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ABSTRACT

Objective: We seek to quantify the mortality risk associated with mentions of medical concepts in textual

electronic health records (EHRs). Recognizing mentions of named entities of relevant types (eg, conditions,

symptoms, laboratory tests or behaviors) in text is a well-researched task. However, determining the level of

risk associated with them is partly dependent on the textual context in which they appear, which may describe

severity, temporal aspects, quantity, etc.

Methods: To take into account that a given word appearing in the context of different risk factors (medical con-

cepts) can make different contributions toward risk level, we propose a multitask approach, called context-

aware linear modeling, which can be applied using appropriately regularized linear regression. To improve the

performance for risk factors unseen in training data (eg, rare diseases), we take into account their distributional

similarity to other concepts.

Results: The evaluation is based on a corpus of 531 reports from EHRs with 99 376 risk factors rated manually

by experts. While context-aware linear modeling significantly outperforms single-task models, taking into ac-

count concept similarity further improves performance, reaching the level of human annotators’ agreements.

Conclusion: Our results show that automatic quantification of risk factors in EHRs can achieve performance

comparable to human assessment, and taking into account the multitask structure of the problem and the abil-

ity to handle rare concepts is crucial for its accuracy.
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BACKGROUND AND SIGNIFICANCE

The increasing availability of electronic health records (EHRs) ena-

bles knowledge discovery1 and, with large populations, the ability to

identify potential risk factors for key outcomes.2 Machine learning

techniques, such as deep learning, can leverage comprehensive data-

sets to predict chronic diseases3 or mortality.4

Previous analyses have relied on coded EHRs in which each code

corresponds to a medical concept (disease, symptom, diagnosis, etc.)

linked with a classification system (eg, International Classification

of Diseases or Systemized Nomenclature of Medicine–Clinical

Terms). Many EHRs, however, include additional text, which, al-

though requiring further processing, is more subtle and fine grained

than a coded concept. Moreover, research has shown that the free-

text information may be more reliable than codes.5,6 Therefore

supplementing code-based classifiers with information extracted

from free-text EHRs may improve outcome predictions.7,8

Extracting information relevant for mortality risk assessment

from textual EHRs requires addressing 2 main challenges. First, to

recognize mentions of medical concepts, such as conditions, symp-

toms, or treatments that could be considered risk factors—each as-

sociated with a different baseline mortality rate (high for heart

attack, low for common cold). Second, to assess how risk is influ-

enced by the textual context, which may describe severity (mild, crit-

ical), temporal aspects (recently, 5 years), quantity (120/80, 36.6),
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other patients (family history, brother), anatomy (toe, cranium), etc.

Clearly the occurrences of contextual words are crucial when assess-

ing the severity of a risk factor. While some words (mild, severe, ab-

normal) influence risk estimate for all concepts similarly, other

words have a context-dependent interpretation (decreased can be a

cause for concern in the case of hemoglobin, but not for low-density

lipoprotein cholesterol). Therefore, risk-prediction models would

benefit from the use of both context-dependent and context-

independent features.

Our goal is to predict the mortality risk level associated with

medical concept mentions in free-text EHRs. We approach this as a

machine learning problem, which involves a number of challenges,

including feature sparsity and high-dimensionality: there are tens of

thousands of possible word-based features, only a few of which are

present in any given instance. Additionally, the task space is sparse:

there are thousands of possible risk factors, and training examples

will not cover all cases. This implies that when applied to new exam-

ples, the model would have to estimate the level of risk for previ-

ously unseen concepts.

To address these issues, we approach risk-level estimation as a mul-

titask learning problem, in which each task corresponds to a different

risk factor. We introduce context-aware linear modeling (CALM), a

multitask learning framework that balances learning the contributions

of task-dependent and task-independent features. In this framework,

transfer learning applied to unseen tasks relies on both the task-

independent features and a dense vector representation of tasks that

approximates the distributional similarity between medical concepts.

We show how the inference problem can be cast as L1-norm regularized

linear regression (LASSO),9 enabling efficient estimation for high-

dimensional and sparse data. We evaluate this approach using a collec-

tion of 99 376 mentions of 9988 risk factors manually annotated with

the level of risk and obtain performance comparable to the level of

agreement between human experts.

Risk factor extraction from textual EHRs
The problems of extracting information from free-text clinical docu-

ments have been thoroughly investigated,10 giving rise to a plethora of

tools11 and other resources.12 While recognizing and normalizing medi-

cal concept mentions are relatively well understood,13,14 taking into ac-

count information in the neighborhood of a mention requires more

sophisticated processing such as temporal analysis,15 negation recogni-

tion,16 assertion classification (eg, present, missing, other patient),15 un-

certainty estimation,17 and parsing numerical results.18 Current

solutions to these problems often rely on manually created heuristics.

Specifically with regard to risk assessment, taking into account

the textual context of a mention (other than negation) is relatively

rare. Expressions such as “risk increase” or “60% risk” can be used

for extracting factors affecting the likelihood of a disease from

healthcare guidelines19 or medical literature,20,21 whereas under-

standing temporal aspects and linking laboratory tests with numeri-

cal results are necessary to recognize mentions of prespecified risk

factors for cardiac artery disease (2014 i2b2 shared task)22 or symp-

toms of appendicitis.23

Our approach differs from these works by focusing on mortality

in general instead of a specific disease. This means that there are nu-

merous potentially relevant concepts instead of a fixed list of risk

factors. Moreover, it is infeasible to manually prepare regular

expressions to assess the risk level for every factor. Thus, contrary to

previous approaches, our solution is driven purely by machine learn-

ing and exploits aspects of the problem’s multitask structure.

Multitask learning
Multitask learning is a paradigm of machine learning aimed at sit-

uations in which there are several learning tasks, which are pre-

sumed to be related, and could therefore benefit from joint

learning.24–26

In this study, an individual learning task corresponds to esti-

mating the mortality risk for all mentions of a unique medical

concept. While the set of tasks shares the same feature set and

output values, the number of instances for each task differs as

does the baseline risk and the