection of “affordances” involved in
on-line control of manipulation actions (Cavada and Goldman-
Rakic, 1989; Wise et al., 1997; Borra et al., 2008).

In the model, these cortical pathways are represented as
cortico-cortical connection between the cortical areas of the goal

loop and the associative loop and between the cortical areas of the
associative loop and the motor loop. The associative loop is hence
important to encode the action-outcome associations linking the
representations of outcomes/goals within the goal loop with the
representations of actions within themotor loop. In the brain, the
macro-structure of cortico-cortical pathways has a strong innate
basis but it also undergoes cortical plasticity (Buonomano and
Merzenich, 1998). In the model, however, the cortico-cortical
pathways do not learn as the focus here was on IDE and not on
action-outcome contingency learning and degradation.

2.3.5. Striato-Nigro-Striatal Spirals
Section 2.1 explained how lesions to either NAc or DMS impair
IDE both if they are carried out before or after the instrumental
training phase, whereas lesions of PL impair IDE only if they are
carried out before instrumental learning but not after it. This
indicates that a brain structure targeted by NAc, and different
from PL, has to carry NAc information on the selected goal to
the associative and motor loops. Empirical evidence suggests a
possible candidate for this function, namely the striato-nigro-
striatal “dopaminergic spiral” pathway that involves re-entrant
connections successively involving NAc, DMS, and DLS within
BG and VTA and SNpc as dopaminergic structures (Fudge
and Haber, 2000; Haber, 2003). These pathway might allow
the transfer of information on the incentive value of stimuli
and events encoded in NAc toward DMS and DLS and the
related associative and motor loops. In this respect, Belin et al.
(2009) have argued that dopaminergic spirals play a key role
in the formation of incentive habits, i.e., strong motivational
automatic biases allowing Pavlovian processes of Amg to affect
DMS association processes and DLS action selection processes
via the NAc and the descending striato-nigro-striatal pathway
departing from it.

In the model, the striato-nigro-striatal pathway plays the role
of transferring the information on the current incentive value of
goals encoded in NAc to the associative and motor loops based
on the dopaminergic modulation of local selective processes
within the BG. The connections forming the dopaminergic
spirals are hardwired: the plasticity processes likely involving
these connections are not simulated for the same reasons of the
lack of learning in the cortico-cortical pathways. In the model,
the dopaminergic spirals contain neural channels that maintain
the topology throughout their stages, thus reflecting the typical
segregation of other portions of the BG and the necessity for IDE
of the DMS as intermediate striatal stage (Yin et al., 2005). These
channels thus connect specific goal representations in NAc to
specific cell assemblies in DMS and from these to specific action
representations in DLS. Importantly, however, we do not have a
strong commitment on this hypothesis as in real brain alternative
mechanisms might carry information on goals from NAc to the
associative and motor loops. For instance, dopamine control
might work temporally rather than spatially as here. In this case,
when, and only when, a highly-salient stimulus is perceived, it
increases the dopamine efflux and this facilitates the selection
supported by DMS and DLS, thus producing behaviors similar
to those exhibited by our model (Belin et al., 2009; see Mannella
et al., 2009, and Fiore et al., 2014, for some models using this
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alternative mechanism). Alternatively, information might pass
through other PFC areas not considered here (Yeterian et al.,
2011; Passingham andWise, 2012). The specific mechanism used
here should hence be considered as only one possible means
through which NAc biases action selection in the motor loop
without the support of PL. In this respect, the system-level nature
of the model presented here stresses how the route followed by
this information transfer is a relevant open problem.

2.3.6. Dopamine
In the literature, two main distinctive functions are ascribed
to phasic and tonic production of dopamine by VTA and
SNpc. Phasic—intense and short-lasting—dopamine is strongly
associated to plasticity of several structures of brain. Here we
focus on the role of phasic dopamine in learning processes
taking place within striatum (Reynolds and Wickens, 2002;
Calabresi et al., 2007; Surmeier et al., 2007; Schotanus and
Chergui, 2008; Shen et al., 2008) and BLA (LaLumiere et al., 2005;
Marowsky et al., 2005; Li et al., 2011). Evidence from these studies
shows that phasic dopamine enhances the learning processes
triggered by local neural activation events, in particular giving
rise to three-element Hebbian synaptic changes where synapses
between two active units are strengthened in the presence of a
dopamine phasic burst. In the model, rewards (e.g., caused by
food ingestion) directly excite dopaminergic units of VTA/SNpc
causing phasic dopamine peaks that in turn strengthen the
efficacy of connections linking active couples of neurons within
NAc, DMS, DLS, and BLA.

Tonic—extracellular, slow-changing—dopamine, in
particular directed to NAc, has a major role in modulating
animals’ active coping with challenges (Salamone et al., 2007;
Fiore et al., 2015). Artificial increases of tonic dopamine level, for
instance induced by amphetamine, have been shown to increase
the number and vigor of actions (Taylor and Robbins, 1984;
Ljungberg and Enquist, 1987; see Niv et al., 2007, for a review).
The mechanism leading to the increase of dopamine baseline
levels relies on the inhibition of VTA/SNpc internal inhibitory
units (Floresco et al., 2003). This mechanism is also reproduced
in the model and leads to a lasting enhancement of striatal
activation which in turn facilitates the performance of selections
by the three loops.

2.4. The Computational Architecture and
Functioning of The Model
This section describes the model in computational detail, but
before doing this it presents some general considerations on its
nature and on the methodology used to build it. The integrated
account of the wide empirical evidence on IDE required
the construction of a system-level model which encompasses
several brain structures and their interplay. Each of these brain
structures, and their connections, implement several specific
functioning mechanisms and learning processes. Modeling all
these elements in detail would have led us to loose our focus
on IDE. We thus adopted a system-level modeling strategy
reproducing in detail only the elements that were important
for our hypothesis on IDE (Gurney, 2009). This strategy led us
in particular to: (a) hardwire some connections of the model

instead of obtaining them with learning processes: only learning
processes considered central for IDE were made explicit in
the model; (b) represent only in abstract ways the functioning
processes of some brain structures considered in the model.

Another problem we faced was that sometimes the
reproduction of the IDE experiments required the
implementation of some functions relying on brain mechanisms
that are still unknown. In this case, we used tentative neural
mechanisms suggested by more general neuroscience knowledge
and our computational experience. This approach has the
advantage of allowing: (a) the formulation of operational
hypotheses on IDE integrating behavioral and lesion evidence
produced by several different empirical experiments; (b) the
identification of current knowledge gaps of theories on IDE,
in particular in relation to the neural mechanisms underlying
it, and the proposal of computational hypotheses on them; (c)
the production of system-level predictions testable in future
empirical experiments.

The computational approach used to build the model
facilitates the explanation and the reproduction of the model
(the approach was initially proposed in Baldassarre et al., 2013b).
In particular, the method uses uniform neural units for the
whole model and few Hebbian learning rules. Thanks to this,
the model can be described and understood very easily. In
particular, the model can be presented through: (a) a detailed
graphical scheme of its architecture which, similarly to an
electrical engineering circuit, uses graphical elements to indicate
the elementary components of the model (Figure 3); (b) few
equations specifying the activation of the two types of neural
units of the model; (c) few equations specifying the model
Hebbian learning processes; (d) tables containing all the model
parameters (Tables A2–A4). This information is sufficient to
reproduce the model.

The detailed architecture of the model is presented in
Figure 3. Overall, the architecture is based on three BG modules
implemented as a modified version of the GPR basal ganglia
model (Gurney et al., 2001). The differences between our BG
module and the GPR model are as follows. First, our model
does not implement the BG indirect pathway going from the
striatum to the external globus pallidus (GPe), and from the GPe
to the GPi and the subthalamic nucleus (STN): this pathway was
not modeled as it implements regulations of the BG selection
process not needed here. Second, the units of each thalamus
compartment exchange reciprocal inhibitory connections thus
refining the selection processes of the BG (Crabtree and Isaac,
2002; Humphries, 2002). Third, the cortical units that are
targeted by a BG channel within a loop in turn project to
the striatal unit of the same BG channel (this loops play an
important function for guiding striatal learning based on cortical
activation). Last, the STN receives afferent projections only from
the cortical regions of the loop, and not from cortical areas
external to it (e.g., from the input units encoding the levers),
as this is suggested by anatomical evidence (Nambu, 2004;
Romanelli et al., 2005). Note that the second and third hypotheses
imply that the Th/Ctx initiate selections of neural representations
and the BG allow them to emerge and become stable through
their loops with cortex (cf. Mannella and Baldassarre, 2015).
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FIGURE 3 | Detailed architecture of the model, indicating its components and the neural units within them. Learning happens at the terminals of

dopaminergic connections. See Table A1 for acronyms.

The functioning and learning processes of the model are now
explained in detail.

2.4.1. Input and Output Stages of the Model
Three sets of input units are activated and reach different
components of the model during simulations. Two binary
units encode the absence or presence of the two manipulanda
and both reach two striatal units within the motor loop,
two striatal units within the associative loop, and two units
within BLA/IC representing conditioned stimuli (CS). Two
binary units, encoding the non-consumption or consumption

of the two foods, reach two units of BLA/IC representing the
unconditioned stimuli (US). The two food units also reach
the single unit of the PPN, in turn activating SNpc, and
the single unit of the LH, in turn activating VTA. These
circuits encode the value information (reward) related to the
ingestion of the two foods. Two binary units encoding no-
satiation/satiation for the two foods reach, through inhibitory
one-to-one connections, respectively the two BLA/IC units
representing the US. The output of the model is encoded by
two cortical units of the MC representing the two actions on
either one of the two manipulanda. An action is triggered when
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the activation of one of the two units overcomes a threshold
θmc.

2.4.2. The Two Types of Neural Units Forming the

Model
The model is formed by two types of firing rate units each
abstracting the activity of a whole population of neurons
encoding relevant information (e.g., a lever, a food, a goal, an
action). The first type of units, used in most components of
the model, are leaky units capturing the integration in time and
space of the signals reaching them, similarly to what is done by
the membrane potential of neurons. (Amari, 1977; Dayan and
Abbott, 2001). Formally:

τ · u̇ = −u+ I
I =

∑

i [wi · vi] ,
(1)

where u is the activation potential of the unit, u̇ is the rate
of change (time derivative) of such potential, I is the sum of
all signals vi, each multiplied by the related connection weight
wi, sent to the unit by other units connected to it, and τ is a
time constant regulating the overall speed of the unit dynamics.
The activation of the leaky units is based on a positive-value
saturation output function of their activation potential:

v =
[

tanh (σ · (u− θ))
]+

, (2)

where v is the unit activation, tanh (x) is the hyperbolic function,
σ is a constant defining the steepness of the hyperbolic function,
θ is the unit activation threshold, and [x]+ is a function returning
0 if x ≤ 0 and x if x > 0.

The striatal units are leaky units as those described above but
their input (and hence activation) is also enhanced by dopamine
as follows:

τ · u̇ = −u+
(

ι + δ · da
)

· I , (3)

where τ is a time constant, ι is a parameter weighting the input
to the striatum that is independent of dopamine, δ is a parameter
weighting the input that is dependent on dopamine, and da is the
activation of the dopaminergic unit projecting to the striatal unit.

The unit of PPN, the unit of LH, and the four units of BLA,
are represented with a second different type of units, called
here “leaky onset units,” to be able to produce fast transient
responses to the input in the case of PPN and LH, or to be
able to implement a learning process highly sensitive to the
timing of the input signals in the case of BLA/IC. A leaky onset
unit is based on two coupled leaky units, one representing an
excitatory neural population processing the input signals and
returning the whole output of the onset unit, and a second
one representing an inhibitory neural population processing the
input signals and inhibiting the first population. This complex
unit produces an onset response to the input signals, namely a
response that first increases and then decreases even if the input
signal starts and remains high for a prolonged time. Onset units
allow the production of phasic responses to the rewards, in the
case of PPN and LH units, or the support of the time-sensitive

learning processes of the BLA/IC illustrated below. Formally, the
equations of an onset unit are as follows:

τo · u̇o = −uo + [I − ui]
+

τi · u̇i = −ui + I ,
(4)

where uo represents the first input-output population, and ui
represents the inhibitory population. The activation function of
this type of units is the same as the one of the standard leaky units
(Equation 2) applied to uo:

o =
[

tanh(uo)
]+

, (5)

where o is the activation of the unit.

2.4.3. Learning within the BLA/IC
BLA/IC is formed by four leaky onset units that exchange all-to-
all lateral connections between them. Each connection between a
pre-synaptic and a post-synaptic BLA/IC unit is updated with a
Hebbian learning rule depending on the time-difference between
the onset activation of the two units, and on dopamine. In
particular, the learning rule is applied to a memory traces of
the activation of the units: such traces allow the formation of
connection weights on the basis of activations of the pre- and
post-synaptic units taking place at different times (e.g., as in
Pavlovian “trace conditioning” or “delay conditioning”). Traces
represent slow electrochemical lasting reactions following the
activation of neurons. Formally, a trace related to a unit is
computed as follows:

τt · ṫ = −t + α · o , (6)

where t is the trace memory of a pre- or a post-synaptic unit, α
is an amplification coefficient, and τt is the time constant of the
trace. A connection weight between two BLA/IC units is modified
on the basis of the pre- and post-synaptic traces, and dopamine,
as follows:

1wpost,pre = ηb ·
[

da− θda,bla
]+

·
[

ṫpost
]+

·
[

ṫpre
]−

·
(

maxw,bla − w
)

, (7)

where wpost,pre is the connection weight and 1 its change
(update), ηb is a learning coefficient, da is the VTA dopaminergic
projection to the BLA/IC, θda,bla is the dopamine threshold above
which dopamine allows learning to take place in the BLA/IC,
maxw is the maximum level of the connection weight, t are the
pre- and post-synaptic traces, ṫ indicates the time derivative of t,

[x]+ is a function returning 0 if x ≤ 0 and x if x > 0, and [x]− is
a function returning−x if x ≤ 0 and 0 if x > 0.

This Hebbian learning rule is closely related to other types
of differential Hebbian learning rules (Kosko, 1986; Porr and
Wörgötter, 2003). The variant of the rule used here causes the
connection weight to increase if there is a coincidence between
the descending phase of the (memory trace of the) pre-synaptic

unit activation (
[

ṫpre
]−

) and the ascending phase of the (memory

trace of the) post-synaptic unit activation (
[

ṫpost
]+

). In other
words, the rule causes an increase of the connection weight if a
pre-synaptic activation is followed by a post-synaptic activation,
for example as in a CS-US sequence.
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2.4.4. Thalamus Noise and Striatal Learning
The noise process driving the exploration of the system and the
trial-and-error learning of striatum takes place within Th. The
noise is added as input to the thalamic units and is computed on
the basis of a decaying moving average as follows:

τ · ṅ = −n+ νz , (8)

where n is the noise added to a Th unit, ṅ is the rate of change
(time derivative) of such noise, ν is a parameter regulating the
size of the noise, and z is a random number uniformly drawn in
[−0.5,+0.5] at each simulation step.

Connections from within-loop cortical units to striatal units
are not trained. These connections are however important for
training the synaptic weights reaching the striatum from out-
of-the-loop units as they carry information to the striatum
about the cortical units of the “channels” that win the within-
loop competition on the basis of the BG selection processes.
For example, if a cortical unit (and the corresponding channel)
encoding an action within the motor loop wins the competition
and is activated, its activation is projected back to the
corresponding striatal unit within the loop and this unit can
associate to the unit encoding the presence of a certain lever
and belonging to cortical areas outside the loop. The dopamine-
dependent Hebbian learning rule used for such training is as
follows:

1wstr,inp = ηstr ·
[

da− θda,str
]+

· [vstr − θstr]
+

·
[

vinp − θinp,str
]+

, (9)

where wstr,inp is the weight of the connection linking the out-
of-the-loop unit vinp to the striatal unit vstr , ηstr is a learning
rate characterizing striatum plasticity, da is the activation of the
dopaminergic unit projecting to the striatal unit, and θda,str , θstr
and θinp,str are the thresholds of respectively the dopamine unit,
the striatal unit, and the out-of-the-loop input unit that have to
be overcome for learning to take place.

2.4.5. The Dopamine System
The SNpc component in the model is formed by two different
modules corresponding to the DMS and DLS. Each module
is formed by two couples of units. Within each couple, one
unit projects to the corresponding striatal unit whereas the
second unit inhibits the first unit. The inhibitory unit receives
an afferent inhibitory connection from the corresponding unit
of the striatal structures located one level higher in the striato-
nigro-striatal hierarchy. This projection can reduce the baseline
activation of the inhibitory unit so that the overall output of
the couple increases. The time constant of the dopaminergic
inhibitory units is set to a large value so that the baseline
activation of the excitatory dopaminergic unit changes very
slowly, thus mimicking tonic dopamine slow changes. The
excitatory dopaminergic units of the SNpc couples receive an
afferent connection from the onset unit of the PPN. In this way,
when the PPN unit is activated by a reward, it causes a high
peak of excitation of the SNpc dopaminergic couples mimicking
phasic dopamine bursts. The VTA module is at the vertex of the
dopaminergic spirals and receives only an excitatory phasic input
from LH.

3. THE MODEL ACCOUNT OF
DEVALUATION EXPERIMENTS

This section first describes how we simulated the devaluation
experiments. Then it presents the performance of the model
in the experiment with two levers, and the neural mechanisms
underlying it, both when the model is fully functioning and
when it undergoes focused lesions as those investigated in the
literature. Successively, it presents similar analyses for the single-
manipulandum experiment. Finally, it presents some predictions
of the model.

3.1. The Simulated Environment, Rats, and
Experiment
The model was tested with simulated rats acting in a simulated
environment. Although the simulated rats and environment
were quite abstract, they nevertheless reproduced the circular
interaction of real animals with the environment, involving
repeated close-loop cycles of input, processing, output, and
environment reaction (in this respect, the model is “embodied,”
Mannella et al., 2010). Each interaction cycle lasted 0.05 s. During
the instrumental phase, when an action corresponding to a
manipulandum present in the environment was chosen and
maintained for 0.5 s, the corresponding food was delivered.
An action selected in the absence of the corresponding
manipulandum had no effect and the related channel (BG, Th,
and Ctx units) was switched off to mimic the lack of any
environmental feedback (e.g., tactile and visual feedback). The
receipt of foods activated the related input variables for 1.0 s. The
trial ended after the reward presentation, or in any case after a
timeout of 15 s. The only difference of the devaluation phase with
respect to the training phase was that no reward was delivered
when a manipulandum was acted on. The model units were reset
to zero at the end of each trial.

All simulations consisted of two instrumental training
sessions followed by two devaluation test sessions. The satiation
phase, happening between training and test, was simulated by
suitably setting the satiation inputs of the model in the test
sessions (see below). Each instrumental session lasted 20 min
and was formed by multiple trials during which both satiety
input units were set to zero. In the simulations with two
manipulanda, in the first training session each rat experienced
the first manipulandum and related reward (first food), whereas
in the second session it experienced the second manipulandum
and related reward (second food). In the simulations with one
manipulandum, in the first training session only the first action
could lead to a reward (first food) whereas in the second
session only the second action could lead to a reward (second
food).

The two test sessions lasted 2 min each during which no
reward was delivered. In the first test phase, both satiety variables
were set to zero. In the second test phase the satiety variable
related to the first food was set to zero whereas the one related to
the second food was set to one (note that in simulation it was not
necessary to test the opposite satiation pattern as the symmetry
of conditions was guaranted by design). In the two manipulanda
experiment, two levers were used in the two test phases whereas

Frontiers in Behavioral Neuroscience | www.frontiersin.org 13 October 2016 | Volume 10 | Article 181

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

TABLE 2 | Simulations with two manipulanda: training phase.

Mean lever presses in ten time bins ANOVA

1 2 3 4 5 6 7 8 9 10

CONTROL 3.49 5.01 6.16 7.03 7.44 7.73 8.03 8.25 8.30 8.43 F (9, 711) = 479.66 p< 0.001

BLA/IC-pre 3.79 5.21 6.44 7.06 7.40 7.74 7.81 7.93 8.11 8.20 F (9, 711) = 377.28 p< 0.001

NAc-pre 3.35 4.23 4.89 5.63 6.15 6.69 7.01 7.18 7.29 7.48 F (9, 711) = 334.68 p< 0.001

DMS-pre 3.36 3.83 4.14 4.54 4.64 4.80 5.05 5.21 5.33 5.55 F (9, 711) = 48.50 p< 0.001

PL-pre 3.36 4.16 4.98 5.51 6.23 6.65 6.91 7.15 7.21 7.36 F (9, 711) = 282.33 p< 0.001

BLA-post 3.56 4.95 6.06 6.95 7.46 7.80 8.05 8.21 8.34 8.43 F (9, 711) = 386.81 p< 0.001

NAc-post 3.60 5.21 6.30 7.03 7.48 7.86 8.06 8.26 8.36 8.45 F (9, 711) = 461.96 p< 0.001

DMS-post 3.48 5.00 6.11 6.99 7.50 7.71 8.01 8.24 8.34 8.53 F (9, 711) = 53.89 p< 0.001

PL-post 3.61 5.11 6.23 7.04 7.44 7.84 8.08 8.30 8.25 8.48 F (9, 711) = 442.68 p< 0.001

Each row shows the number of pressures of the available lever, averaged over 40 replications of the simulations and over the two levers, in ten 2-min time intervals. CONTROL refers

to a condition with the fully operative model, whereas the other conditions refer to simulations where focused lesions of different structures of the model were performed either before

training (-pre) or after training (-post).

in the one manipulandum experiment only one manipulandum
was used.

The simulations were replicated several times by setting a
different seed of the random-number generator so as to have
different learning and test histories mimicking different rats.
In the model, the lesion of a structure was reproduced by
permanently setting the activation of its units to a value of zero
whereas the disconnection between structures was performed
by permanently setting the connection weights of the neural
connections linking them to zero.

3.2. Two-Manipulanda Experiment:
Behavior of the Model and Underlying
Neural Mechanisms
The simulation with two manipulanda was performed in nine
different conditions. For each condition the simulation was
replicated 40 times with different random seeds (rats) each
including the two training sessions and the two test sessions.
The first condition involved the intact version of the model (this
condition was called CONTROL). Further four conditions tested
the model with the lesion of respectively BLA/IC, NAc, DMS and
PL performed before the training sessions (“BLA/IC-pre,” “NAc-
pre,” “DMS-pre,” and “PL-pre”). The last four conditions tested
the models with respectively the lesion of BLA, NAc, DMS and
PL performed after the training phase (“BLA-post,” “NAc-post,”
“DMS-post,” and “PL-post”).

During each training session, the learning process was
monitored by measuring the number of pressures of the available
lever in 10 time-bins, averaged over the 40 simulation repetitions
and the two manipulanda. For each lesion, the mean number
of actions in the different bins was compared with a one-factor
ANOVA to detect the presence of learning.Table 2, reporting this
analysis, shows that in all conditions learning was effective and
led to an increase of the average number of lever presses in the
succeeding learning phases (bins).

Table 2 also shows different levels of performance at the end
of training (last bin) in correspondence to the different lesions

performed before training (lesions performed after training
involve a condition like the control group). To verify the
statistical significance of this, we ran an ANOVA analysis with
two factors, one between subjects (different lesions) and one
within subjects (training bins), considering only the pre-learning
conditions (four conditions plus the control). The analysis
revealed a significant effect of both the lesion [F(4, 395) = p <

0.001] and the training [F(9, 3555) = p < 0.001] factors. Focusing
on the lesion factor, post-hoc pairwise t-tests with Bonferroni
correction revealed that the final performance of all pre-learning
lesion conditions was reduced relative to the control group with
the only exception of BLA/IC-pre (BLA/IC-pre: p = 0.098; NAc-
pre: p < 0.001; PL-pre: p < 0.001; DMS-pre: p < 0.001).
The other pairwise t-tests showed other interesting results: (a)
the significance of the lower final performance in the DMS-pre
lesion with respect to both the NAc-pre lesion (p < 0.001) and
the PL-pre lesion (p < 0.001); (b) the non-significant difference
in performance between the NAc-pre and the PL-pre conditions
(p = 1). Notably, the first set of these results, which were
not targeted during the construction of the model (they were
indeed found after a suggestion of a reviewer during the review
process), agree with empirical data. In particular, in line with
the model prediction empirical experiments have shown that
neither BLA lesion (Balleine et al., 2003) nor IC lesion (Balleine
and Dickinson, 2000) impair instrumental learning. Instead, NAc
lesion (Corbit et al., 2001), PL lesion (Corbit and Balleine, 2003),
and DMS lesion (Yin et al., 2005) do have a detrimental effect
on such learning processes. Since it was not possible to verify
the predicted relations between different lesions, as these were
tested in experiments using different paradigms and measures,
such predictions could be tested in future empirical experiments
(see Section 3.4 for further comments).

The explanation of these effects on learning of lesions with
respect to controls might be that the impairment of the goal-
directed systems formed by NAc, PL, and DMS deprives the
system of a means to “focus” on specific inputs and actions (cf.
Fiore et al., 2014). In particular, this focusing might consist in a
higher/stable activation of specific MC and DLS representations
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TABLE 3 | Simulations with two manipulanda: test phase.

No food devalued Second food devalued

Mean actions t-test Mean actions t-test

L1 L2 L1 L2

CONTROL 7.96 10.43 t(39) = −1.59 p = 0.116 25.11 0.25 t(39) = 91.22 p<0.001

BLA/IC-pre 9.43 8.91 t(39) = 0.39 p = 0.695 9.34 8.71 t(39) = 0.46 p = 0.645

NAcCO-pre 8.30 9.73 t(39) = −1.16 p = 0.252 8.49 9.54 t(39) = −0.85 p = 0.398

DMS-pre 8.81 8.60 t(39) = 0.28 p = 0.777 8.69 8.88 t(39) = −0.30 p = 0.765

PL-pre 9.38 8.80 t(39) = 0.42 p = 0.678 8.95 8.91 t(39) = 0.03 p = 0.978

BLA-post 9.13 9.54 t(39) = −0.28 p = 0.782 9.25 9.56 t(39) = −0.22 p = 0.829

NAcCO-post 9.18 8.58 t(39) = 0.41 p = 0.684 9.08 8.80 t(39) = 0.18 p = 0.855

DMS-post 9.56 7.54 t(39) = 1.96 p = 0.054 9.16 8.08 t(39) = 1.08 p = 0.285

PL-post 9.61 8.56 t(39) = 0.59 p = 0.554 25.09 0.35 t(39) = 75.22 p<0.001

For each condition the means of actions on the first lever (L1) and second lever (L2), averaged over 40 replications of the simulation, are reported. The left columns refer to tests without

devaluation. The right columns refer to tests where the food associated to L2 had been devalued. The CONTROL row refers to simulations with the intact model, whereas the other

rows refer to simulations where various structures of the model were lesioned either before training (-pre) or after training (-post).

caused by the top-down input received from the goal-directed
system (via the cortico-cortical connections and from the striato-
nigro-striatal connections) leading to more efficient learning
processes within the habit system. The BLA or IC lesion, instead,
does not affect instrumental training as the lack of a preference
for a specific food does not allow BLA/IC to bias the selection
of a specific goal/action. The further predictions presented in
Section 3.4 support this interpretation.

IDE were measured comparing the number of actions toward
one manipulandum vs. those toward the other in the two test
sessions, the first with no satiation for either food and the second
with satiation for the second food. IDE were considered to be in
place if a statistically significant difference between the number
of actions toward the two levers, measured with a t-test, was not
present in the first test session and was present in the second test
session. Table 3 and Figure 4 report the results of these tests and
show that IDE were present in the CONTROL condition as in the
experiments with real rats (Section 2.1).

The behavior of the model can be explained as follows
based on direct inspection of its functioning during training
and test. The plastic connection weights linking the lever units
and BLA/IC, on one side, to the striatal regions of the motor,
associative, and goal loops, on the other side, were set to zero
at the beginning of each simulation. The neural noise injected
into the three BG-Th-Ctx loops led them to initially perform
random selections. During the training phase, four different
learning processes take place in the model (see Figure 2). First,
within the motor loop the active DLS unit encoding the selected
action in MC (recall that the action selected by MC is fed back
to DLS) gets associated with the currently active input unit
encoding the perceived lever when the action performance is
followed by a reward (food ingestion). Second, through a similar
process, the associative-loop DMS unit encoding the current
selection gets associated with the current input when reward
is present. Third, BLA/IC form Pavlovian associations between
the currently perceived stimulus (CS: lever) and reward (US:
food) when they are perceived contingently and are followed

by a reward signal. Importantly, this happens only after the
system acquires a successful operant behavior: this means that
the instrumental learning of the motor loop creates a CS-US
(manipulanda-food) contingency that can be learned by the BLA
Pavlovian processes. Fourth, a learning process similar to those
of DLS and DMS leads the NAc active unit encoding a possible
goal, here initially activated by the Th noisy activity representing
inputs from different cortical sources, to form an association
with the active unit of BLA/IC representing a specific outcome
(food). Through this process, the unit currently active within
NAc, and hence PL, acquires a “goal sematics” and a connection
with BLA/IC through which it can receive activation encoding
incentive value.

During the two test devaluation phases, both levers are
presented together. Based on the perception of the levers (CS),
BLA/IC tend to activate the related food representations within
them. In the first test phase, when the model is not satiated for
any one of the two foods, this tends to lead to the selection
of either one of the two actions with the same chance. Instead
in the second test phase, when the second food is satiated, the
BLA/IC neural representation of the latter (US) is inhibited,
so only one outcome representation (first non-devalued food)
can actually activate. This is the key process implementing the
central hypothesis of the model: a lever, acting as CS, recalls
the valued representation of food within BLA/IC, i.e., a US, and
this in turn leads to select a specific goal within the goal loop.
The goal representation within NAc and PL leads the system
to activate, via the cortico-cortical connections and the striato-
nigro-striatal dopaminergic spirals, the corresponding neural
unit within the associative loop and then the motor loop, thus
biasing the preferential selection of the action corresponding to
the valued food.

Table 3 and Figure 4 also show the absence of IDE in the four
conditions of BLA/IC-pre, NAc-pre, PL-pre, and DMS-pre where
critical structures of the model were lesioned before instrumental
learning. These results reflect the same lack of IDE found in
animals where the same brain structures were lesioned before
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FIGURE 4 | Simulation with two manipulanda: devaluation tests,

pre-training lesions. For each condition the graph shows the number of

actions performed on each manipulandum (L1 and L2), averaged over 40

replications, collected during tests without devaluation (ND) and with the

devaluation of the second food (D). BLA, NAc, DMS, and PL refer to

conditions where those structures were inactivated before the training phase.

training (Section 2.1). Themodel explains these results as follows.
The lesion of the BLA/IC results in a lack of bias from the
motivational system to the goal loop so that the current value
of the anticipated outcomes cannot influence the downstream
competitions in the associative and motor loops. The lesion of
NAc causes a similar effect as it interrupts the crucial nexus
between the BLA/IC motivational system and the goal loop, and
hence the associative and motor loops. The lesion of PL prevents
the learning process linking BLA/IC and NAc, guided by PL
goal activation, so that the BLA/IC cannot acquire the ability to
modulate the goal-selection process within the goal loop. Finally,
the lesion of DMS interrupts the propagation of incentive value
from the goal loop through the dopaminergic-spirals and at the
same time prevents the adequate amplification of the cortico-
cortical bias from PL to associative cortical areas, so the current
value of expected outcomes cannot affect the selection of actions.

Table 3 and Figure 5 show that the BLA-post, NAc-post
and DMS-post conditions lead to impair IDE whereas PL-post
does not. These behaviors of the model reflect what happens
in real rats (Section 2.1). The model explains these results
as follows. As pre-training lesions, lesions of BLA/IC or NAc
prevent the expression of a motivational bias in favor of the
valued outcome within the goal loop. As a consequence, this
loop cannot bias the selections performed within the associative
and motor loops. The lesion of the DMS does not prevent
BLA/IC and NAc to express a preference for the currently valued
outcome but this motivational information cannot be transferred
to the motor loop via the striato-nigro-striatal pathways and
cortico-cortical pathways involving the associative loop. The
lesion of the PL, instead, cannot prevent the BLA/IC-NAc-DMS
striato-nigro-striatal pathway to communicate the incentive
value related to the currently valuable outcome to the motor

M
e
a
n
s
 o

f 
a
c
ti
o
n
s

0
5

1
0

1
5

2
0

2
5

L1L2L1L2 L1L2L1L2 L1L2L1L2 L1L2L1L2 L1L2L1L2

ND D ND D ND D ND D ND D

CONTROL BLA NAccCo DMS PL

FIGURE 5 | Simulations with two manipulanda: devaluation tests,

post-training lesions. For each condition the graph shows the number of

actions performed on each manipulandum (L1 and L2), averaged over 40

replications, collected during tests without devaluation (ND) and with the

devaluation of the second food (D). BLA, NAc, DMS, and PL refer to

conditions where those structures were inactivated after the training phase.

loop, so that actions can be biased in its favor. Together with the
result of the PL-pre lesion condition, this captures the empirical
evidence showing that PL is needed for learning but not for
the expression of IDE (Section 2.1). Thus, the main role of the
PL is to guide NAc learning processes by suitably connecting it
to BLA/IC. Once this connection is acquired the motivational
information about the valuable outcome can be conveyed to
the motor loop via the sub-cortical pathway (or possibly other
pathways/mechanisms, see Section 2.3) so that PL is not needed
for the expression of IDE.

3.3. One-Manipulandum Experiment:
Behavior of the Model and Underlying
Mechanisms
The experiment with one manipulandum was conducted with
the same modalities as the experiment with two levers, with the
only difference that only one manipulandum was used. Table 4
reports the results of the training phase of the experiment,
measured as done in the experiment with two levers. The results
show that the model successfully learns the two actions of
pressing the manipulandum in one particular direction to gain
the related reward. This is possible because, following the original
experiment with real rats, the two actions are trained in two
different instrumental sessions so that the model can learn to
consistently select the action that leads to the food of the related
session. In particular, in the first session the model forms an
association between the manipulandum and only the first action
encoded in DLS since only the unit representing such action
activates strongly due to the feedback returning to it from the
corresponding within-channel MC unit. In the second session,
the model forms an association between the manipulandum
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TABLE 4 | Simulations with a single manipulandum: instrumental training phase.

Mean lever presses in ten bins ANOVA

1 2 3 4 5 6 7 8 9 10

Means 3.73 5.10 6.29 6.98 7.38 7.46 7.89 8.05 7.94 7.98 F (9, 711) = 245.70 p< 0.001

Number of performances, averaged over 40 replications and over the training of the two actions, of the rewarded action during the training session divided in ten 2-min time intervals.

TABLE 5 | Simulations with a single manipulandum: devaluation test phases.

No food devalued Second food devalued

Mean actions t-test Mean actions t-test

A1 A2 A1 A2

Means 8.99 10.93 t(39) = −1.01 p = 0.317 24.75 0.45 t(39) = 52.64 p< 0.001

Number of performances of the two actions (A1 and A2) on the manipulandum, averaged over 40 replications of the simulation, are shown. Left columns refer to tests without any

devaluation. Right columns refer to tests in which the food associated to A2 has been devalued.

and the second action encoded in DLS as only this activates
strongly due to the feedback received from its MC action unit.
Note how it is important that in the second session the system
does not wholly delete the S-R knowledge acquired in the first
session due to extinction processes; here extinction was not
simulated so this was not a problem, but in general it seems that
acquisition processes should be stronger than extinction ones for
the system to suitably learn (and/or that the stimulus S differs
at least in part in the two sessions due to the different action
performed).

The presence of IDE was measured as in the experiment
with two manipulanda. Table 5 and Figure 6 show the results
of the test and indicate that the model is indeed capable of
successfully expressing IDE. How is this possible? In particular,
how can the single manipulandum recall one or the other
outcome depending on the animal internal state and lead to
the correct action? The explanation is based on two elements.
The first element concerns the learning process involving the
BLA/IC-NAc connections during the initial instrumental phase.
Within each of the two instrumental sessions, this process leads
to form a connection between one BLA/IC unit, encoding the
food received in that session, with one goal unit encoded in
NAc. Indeed, when the food is received: (a) only one NAc unit
is strongly activated by the corresponding unit of PL; (b) only
one BLA/IC unit is sufficiently activated for learning as it receives
the activation from both the specific ingested food and from
the CS representation corresponding to the manipulandum (the
CS gets associated to both food/US units). As a consequence,
the US unit in BLA/IC associates only to the corresponding
goal unit encoded in NAc/PL notwithstanding the unique CS
encoded in BLA/IC tends to activate both food units in BLA/IC.
The second element, concerning the test phase and shared with
the experiment involving two levers, is related to the outcome-
specific effects of satiation. The sight of the manipulandum tends
to activate both US units in BLA/IC but only one food/US
unit can actually activate as the other one is inhibited by the
corresponding satiation variable. The active BLA/IC unit can
then activate the corresponding goal unit in NAc and so bias,

in downstream structures, the performance of the corresponding
action.

3.4. Predictions
The data on lesions and the anatomical and physiological
evidence reproduced by the model and illustrated in the previous
sections represent a considerable amount of constraints satisfied
by the model system-level architecture and functioning. The
model can hence be used to produce predictions that might be
tested in future new empirical experiments. Here we present
in particular one prediction that concerns the effects of a
possible lesion of the dopaminergic striato-nigro-striatal spirals
that transfer incentive-value information from the goal loop
to downstream loops. We have mentioned in Section 2.3 that
this hypothesis of the model has been formulated in the lack
of empirical evidence and that alternative hypotheses exist. For
this reason it was interesting to probe the model to furnish a
prediction that closely depended on that hypothesis and that
would falsified the hypothesis itself if empirically disproved. To
this purpose, we used the model to simulate and predict the
effects of the lesion of the striato-nigro-striatal projections. In
particular we set to zero the projections from the NAc to the
medial region of the SNpc, and from theDMS to the dorsal region
of the SNpc. The lesions were performed either before or after the
instrumental training in two different simulations.

Table 6 shows that in both conditions the instrumental
training was successful. However, it also shows that the lesion
before training produces a comparatively slower learning and
a lower steady state performance. This is due to the fact
that the influence of the goal loop on the motor loop via
the associative loop favors the formation of stimulus-action
associations within it.

Table 7 and Figure 7 show the results of the devaluation tests
in the two conditions. The results indicate that, in both pre- and
post-training lesion conditions, the model does not express a
preference for either one of the two levers, thus suggesting that
the striato-nigro-striatal projections might indeed be necessary
for the selected goals to affect the selection of actions. The reason
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FIGURE 6 | Simulations with one manipulandum: devaluation tests.

Mean number of performances of the two actions (A1, A2) without (ND) and

with devaluation of the second food (D).

of this is that the striato-nigro-striatal projections are essential
to communicate incentive value information related to food
from the goal loop, where this information is computed, to the
motor loop, where this information is used to bias the selection
of actions. In the absence of this information, the DMS leads
the associative loop to perform maladaptive selections that in
turn fail to suitably bias action selection within the motor loop
similarly to the condition with a lesioned DMS.

These results encourage the test of the model prediction in
real animals. This could be done using the technique based on
controlateral lesions, in this case targeting the left SNpc and the
right NAc in some rats, and the right SNpc and the left NAc in
others. The expectation would be that in devaluation tests IDE
would be impaired although one lateral NAc component and
one lateral SNpc component are still intact and can play their
functions.

We close this section on predictions recalling the predictions
reported in Section 3.2 and concerning the possible differential
effects that different pre-instrumental-training lesions might
produce on the effectiveness of learning process. As illustrated
there, the model predicts that a DMS lesion would lower the final
performance of rats more than either a NAc-lesion or a PL lesion;
and that the latter two lesions would lead to quantitatively similar
detrimental effects on learning. These predictions might be tested
in future empirical experiments that use the same experimental
protocol and measures to evaluate the degree to which these
different lesions impair instrumental learning. Although not
directly related to the devaluation paradigm, these predictions
might contribute to trace how the goal-directed components of
brain exert their control on action selection during the expression
of IDE.

4. DISCUSSION

The instrumental devaluation experimental paradigm is
considered a pivotal to demonstrate the presence of goal-
directed behavior in mammals (Balleine and Dickinson, 1998).

The paradigm is founded on the experimental manipulation of
the internal state of the animal, e.g., the satiation for a certain
food but not for another one, and the demonstration that this
leads to select the action directed to obtain the valued food.
This shows that action selection is biased by the anticipated
outcomes of actions, possibly leading to valuable resources for
the animal, rather than merely by stimuli in the environment.
A number of experiments with rats have identified the brain
structures that are critical for these processes, in particular the
basolateral amygdala, the insular cortex, the nucleus accumbens
core, the dorsomedial striatum, and the prelimbic cortex (the
latter necessary only for learning).

The importance of these brain structures for devaluation,
the neuroscientific evidence on the pivotal role of amygdala in
implementing Pavlovian processes leading to attribute value to
unconditioned stimuli, and the knowledge on the role of the
other brain structures in implementing goal and action selection,
allowed us to propose a computational model that integrates
such information in a whole operational framework. The core
hypothesis of the model is that the basolateral amygdala and
insular cortex re-activate the representations of action-outcomes
(e.g., foods) on the basis of environment stimuli (e.g., levers)
and that these representations reflect the current value of the
outcomes for the animal given its current internal state (e.g.,
satiation for one food but not for a second one). The model also
operationalizes additional hypotheses on how the incentive value
computed by the amygdala and insular cortex can bias action
selection by: (a) influencing goal selection performed within
the basal ganglia-cortical loop involving nucleus accumbens
core and some areas of the prefrontal cortex, in particular the
prelimbic cortex; (b) transferring information to the downstream
associative and motor basal ganglia-cortical loops via both
striato-nigro-striatal dopaminergic spirals and cortico-cortical
pathways.

Donahoe et al. (1997) was one of the first to propose
the idea that stimuli related to manipulanda can play a key
role in instrumental devaluation. However, their proposal was
formulated within a stimulus-response framework and as such
has been challenged by theoretical and empirical tests. Moreover,
it was not further developed to account for the succeeding
empirical evidence on lesions pinpointing various aspects of
the brain system underlying devaluation effects. Instead, the
model presented here explicitly assumes that Pavlovian processes
control goal-selection cognitive processes and proposes an
integrated view of how the selected goal can lead to select suitable
actions via specific cortical and sub-cortical neural pathways.
The model also accounts for a specific experiment specifically
proposed by Balleine and Ostlund (2007) to challenge the
stimulus-response account of devaluation. In this experiment rats
had to use two different actions to act on one manipulandum to
obtain two different food outcomes. The experiment represents
a challenge for any model of devaluation that relies on external
stimuli to activate outcome representations. Our model accounts
for the experiment as the stimulus represented by the unique
manipulandum tends to recall both outcomes but only one has
incentive value based on the animal’s internal state and so it can
bias the selection of the related action.
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TABLE 6 | Model predictions with two manipulanda: training phase, lesions to the striato-nigro-striatal connections.

Mean lever presses in ten bins ANOVA

1 2 3 4 5 6 7 8 9 10

CONTROL 3.49 5.01 6.16 7.03 7.44 7.73 8.03 8.25 8.30 8.43 F (9, 711) = 479.66 p< 0.001

SNS-pre 3.21 4.06 4.55 4.85 5.40 5.88 6.28 6.71 6.74 7.01 F (9, 711) = 204.31 p< 0.001

SNS-post 3.65 5.11 6.46 7.04 7.46 7.84 8.11 8.21 8.34 8.56 F (9, 711) = 455.68 p< 0.001

Each row reports the number of actions in ten 2-min time intervals, averaged over 40 replications of the simulation and over the two levers, in different conditions. The CONTROL row

refers to simulations with the fully operative model, whereas the other two rows refer to simulations where lesions of the striato-nigro-striatal connections were performed either before

(SNS-pre) or after training (SNS-post).

TABLE 7 | Model predictions with two manipulanda: devaluation test phases, lesions of the striato-nigro-striatal connections.

No food devalued Second food devalued

Mean actions t-test Mean actions t-test

L1 L2 L1 L2

CONTROL 11.88 12.05 t(39) = −0.08 p = 0.937 17.13 6.43 t(39) = 9.30 p< 0.001

SNS-pre 10.63 9.78 t(39) = 1.07 p = 0.291 10.43 10.08 t(39) = 0.52 p = 0.607

SNS-post 10.93 9.68 t(39) = 1.32 p = 0.194 10.30 10.40 t(39) = −0.15 p = 0.885

Each row refers to one condition and shows the number of actions on each manipulandum averaged over 40 replications of the simulation. CONTROL refers to the condition involving

the fully operative model, while the other two rows refer to the conditions where lesions of the striato-nigro-striatal pathway were performed either before (SNS-pre) or after training

(SNS-post). The left columns of data refer to tests without any devaluation. The right columns of data refer to tests in which the second food was devalued.
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FIGURE 7 | Simulation with two manipulanda: devaluation tests, lesion

of the striato-nigro-striatal connections before and after the

instrumental training. For each of the two lesions, the graphs report the

number of actions on each manipulandum (L1 and L2), averaged over 40

repetitions per condition, during tests without (ND) and with devaluation (D)

compared with the control condition. (A) Lesions to the striato-nigro-striatal

connections before training. (B) Lesions to the striato-nigro striatal

connections after training.

An important piece of empirical evidence accounted for by
the model is that the prelimbic cortex is important for the
acquisition of the neural prerequisites, but not for the expression,
of devaluation effects (Corbit and Balleine, 2003). This raises
the problem of which brain structures transfer information
on outcome value, computed by amygdala, insular cortex, and
accumbens, to downstream associative and motor areas. A first

possibility is that other regions of prefrontal cortex or the
limbic brain, still not investigated in the literature, implement
this process. These regions cannot be orbitofrontal cortex,
hippocampus, and nucleus accumbens shell as these have already
been ruled out by specific experiments (Corbit and Balleine,
2000; Corbit et al., 2001; Ostlund and Balleine, 2007). Here we
followed the hypothesis that value information is transferred to
downstream associative/motor structures via the striato-nigro-
striatal pathway. This hypothesis is in line with the idea of
incentive habits, a mechanism proposed to explain the potent
effects of cues associated to the consumption of drugs of abuse,
for which dopaminergic spirals support the transmission of
incentive values from ventral striatum to associative and motor
striatum (Belin and Everitt, 2008; Belin et al., 2009). In this
respect, the model predicts that an interruption of this pathway
would impair devaluation expression. Future work might test
this prediction in real rats through the controlateral lesion of the
nucleus accumbens core and the substantia nigra pars compacta.

Further results (noticed during the paper revision process)
corroborate the soundness of the model. In particular, the
model correctly predicts that the lesion of basolateral amygdala
does not impair instrumental learning (in agreement with what
empirically found in Balleine et al., 2003) whereas the lesion of
the nucleus accumbens core (in agreement with Corbit et al.,
2001), of the prelimbic cortex (in agreement with Corbit and
Balleine, 2003), and of the dorsomedial striatum (in agreement
with Yin et al., 2005) do have a detrimental effect on such learning
process. These results might be due to a focusing effect exerted by
the goal-directed components on the habitual ones (Fiore et al.,
2014), as also suggested by some predictions produced by the
model.
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Related to the last point, the model also produced some
predictions that might be tested in future empirical experiments.
In particular, the model predicts the possible effects of a lesion
of the dopaminergic striato-nigro-striatal spirals that transfer
incentive-value information from the goal loop to downstream
loops. In particular, the model predicts that this lesion would
lead to (a) a slower learning process and performance and
(b) the impairment of instrumental devaluation effects. These
predictions might be tested in future work by performing a
controlateral double lesion involving the right subtantia nigra
pars compacta and the left nucleus accumbens core in some rats,
and the left subtantia nigra pars compacta and right nucleus
accumbens core in other rats. The model also predicts that a
lesion of the dorsomedial striatum would slow learning more
than what done by a lesion of either the prelimbic cortex or the
nucleus accumbens; and that the lesion of either the prelimbic
cortex or the nucleus accumbens (which form a closely integrated
system for goal selection) would slower learning to a similar
extent. These represent further predictions that might be tested
in future empirical experiments.

The model has some limitations that, together with the
opportunity to account for other phenomena related to goal-
directed behavior, call for its future development in multiple
directions. First, the ventral/orbital prefrontal cortex of themodel
is now connected to the dorsal prefrontal/associative cortex that
in turn is connected to the motor cortex. This was done as
currently the model associative loop does not play any specific
function while in animals it serves important functions, such as
working memory and the control of attention and affordances
(e.g., see Baldassarre et al., 2013b; Fiore et al., 2014, for some
examples). Second, the model has now one action for each goal
whereas it would be more realistic to have several possible actions
for each goal. Such actions might be selected by bottom-up
information from the environment reaching the premotor/motor
cortex via sensory associative areas (see Chersi et al., 2013, for
an example). Third, the goal representations in the prelimbic
cortex are rather abstract. The prefrontal cortex receives input
frommultiple sources of information that allow it to encode goals
in terms of multimodal, rich sets of features (Passingham and
Wise, 2012). The addition to the model of afferent connections
carrying such information would allow the introduction of
learning processes happening within the prefrontal cortex and
leading to the progressive formation of goal representations.

A further issue, moving toward the use of the model to
account for different phenomena relevant for goal-directed
behavior, involves contingency degradation experiments.
Contingency degradation is a second experimental paradigm
that, together with devaluation, has been used to establish
goal-directed behaviors in mammals (Balleine and Dickinson,
1998). This paradigm manipulates the probabilities of obtaining
a certain outcome (e.g., a food) if a certain action (e.g., pressing
a lever) is performed or is not performed. The (action-outcome)
contingency is degraded by making such probabilities similar,
e.g., by delivering a food, previously obtainable by pressing
a lever, even without its pressure. In the future, the model
presented here could be extended to account for contingency
degradation effects by adding a learning process directed to
form the cortical and sub-cortical connections that link goal

representations of accumbens and prelimbic cortex to action
representations of the motor basal ganglia-cortical loop (e.g., see
Baldassarre et al., 2013b).

Similarly, the model does not currently account for Pavlovian
instrumental transfer (PIT), an important phenomenon closely
related to devaluation (Corbit and Balleine, 2005; Cartoni et al.,
in press). PIT comes in two forms, a specific and an aspecific
one. Specific PIT, more relevant for this work, is typically
shown with a three-phases experimental paradigm. In a first
instrumental phase, rats are trained to associate each of two
different manipulanda (e.g., levers) to a different reward (e.g.,
two foods). In a second Pavlovian phase, rats are trained with a
Pavlovian procedure to associate a cue to one of the two rewards
used in the previous phase. In a third test phase, rats access
each of the two manipulanda with or without the presence of
the Pavlovian cue. The typical result is that when the Pavlovian
cue is present rats tend to press the lever associated to the
reward linked to the cue more frequently than the other lever.
Specific PIT is relevant for this work because, as devaluation,
it involves both Pavlovian and instrumental processes and is
impaired by a lesion of the basolateral amygdala (Blundell et al.,
2001; Corbit and Balleine, 2005), although, interestingly, contrary
to devaluation it is impaired by the lesion of nucleus accumbens
shell rather than core (Corbit et al., 2001). Accounting for specific
PIT and understanding how it relates to devaluation represents
an important challenge for future work (see Cartoni et al., 2013,
and Bradfield et al., 2015, for two probabilistic models capturing
functional aspects of PIT).

Notwithstanding the need of these future extensions, the
model contributes to the elaboration of an overall theory on brain
mechanisms underlying instrumental devaluation effects and in
particular on how incentive value is assigned to goals in goal-
directed behavior. In particular, we think the main aspects of
this contribution are two. First, the integration of data on lesions
involving devaluation into a coherent operational model. Second,
the proposal of an overall system-level architecture that, although
abstract at the level of the single components, connectivity, and
learning processes, represents an important “skeleton” usable to
build more detailed future theories and models of devaluation
and goal-directed behavior.

AUTHOR CONTRIBUTIONS

Idea of work: FM, MM, GB; implementation of model and
simulations: FM; analysis of results: FM, MM, GB; writing up of
article: FM, MM, GB.

ACKNOWLEDGMENTS

This research has received funds from the European Commission
under the 7th Framework Programme (FP7/2007-2013), ICT
Challenge 2 “Cognitive Systems and Robotics,” project “IM-
CLeVeR - Intrinsically Motivated Cumulative Learning Versatile
Robots,” Grant Agreement no. ICT-IP-231722. We thank one of
the reviewers for highlighting the differences in learning speed
when the model undergoes different lesions before instrumental
training.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 20 October 2016 | Volume 10 | Article 181

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

REFERENCES

Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization

of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev.

Neurosci. 9, 357–381. doi: 10.1146/annurev.ne.09.030186.002041

Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type

neuralfields. Biol. Cybern. 27, 77–87. doi: 10.1007/BF00337259

Armony, J. L., Servan-Schreiber, D., Cohen, J. D., and LeDoux, J. E. (1997).

Computational modeling of emotion: explorations through the anatomy and

physiology of fear conditioning. Trends Cogn. Sci. 1, 28–34. doi: 10.1016/S1364-

6613(97)01007-3

Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in

primates including humans. Brain Res. Rev. 22, 229–244. doi: 10.1016/S0165-

0173(96)00011-2

Babb, R. S., Waters, R. S., and Asanuma, H. (1984). Corticocortical connections

to the motor cortex from the posterior parietal lobe (areas 5a, 5b, 7) in the

cat demonstrated by the retrograde axonal transport of horseradish peroxidase.

Exp. Brain Res. 54, 476–484. doi: 10.1007/BF00235473

Badre, D., and Frank, M. J. (2011). Mechanisms of hierarchical reinforcement

learning in cortico-striatal circuits 2: evidence from fMRI. Cereb. Cortex 22,

527–536. doi: 10.1093/cercor/bhr117

Baldassarre, G., Caligiore, D., and Mannella, F. (2013a). “The hierarchical

organization of cortical and basal-ganglia systems: a computationally-informed

review and integrated hypothesis,” in Computational and Robotic Models of

the Hierarchical Organization of Behavior, eds G. Baldassarre and M. Mirolli

(Berlin: Springer-Verlag), 237–270.

Baldassarre, G., Mannella, F., Fiore, V. G., Redgrave, P., Gurney, K., andMirolli, M.

(2013b). Intrinsically motivated action-outcome learning and goal-based action

recall: a system-level bio-constrained computational model. Neural Netw. 41,

168–187. doi: 10.1016/j.neunet.2012.09.015

Balleine, B. (1992). Instrumental performance following a shift in primary

motivation depends on incentive learning. J. Exp. Psychol. Anim. Behav. Process.

18, 236–250. doi: 10.1037/0097-7403.18.3.236

Balleine, B. W., and Dickinson, A. (1998). Goal-directed instrumental

action: contingency and incentive learning and their cortical substrates.

Neuropharmacology 37, 407–419. doi: 10.1016/S0028-3908(98)00033-1

Balleine, B. W., and Dickinson, A. (2000). The effect of lesions of the insular

cortex on instrumental conditioning: evidence for a role in incentive memory.

J. Neurosci. 20, 8954–8964.

Balleine, B. W., and Killcross, S. (2006). Parallel incentive processing: an

integrated view of amygdala function. Trends Neurosci. 29, 272–279. doi:

10.1016/j.tins.2006.03.002

Balleine, B.W., Killcross, S. A., andDickinson, A. (2003). The effect of lesions of the

basolateral amygdala on instrumental conditioning. J. Neurosci. 23, 666–675.

Balleine, B. W., Liljeholm, M., and Ostlund, S. B. (2009). The integrative function

of the basal ganglia in instrumental conditioning. Behav. Brain Res. 199, 43–52.

doi: 10.1016/j.bbr.2008.10.034

Balleine, B. W., and O’Doherty, J. P. (2010). Human and rodent homologies

in action control: corticostriatal determinants of goal-directed and habitual

action. Neuropsychopharmacology 35, 48–69. doi: 10.1038/npp.2009.131

Balleine, B. W., and Ostlund, S. B. (2007). Still at the choice-point: action selection

and initiation in instrumental conditioning. Ann. N.Y. Acad. Sci. 1104, 147–

171. doi: 10.1196/annals.1390.006

Bechara, A., Damasio, H., Damasio, A. R., and Lee, G. P. (1999). Different

contributions of the human amygdala and ventromedial prefrontal cortex to

decision-making. J. Neurosci. 19, 5473–5481.

Belin, D., and Everitt, B. J. (2008). Cocaine seeking habits depend upon dopamine-

dependent serial connectivity linking the ventral with the dorsal striatum.

Neuron 57, 432–441. doi: 10.1016/j.neuron.2007.12.019

Belin, D., Jonkman, S., Dickinson, A., Robbins, T. W., and Everitt, B. J. (2009).

Parallel and interactive learning processes within the basal ganglia: relevance

for the understanding of addiction. Behav. Brain Res. 199, 89–102. doi:

10.1016/j.bbr.2008.09.027

Blundell, P., Hall, G., and Killcross, S. (2001). Lesions of the basolateral amygdala

disrupt selective aspects of reinforcer representation in rats. J. Neurosci. 21,

9018–9026.

Blundell, P., Hall, G., and Killcross, S. (2003). Preserved sensitivity to outcome

value after lesions of the basolateral amygdala. J. Neurosci. 23, 7702–7709.

Borra, E., Belmalih, A., Calzavara, R., Gerbella, M., Murata, A., Rozzi, S., et al.

(2008). Cortical connections of the macaque anterior intraparietal (aip) area.

Cereb. Cortex 18, 1094–1111. doi: 10.1093/cercor/bhm146

Bradfield, L. A., Dezfouli, A., van Holstein, M., Chieng, B., and Balleine,

B. W. (2015). Medial orbitofrontal cortex mediates outcome retrieval

in partially observable task situations. Neuron 88, 1268–1280. doi:

10.1016/j.neuron.2015.10.044

Buneo, C. A., and Andersen, R. A. (2006). The posterior parietal

cortex: sensorimotor interface for the planning and online control

of visually guided movements. Neuropsychologia 44, 2594–2606. doi:

10.1016/j.neuropsychologia.2005.10.011

Buonomano, D. V., and Merzenich, M. M. (1998). Cortical plasticity:

from synapses to maps. Annu. Rev. Neurosci. 21, 149–186. doi:

10.1146/annurev.neuro.21.1.149

Buschman, T. J., and Miller, E. K. (2007). Top-down versus bottom-up control

of attention in the prefrontal and posterior parietal cortices. Science 315,

1860–1862. doi: 10.1126/science.1138071

Calabresi, P., Picconi, B., Tozzi, A., and Filippo, M. D. (2007). Dopamine-mediated

regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219.

doi: 10.1016/j.tins.2007.03.001

Caligiore, D., Borghi, A., Parisi, D., and Baldassarre, G. (2010). Tropicals: a

computational embodied neuroscience model of compatibility effects. Psychol.

Rev. 117, 1188–1228. doi: 10.1037/a0020887

Cardinal, R. N., Parkinson, J. A., Hall, J., and Everitt, B. J. (2002). Emotion

and motivation: the role of the amygdala, ventral striatum, and prefrontal

cortex. Neurosci. Biobehav. Rev. 26, 321–352. doi: 10.1016/S0149-7634(02)0

0007-6

Carrere, M., and Alexandre, F. (2015). A Pavlovian model of the amygdala and

its influence within the medial temporal lobe. Front. Syst. Neurosci. 9:41. doi:

10.3389/fnsys.2015.00041

Cartoni, E., Puglisi-Allegra, S., Baldassarre, G. (2013). The three principles of

action: a Pavlovian-instrumental transfer hypothesis. Front. Behav. Neurosci.

7:153. doi: 10.3389/fnbeh.2013.00153

Cartoni, E., Balleine, B., Baldassarre, G. (in press). Appetitive Pavlovian-

instrumental transfer: a review. Neurosci. Biobehav. Rev.

Cavada, C., and Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus

monkey: II. evidence for segregated corticocortical networks linking sensory

and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445. doi:

10.1002/cne.902870403

Cheatwood, J. L., Reep, R. L., and Corwin, J. V. (2003). The associative striatum:

cortical and thalamic projections to the dorsocentral striatum in rats. Brain Res.

968, 1–14. doi: 10.1016/S0006-8993(02)04212-9

Chersi, F., Mirolli, M., Pezzulo, G., and Baldassarre, G. (2013). A spiking neuron

model of the cortico-basal ganglia circuits for goal-directed and habitual action

learning. Neural Netw. 41, 212–224. doi: 10.1016/j.neunet.2012.11.009

Chudasama, Y., Wright, K. S., and Murray, E. A. (2008). Hippocampal lesions in

rhesus monkeys disrupt emotional responses but not reinforcer devaluation

effects. Biol. Psychiatry 63, 1084–1091. doi: 10.1016/j.biopsych.2007.

11.012

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and

stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi:

10.1038/nrn755

Corbit, L. H., and Balleine, B. W. (2000). The role of the hippocampus in

instrumental conditioning. J. Neurosci. 20, 4233–4239.

Corbit, L. H., and Balleine, B. W. (2003). The role of prelimbic cortex

in instrumental conditioning. Behav. Brain Res. 146, 145–157. doi:

10.1016/j.bbr.2003.09.023

Corbit, L. H., and Balleine, B. W. (2005). Double dissociation of basolateral

and central amygdala lesions on the general and outcome-specific

forms of Pavlovian-instrumental transfer. J. Neurosci. 25, 962–970. doi:

10.1523/JNEUROSCI.4507-04.2005

Corbit, L. H., Muir, J. L., and Balleine, B. W. (2001). The role of the nucleus

accumbens in instrumental conditioning: evidence of a functional dissociation

between accumbens core and shell. J. Neurosci. 21, 3251–3260.

Coutureau, E., Marchand, A. R., and Scala, G. D. (2009). Goal-directed responding

is sensitive to lesions to the prelimbic cortex or basolateral nucleus of the

amygdala but not to their disconnection. Behav. Neurosci. 123, 443–448. doi:

10.1037/a0014818

Frontiers in Behavioral Neuroscience | www.frontiersin.org 21 October 2016 | Volume 10 | Article 181

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

Crabtree, J. W., and Isaac, J. T. R. (2002). New intrathalamic pathways allowing

modality-related and cross-modality switching in the dorsal thalamus. J.

Neurosci. 22, 8754–8761.

Davis,M. (1992). The role of the amygdala in fear and anxiety.Annu. Rev. Neurosci.

15, 353–375. doi: 10.1146/annurev.ne.15.030192.002033

Davis, M., and Whalen, P. J. (2001). The amygdala: vigilance and emotion. Mol.

Psychiatry 6, 13–34. doi: 10.1038/sj.mp.4000812

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: The

MIT Press.

De Olmos, J. S., Beltramino, C. A., and Alheid, G. F. (2004). “Amygdala and

extended amygdala,” in The Rat Nervous System, 3rd Edn., ed G. Paxinos

(London, UK: Elsevier Accademic Press). 509–603.

Donahoe, J., Palmer, D., and Burgos, J. (1997). The unit of selection:

what do reinforcers reinforce? J. Exp. Anal. Behav. 67, 259–273. doi:

10.1901/jeab.1997.67-259

Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning

and motor control. Curr. Opin. Neurobiol. 10, 732–739. doi: 10.1016/S0959-

4388(00)00153-7

Escobar, M. L., and Bermúdez-Rattoni, F. (2000). Long-term potentiation in the

insular cortex enhances conditioned taste aversion retention. Brain Res. 852,

208–212. doi: 10.1016/S0006-8993(99)02134-4

Escobar, M. L., Chao, V., and Bermúdez-Rattoni, F. (1998). In vivo long-term

potentiation in the insular cortex: NMDA receptor dependence. Brain Res. 779,

314–319. doi: 10.1016/S0006-8993(97)01175-X

Fiore, V. G., Mannella, F., Mirolli, M., Latagliata, E. C., Valzania, A., Cabib, S.,

et al. (2015). Corticolimbic catecholamines in stress: a computational model

of the appraisal of controllability. Brain Struct. Funct. 220, 1339-1353. doi:

10.1007/s00429-014-0727-7

Fiore, V. G., Sperati, V., Mannella, F., Mirolli, M., Gurney, K., Firston, K., et

al. (2014). Keep focussing: striatal dopamine multiple functions resolved in a

single mechanism tested in a simulated humanoid robot. Front. Psychol. 5:124.

doi: 10.3389/fpsyg.2014.00124

Floresco, S. B., Blaha, C. D., Yang, C. R., and Phillips, A. G. (2001). Dopamine d1

and nmda receptorsmediate potentiation of basolateral amygdala-evoked firing

of nucleus accumbens neurons. J. Neurosci. 21, 6370–6376.

Floresco, S. B., West, A. R., Ash, B., Moore, H., and Grace, A. A. (2003). Afferent

modulation of dopamine neuron firing differentially regulates tonic and phasic

dopamine transmission. Nat. Neurosci. 6, 968–973. doi: 10.1038/nn1103

Fox, M. T., Barense, M. D., and Baxter, M. G. (2003). Perceptual attentional set-

shifting is impaired in rats with neurotoxic lesions of posterior parietal cortex.

J. Neurosci. 23, 676–681.

Fudge, J. L., and Emiliano, A. B. (2003). The extended amygdala and the dopamine

system: another piece of the dopamine puzzle. J. Neuropsychiatry Clin. Neurosci.

15, 306–316. doi: 10.1176/jnp.15.3.306

Fudge, J. L., and Haber, S. N. (2000). The central nucleus of the amygdala

projection to dopamine subpopulations in primates. Neuroscience 97, 479–494.

doi: 10.1016/S0306-4522(00)00092-0

Gauriau, C., and Bernard, J.-F. (2002). Pain pathways and parabrachial circuits in

the rat. Exp. Physiol. 87, 251–258. doi: 10.1113/eph8702357

Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires.

Neurobiol. Learn. Mem. 70, 119–136. doi: 10.1006/nlme.1998.3843

Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Curr.

Opin. Neurobiol. 15, 638–644. doi: 10.1016/j.conb.2005.10.006

Grillner, S., Hellgren, J., Ménard, A., Saitoh, K., and Wikström, M. A. (2005).

Mechanisms for selection of basic motor programs–roles for the striatum and

pallidum. Trends Neurosci. 28, 364–370. doi: 10.1016/j.tins.2005.05.004

Gurney, K., Prescott, T. J., and Redgrave, P. (2001). A computational model of

action selection in the basal ganglia. II. analysis and simulation of behavior.

Biol. Cybern. 84, 411–423. doi: 10.1007/PL00007985

Gurney, K. N. (2009). Reverse engineering the vertebrate brain: methodological

principles for a biologically grounded programme of cognitivemodelling.Cogn.

Comput. 1, 29–41. doi: 10.1007/s12559-009-9010-2

Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. J.

Chem. Neuroanat. 26, 317–330. doi: 10.1016/j.jchemneu.2003.10.003

Hatfield, T., Han, J. S., Conley, M., Gallagher, M., and Holland, P. (1996).

Neurotoxic lesions of basolateral, but not central, amygdala interfere with

Pavlovian second-order conditioning and reinforcer devaluation effects. J.

Neurosci. 16, 5256–5265.

Hikosaka, O., Takikawa, Y., and Kawagoe, R. (2000). Role of the basal ganglia in

the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978.

Houk, J. C., Adams, J. L., and Barto, A. G. (1995). “A model of how the basal

ganglia generate and use neural signals ghat predict reinforcement,” in Models

of Information Processing in the Basal Ganglia, eds J. C. Houk, J. L. Davids, and

D. G. Beiser (Cambridge, MA: The MIT Press), 249–270.

Humphries, M. D. (2002). The Basal Ganglia and Action Selection: A

Computational Study Atmultiplelevels of Description. Ph.D. thesis, Department

of Psychology, University of Sheffield, Sheffield.

Iversen, S., Iversen, L., and Saper, C. B. (2000). “The autonomic nervous system and

the hypothalamus,” in Principles of Neural Sciences (4th Edn)., eds E. R. Kandel,

J. H. Schwartz, and T. M. Jessell (New York, NY: McGraw Hill). 960–981.

Janes, I. (2015). Insular cortex review. Gyrus 3, 108–114. doi: 10.17486/gyr.3.1023

Jeannerod,M., Arbib, M. A., Rizzolatti, G., and Sakata, H. (1995). Grasping objects:

the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18,

314–320. doi: 10.1016/0166-2236(95)93921-J

John, Y. J., Bullock, D., Zikopoulos, B., and Barbas, H. (2013). Anatomy

and computational modeling of networks underlying cognitive-emotional

interaction. Front. Hum. Neurosci. 7:101. doi: 10.3389/fnhum.2013.00101

Johnson, A. W., Gallagher, M., and Holland, P. C. (2009). The basolateral

amygdala is critical to the expression of Pavlovian and instrumental

outcome-specific reinforcer devaluation effects. J. Neurosci. 29, 696–704. doi:

10.1523/JNEUROSCI.3758-08.2009

Jolkkonen, E., and Pitkänen, A. (1998). Intrinsic connections of the rat amygdaloid

complex: projections originating in the central nucleus. J. Comp. Neurol. 395,

53–72.

Jones, M. W., French, P. J., Bliss, T. V., and Rosenblum, K. (1999). Molecular

mechanisms of long-term potentiation in the insular cortex in vivo. J. Neurosci.

19:RC36.

Killcross, S., Robbins, T. W., and Everitt, B. J. (1997). Different types of fear-

conditioned behaviormediated by separate nuclei within amygdala.Nature 388,

377–380. doi: 10.1038/41097

King, B. M. (2006a). Amygdaloid lesion-induced obesity: relation to sexual

behavior, olfaction, and the ventromedial hypothalamus. Am. J. Physiol. Regul.

Integr. Comp. Physiol. 291, R1201–R1214. doi: 10.1152/ajpregu.00199.2006

King, B. M. (2006b). The rise, fall, and resurrection of the ventromedial

hypothalamus in the regulation of feeding behavior and body weight. Physiol.

Behav. 87, 221–244. doi: 10.1016/j.physbeh.2005.10.007

Knapska, E., Radwanska, K., Werka, T., and Kaczmarek, L. (2007). Functional

internal complexity of amygdala: focus on gene activity mapping after

behavioral training and drugs of abuse. Physiol. Rev. 87, 1113–1173. doi:

10.1152/physrev.00037.2006

Kosko, B. (1986). “Differential hebbian learning,” in AIP Conference Proceedings,

Vol. 151, 277–282. doi: 10.1063/1.36225

Kröner, S., Rosenkranz, A. J., Grace, A. A., and Barrionuevo, G. (2005). Dopamine

modulates excitability of basolateral amygdala neurons in vitro. J. Neurophysiol.

93, 1598–1610. doi: 10.1152/jn.00843.2004

LaBar, K. S., and Cabeza, R. (2006). Cognitive neuroscience of emotional memory.

Nat. Rev. Neurosci. 7, 54–64. doi: 10.1038/nrn1825

LaLumiere, R. T., Nawar, E. M., andMcGaugh, J. L. (2005). Modulation of memory

consolidation by the basolateral amygdala or nucleus accumbens shell requires

concurrent dopamine receptor activation in both brain regions. Learn. Mem.

12, 296–301. doi: 10.1101/lm.93205

LeDoux, J. (1998). The Emotional Brain: The Mysterious Underpinnings of

Emotional Life. New York, NY: Simon & Schuster.

Li, C., Dabrowska, J., Hazra, R., and Rainnie, D. G. (2011). Synergistic

activation of dopamine D1 and TrKB receptors mediate gain control of

synaptic plasticity in the basolateral amygdala. PLoS ONE 6:e26065. doi:

10.1371/journal.pone.0026065

Ljungberg, T., and Enquist, M. (1987). Disruptive effects of low doses of d-

amphetamine on the ability of rats to organize behavior into functional

sequences. Psychopharmacology (Berl.) 93, 146–151. doi: 10.1007/BF00179924

Mannella, F., and Baldassarre, G. (2015). Selection of cortical dynamics for motor

behavior by the basal ganglia. Biol. Cybern. 109, 575–595. doi: 10.1007/s00422-

015-0662-6

Mannella, F., Gurney, K., and Baldassarre, G. (2013). The nucleus accumbens as a

nexus between values and goals in goal-directed behavior: a review and a new

hypothesis. Front. Behav. Neurosci. 7:135. doi: 10.3389/fnbeh.2013.00135

Frontiers in Behavioral Neuroscience | www.frontiersin.org 22 October 2016 | Volume 10 | Article 181

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

Mannella, F., Koene, A., and Baldassarre, G. (2009). “Navigation via Pavlovian

conditioning: a robotic bio-constrained model of autoshaping in rats,” in

Proceedings of the Ninth International Conference on Epigenetic Robotics

(EpiRob2009), volume 146 of Lund University Cognitive Studies, eds L.

Canamero, P.-Y. Oudeyer, and C. Balkenius (Lund: Lund University),

97–104.

Mannella, F., Mirolli, M., and Baldassarre, G. (2010). “The interplay of Pavlovian

and instrumental processes in devaluation experiments: a computational

embodied neuroscience model tested with a simulated rat,” in Modelling

Perception With Artificial Neural Networks, eds C. Tosh and G. Ruxton

(Cambridge: Cambridge University Press), 93–113.

Mannella, F., Zappacosta, S., Mirolli, M., and Baldassarre, G. (2008). “A

computational model of the amygdala nucleis role in second order

conditioning,” in From Animals to Animats 10: Proceedings of the Tenth

International Conference on the Simulation of Adaptive Behavior (SAB2008),

Volume 5040 of Lecture Notes in Artificial Intelligence, eds M. Asada, J. C.

Hallam, J.-A. Meyer, and J. Tani (Berlin: Springer Verlag), 321–330.

Maren, S. (2005). Synaptic mechanisms of associative memory in the amygdala.

Neuron 47, 783–786. doi: 10.1016/j.neuron.2005.08.009

Marowsky, A., Yanagawa, Y., Obata, K., and Vogt, K. E. (2005). A

specialized subclass of interneurons mediates dopaminergic facilitation

of amygdala function. Neuron 48, 1025–1037. doi: 10.1016/j.neuron.2005.

10.029

McDonald, A. J. (1998). Cortical pathways to the mammalian amygdala. Prog.

Neurobiol. 55, 257–332. doi: 10.1016/S0301-0082(98)00003-3

Medina, J. F., Repa, C. J., Mauk, M. D., and LeDoux, J. E. (2002). Parallels between

cerebellum- and amygdala-dependent conditioning. Nat. Rev. Neurosci. 3,

122–131. doi: 10.1038/nrn728

Middleton, F. A., and Strick, P. L. (1996). The temporal lobe is a target of

output from the basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 93, 8683–8687. doi:

10.1073/pnas.93.16.8683

Mirolli, M., Mannella, F., and Baldassarre, G. (2010). The roles of the amygdala in

the affective regulation of body, brain, and behavior. Connect. Sci. 22, 215–245.

doi: 10.1080/09540091003682553

Moraga-Amaro, R., and Stehberg, J. (2012). The Insular Cortex and the Amygdala:

Shared Functions and Interactions, Chapter 4. Rijeka: INTECH Open Access

Publisher. doi: 10.5772/48495

Moren, J., Balkenius, C. (2000). “A computational model of emotional learning

in the amygdala,” in From Animals to Animats 6: Proceedings of the Sixth

International Conference on Simulation of Adaptive Behavior (Cambridge, MA:

MIT Press), 383–391.

Nambu, A. (2004). A new dynamic model of the cortico-basal ganglia loop. Prog.

Brain Res. 143, 461–466. doi: 10.1016/S0079-6123(03)43043-4

Nieuwenhuys, R. (2012). The insular cortex: a review. Prog. Brain Res. 195,

123–163. doi: 10.1016/B978-0-444-53860-4.00007-6

Niv, Y., Daw, N. D., Joel, D., and Dayan, P. (2007). Tonic dopamine: opportunity

costs and the control of response vigor. Psychopharmacology 191, 507–520. doi:

10.1007/s00213-006-0502-4

Ostlund, S. B., and Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome

encoding in Pavlovian but not instrumental conditioning. J. Neurosci. 27,

4819–4825. doi: 10.1523/JNEUROSCI.5443-06.2007

Ostlund, S. B., and Balleine, B. W. (2008). Differential involvement of the

basolateral amygdala and mediodorsal thalamus in instrumental action

selection. J. Neurosci. 28, 4398–4405. doi: 10.1523/JNEUROSCI.5472-07.2008

Parkes, S. L., and Balleine, B. W. (2013). Incentive memory: evidence the

basolateral amygdala encodes and the insular cortex retrieves outcome values

to guide choice between goal-directed actions. J. Neurosci. 33, 8753–8763. doi:

10.1523/JNEUROSCI.5071-12.2013

Parkes, S. L., Bradfield, L. A., and Balleine, B. W. (2015). Interaction of

insular cortex and ventral striatum mediates the effect of incentive memory

on choice between goal-directed actions. J. Neurosci. 35, 6464–6471. doi:

10.1523/JNEUROSCI.4153-14.2015

Parkinson, J. A., Robbins, T. W., and Everitt, B. J. (2000). Dissociable roles of

the central and basolateral amygdala in appetitive emotional learning. Eur. J.

Neurosci. 12, 405–413. doi: 10.1046/j.1460-9568.2000.00960.x

Passingham, R. E., and Wise, S. P. (2012). The Neurobiology of the Prefrontal

Cortex: Anatomy, Evolution, and the Origin of Insight, Vol. 50. Oxford: Oxford

University Press. doi: 10.1093/acprof:osobl/9780199552917.001.0001

Phelps, E. A. (2004). Human emotion and memory: interactions of the

amygdala and hippocampal complex. Curr. Opin. Neurobiol. 14, 198–202. doi:

10.1016/j.conb.2004.03.015

Piette, C. E., Baez-Santiago, M. A., Reid, E. E., Katz, D. B., and Moran, A. (2012).

Inactivation of basolateral amygdala specifically eliminates palatability-related

information in cortical sensory responses. J. Neurosci. 32, 9981–9991. doi:

10.1523/JNEUROSCI.0669-12.2012

Pitkänen, A., Stefanacci, L., Farb, C. R., Go, G. G., LeDoux, J. E., and Amaral,

D. G. (1995). Intrinsic connections of the rat amygdaloid complex: projections

originating in the lateral nucleus. J. Comp. Neurol. 356, 288–310. doi:

10.1002/cne.903560211

Porr, B., and Wörgötter, F. (2003). Isotropic sequence order learning. Neural

Comput. 15, 831–864. doi: 10.1162/08997660360581921

Price, J. L., and Drevets, W. C. (2010). Neurocircuitry of mood disorders.

Neuropsychopharmacology 35, 192–216. doi: 10.1038/npp.2009.104

Redgrave, P., and Gurney, K. (2006). The short-latency dopamine signal: a role in

discovering novel actions?Nat. Rev. Neurosci. 7, 967–975. doi: 10.1038/nrn2022

Redgrave, P., Prescott, T. J., and Gurney, K. (1999). The basal ganglia: a

vertebrate solution to the selection problem? Neuroscience 89, 1009–1024. doi:

10.1016/S0306-4522(98)00319-4

Reynolds, J. N. J., and Wickens, J. R. (2002). Dopamine-dependent plasticity

of corticostriatal synapses. Neural Netw. 15, 507–521. doi: 10.1016/S0893-

6080(02)00045-X

Romanelli, P., Esposito, V., Schaal, D. W., and Heit, G. (2005). Somatotopy in the

basal ganglia: experimental and clinical evidence for segregated sensorimotor

channels. Brain Res. 48, 112–28. doi: 10.1016/j.brainresrev.2004.09.008

Rosen, J. B. (2004). The neurobiology of conditioned and unconditioned fear: a

neuro behavioral system analysis of the amygdala. Behav. Cogn. Neurosci. Rev.

3, 23–41. doi: 10.1177/1534582304265945

Salamone, J. D., Correa, M., Farrar, A., and Mingote, S. M. (2007). Effort-related

functions of nucleus accumbens dopamine and associated forebrain circuits.

Psychopharmacology (Berl.) 191, 461–482. doi: 10.1007/s00213-006-0668-9

Savander, V., Go, C. G., LeDoux, J. E., and Pitkänen, A. (1995). Intrinsic

connections of the rat amygdaloid complex: projections originating in the basal

nucleus. J. Comp. Neurol. 361, 345–368. doi: 10.1002/cne.903610211

Savander, V., Go, C. G., Ledoux, J. E., and Pitkänen, A. (1996). Intrinsic

connections of the rat amygdaloid complex: projections originating in the

accessory basal nucleus. J. Comp. Neurol. 374, 291–313.

Schotanus, S. M., and Chergui, K. (2008). Dopamine D1 receptors and group

I metabotropic glutamate receptors contribute to the induction of long-term

potentiation in the nucleus accumbens. Neuropharmacology 54, 837–844. doi:

10.1016/j.neuropharm.2007.12.012

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36, 241–

263. doi: 10.1016/S0896-6273(02)00967-4

Seger, C. A. (2008). How do the basal ganglia contribute to categorization? their

roles in generalization, response selection, and learning via feedback. Neurosci.

Biobehav. Rev. 32, 265–278. doi: 10.1016/j.neubiorev.2007.07.010

Shen, W., Flajolet, M., Greengard, P., and Surmeier, J. D. (2008). Dichotomous

dopaminergic control of striatal synaptic plasticity. Science 321, 848–851. doi:

10.1126/science.1160575

Shi, C., and Davis, M. (1999). Pain pathways involved in fear conditioning

measured with fear-potentiated startle: lesion studies. J. Neurosci. 19,

420–430.

Shiflett, M. W., and Balleine, B. W. (2010). At the limbic-motor interface:

disconnection of basolateral amygdala from nucleus accumbens core and shell

reveals dissociable components of incentive motivation. Eur. J. Neurosci. 32,

1735–1743. doi: 10.1111/j.1460-9568.2010.07439.x

Sterzer, P., and Kleinschmidt, A. (2010). Anterior insula activations in perceptual

paradigms: often observed but barely understood. Brain. Struct. Funct. 214,

611–622. doi: 10.1007/s00429-010-0252-2

Surmeier, J. D., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1

and D2 dopamine-receptor modulation of striatal glutamatergic signaling

in striatal medium spiny neurons. Trends Neurosci. 30, 228–235. doi:

10.1016/j.tins.2007.03.008

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

Cambridge MA: The MIT Press.

Taylor, J. R., and Robbins, T. W. (1984). Enhanced behavioral control

by conditioned reinforcers following microinjections of d-amphetamine

Frontiers in Behavioral Neuroscience | www.frontiersin.org 23 October 2016 | Volume 10 | Article 181

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

into the nucleus accumbens. Psychopharmacology (Berl.) 84, 405–412. doi:

10.1007/BF00555222

Tran-Tu-Yen, D. A. S., Marchand, A. R., Pape, J.-R., Scala, G. D., and Coutureau,

E. (2009). Transient role of the rat prelimbic cortex in goal-directed behavior.

Eur. J. Neurosci. 30, 464–471. doi: 10.1111/j.1460-9568.2009.06834.x

Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W., and

Pennartz, C. M. A. (2004). Putting a spin on the dorsal-ventral divide of the

striatum. Trends Neurosci. 27, 468–474. doi: 10.1016/j.tins.2004.06.006

West, E. A., Forcelli, P. A., Murnen, A. T., McCue, D. L., Gale, K., and Malkova, L.

(2012). Transient inactivation of basolateral amygdala during selective satiation

disrupts reinforcer devaluation in rats. Behav. Neurosci. 126, 563–574. doi:

10.1037/a0029080

Wise, S. P., Boussaoud, D., Johnson, P. B., and Caminiti, R. (1997). Premotor and

parietal cortex: corticocortical connectivity and combinatorial computations.

Annu. Rev. Neurosci. 20, 25–42. doi: 10.1146/annurev.neuro.20.1.25

Yamamoto, T., Azuma, S., and Kawamura, Y. (1984). Functional relations

between the cortical gustatory area and the amygdala: electrophysiological

and behavioral studies in rats. Exp. Brain Res. 56, 23–31. doi: 10.1007/BF002

37438

Yeterian, E. H., Pandya, D. N., Tomaiuolo, F., and Petrides, M. (2011). The cortical

connectivity of the prefrontal cortex in the monkey brain. Cortex 48, 58–81.

doi: 10.1016/j.cortex.2011.03.004

Yin, H. H., and Knowlton, B. J. (2006). The role of the basal ganglia

in habit formation. Nat. Rev. Neurosci. 7, 464–476. doi: 10.1038/

nrn1919

Yin, H. H., Ostlund, S. B., and Balleine, B. W. (2008). Reward-guided learning

beyond dopamine in the nucleus accumbens: the integrative functions

of cortico-basal ganglia networks. Eur. J. Neurosci. 28, 1437–1448. doi:

10.1111/j.1460-9568.2008.06422.x

Yin, H. H., Ostlund, S. B., Knowlton, B. J., and Balleine, B. W. (2005). The role

of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22,

513–523. doi: 10.1111/j.1460-9568.2005.04218.x

Zahm, D. S. (2000). An integrative neuroanatomical perspective on some

subcortical substrates of adaptive responding with emphasis on the nucleus

accumbens. Neurosci. Biobehav. Rev. 24, 85–105. doi: 10.1016/S0149-

7634(99)00065-2

Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S., and Aldridge, J. W.

(2009). A neural computational model of incentive salience. PLoS Comput. Biol.

5:e1000437. doi: 10.1371/journal.pcbi.1000437

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Mannella, Mirolli and Baldassarre. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 24 October 2016 | Volume 10 | Article 181

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Mannella et al. A Computational Model of Goal-Directed Behavior and Devaluation

APPENDIX: ACRONYMS AND MODEL
PARAMETERS

Table A1 reports the acronyms used throughout the paper.
Main components of the model corresponding to some of the
acronyms are also summarized in Figure 3.

Tables A2–A4 indicate the values of the parameters used
in the model. These parameters were hand-tuned with a trial-
and-error search aiming to find sufficient conditions (model
equations and parameter values) for the reproduction of the
target experiments. At this stage of the research, it was not
possible to carry out an automatic research and exploration
of the parameters given the long time taken to run all the
lesion simulations (order of hours), in turn due to the need for
time consuming learning processes. We hence set the model
parameters by hand according to these criteria: (a) the values
were able to reproduce the target experiments used as model
constraints; (b) the parameter values were as much as possible
homogeneous for different portions of the same structure (e.g.,
for different districts within BG or Ctx); (c) the found values
had some robustness, meaning that we changed the values
above and below the reported values and ensured that the
model kept reproducing the results (given the aforementioned
computational constraints, this sensitivity analysis was non-
systematic as it was carried out only for the values of the other
parameters found that far).

Table A2 indicates the values of the parameters of the neural
units of the model. For the units of BG and Th, we did not use any
special threshold (θ = 0) and tanh function pendence (σ = 1),
i.e., we used the function in its default form; moreover we used a
time coefficient (τ = 300ms) that ensured a response of the units
at a time scale compatible to the one of the input stimuli. The
Ctx units had a slower reactivity (τ = 2000) to ensure a longer
integration of information, a high threshold (θ = 0.8), and a high
tanh function (σ = 20), to ensure a prompt triggering of actions
only when enough information was accumulated by the BG-
Th-Ctx channels (action triggering happened with an activation
θmc > 0.8 of motor cortex units, see below). Dopaminergic units,
belonging to structures often considered part of BG, have the
same parameter values of the latter but a high threshold (θ = 1)
to fire DA bursts only when highly excited. Onset units of PPN,
LH, and BLA had standard tanh-pendence (σ = 1) and threshold
(θ = 0) values. Moreover, PPN and LH had a fast responsive
output (τo = 100), followed by a slower deactivation (τi = 500),
to cause a suddenDAproduction in target DA structures. Instead,
BLA units had a similar activation and deactivation (τo = 500
and τi = 500) to ensure a slow responsivity useful to detect the
temporal relations of input events.

Table A3 indicates the values of the parameters of the
connections between the different components of the model

and within them. The connectivity strength internal to the BG
(Str-GPi/SNpr and STN-GPi/SNpr connections), and between
BG and Th (GPI-SNpr connections), was regulated to lead BG
to perform a suitable selection of Ctx contents (Gurney et al.,
2001), while also considering the important effects of the re-
entrant activations from the within-loop cortical areas (Ctx-
Str and Ctx-STN connections; Fiore et al., 2014). Regarding
the cortical connections between different loops, the stronger
connections from PFCd/PC to MC and PL in comparision to
the opposite connections assigned to PFCd/PC a predominant
role during learning that allowed it to form the needed
links between the goal and the motor loops. Regarding DA
production, the strong activation of PPN and LH toward
respectively SNpc and VTA, and the strong disinhibition of
the latter ones by respectively DMS and NAc, were needed
to produce the strong DA transients typical of dopaminergic
phasic bursts guiding learning. The food input signals to PPN
and LH, and the satiation signals to BLA, were set to high
values, with respect to manipulanda inputs, for their role in
learning.

Table A4 indicates the values of the parameters related to
the exploration noise and the learning processes of the model.
The noise parameter is higher for the goal loop as exploration
is not facilitated by the inputs (as in the case of the motor
and associative loops): indeed, initially the input that NAc
receives from BLA involves only food but not other stimuli.
Regarding BLA learning, the amplification coefficient (α) has
to be very high due to the signal filters of the onset units
(Equation 4) and the memory trace (Equation 6) that smooth
the signal spikes needed to detect relevant events by BLA
(Equation 7). Regarding DA based activation (ι parameters),
DLS, DMS, and NAc have an increasing stimulus-independent
dopamine-based activation response reflecting the increasing
responsiveness of these BG districts in correspondence to a
given DA baseline activation (Fiore et al., 2014). The stimulus-
dependent DA effect (δ parameters) of the associative loop
was set to higher values with respect to those of the motor
and goal loops to allow it to suitably “bridge” the other two
loops. Regarding striatal learning, we found the model needed
a higher selectivity before triggering learning of the goal-
loop (θda,NAc and θinp,NAc) with respect to the other loops
to ensure the formation of focused links between goals and
associative/action representations. This was compensated with
a higher learning rate (ηNAc). The higher maximum value of
the BLA-NAc connection weights (maxw,NAc) with respect to
those of the other striatal regions ensured a stronger control of
internal values (BLA) on goals (NAc) with respect to stimuli on
actions and associations (DLS, DMS). Finally, regarding MC an
action was triggered when its encoding unit overcome a threshold
θMC = 0.8.
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TABLE A1 | Acronyms used in the paper.

Amg Amygdala

BG Basal ganglia

BGdl Basal ganglia, dorsolateral part

BGdm Basal ganglia, dorsomedial part

BGv Basal ganglia, ventral part

BLA Amygdala, basolateral complex

CeA Amygdala, central nucleus

CS Conditioned stimulus

Ctx Cortex

DA Dopamine

DLS Dorsolateral striatum

DM Dorsomedial thalamus

DMS Dorsomedial striatum

GPe Globus pallidus, external part

GPi Globus pallidus, internal part

Hip Hippocampus

Hyp Hypothalamus

IC Insular cortex, gustatory division

IDE Instrumental devaluation effects

LH Lateral hypothalamus

MC Motor cortex

MD Mediodorsal thalamus

MGV Thalamus medial geniculate body, ventral division

NAc Nucleus accumbens, core part

NAs Nucleus accumbens, shell part

OFC Orbitofrontal cortex

P Pulvinar, part of thalamus

PDE Pavlovian devaluation effects

PFC Prefrontal cortex

PFCd Prefrontal cortex, dorsal division

PFCm Prefrontal cortex, medial division

PL Prelimbic cortex

PMC Premotor cortex

PPC Posterior parietal cortex

PPN Peduncolopontine nucleus

SNpc Substantia nigra pars compacta

SNpr Substantia nigra pars reticulata

S, O, R, A Stimulus, outcome, response, action

STN Subthalamic nucleus

STNdl Dorsolateral subtalamic nucleus

STNdm Dorsomedial subtalamic nucleus

STNv Ventral subtalamic nucleus

TC Temporal cortex

Th Thalamus

UR Unconditioned response

US Unconditioned stimulus

VTA Ventral tegmental area

TABLE A2 | Model architecture: parameters of neural units.

Neural components Parameters of neural units

BG τ σ θ

DLS 300 1 0

STNdl 300 1 0

GPi 300 1 0

DMS 300 1 0

STNdm 300 1 0

GPi/SNpr 300 1 0

NAc 300 1 0

STNv 300 1 0

SNpr 300 1 0

Th τ σ θ

MGV 300 1 0

P 300 1 0

DM 300 1 0

Ctx τ σ θ

MC 2000 20 0.8

PFCd/PC 2000 20 0.8

PL 2000 20 0.8

DA τ σ θ

SNpco 300 1 1

SNpci 300 1 1

VTA 300 1 1

Onset units σ θ τo τi

PPN 1 0 100 500

LH 1 0 100 500

BLA 1 0 500 500
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TABLE A3 | Model architecture: connection weights between and within

the model neural components.

Receiving Sending

components components

BGdl Mani MC DLS STNdl

DLS L 1

STNd 1.6

GPi −3 −2

BGdm Mani PFCd/PC DMS STNdm

DMS L 1

STNdm 1.6

GPi/SNpr −3 −2

BGv BLA PL NAc STNv

NAc L 1

STNdm 1.6

SNpr −3 −2

Th MGV P DM GPi/SNpr

MGV −0.8 1.5

P −0.8 1.5

DM −0.8 1.5

Ctx MC PFCd/PC PL Th

MC 1 1

PFCd/PC 0.2 0.2 1

PL 1 1

DA SNpci PPN LH DMS NAc

SNpco 1 20

SNpci −10 −6

VTA 20

Onset units Mani Food Sat BLA

BLA 5 5 10 L

PPN 10

LH 10 5

“L” indicates “learned” connections (initially set to zero). “Mani” indicates “manipulandum”.

“Sat” indicates “satiation.”

TABLE A4 | Noise, learning, and dopamine-related parameters used in the

model.

Noise thalamus

τ 80 Noise decay constant

νMGV 0.25 Noise coefficient of MGV

νP 0.25 Noise coefficient of P

νDM 6.0 Noise coefficient of DM

BLA learning

τtra 500 Trace time constant

α 1010 Trace amplification coefficient

ηbla 0.08 BLA/IC learning rate

θda, bla 0.7 BLA/IC DA learning threshold

(Continued)

TABLE A4 | Continued

maxw, bla 2 Maximum connection weight

in BLA/IC

Str DA-based activation

ιDLS 0.2 DLS dopamine independent

input coefficient

ιDMS 0.5 DMS dopamine independent

input coefficient

ιNAc 0.8 NAc dopamine independent

input coefficient

δDLS 4.0 DLS dopamine dependent

input coefficient

δDMS 6.5 DMS dopamine dependent

input coefficient

δNAc 1.5 NAc dopamine dependent

input coefficient

Str learning

ηDLS 0.02 DLS learning rate

ηDMS 0.02 DMS learning rate

ηNAc 0.05 NAc learning rate

θda, DLS 0.8 DLS dopamine learning

threshold

θda, DMS 0.8 DMS dopamine learning

threshold

θda, NAc 0.9 NAc dopamine learning

threshold

θDLS 0.5 DLS activation learning

threshold

θDMS 0.5 DMS activation learning

threshold

θNAc 0.9 NAc activation learning

threshold

θinp, DLS 0.5 DLS input activation learning

threshold

θinp, DMS 0.5 DMS input activation learning

threshold

θinp, NAc 0.9 NAc input activation learning

threshold

maxw, DLS 1 Input-DLS maximum

connection weight

maxw, DMS 1 Input-DMS maximum

connection weight

maxw, NAc 2 BLA-NAc maximum

connection weight

MC

θmc 0.8 Threshold for triggering

actions
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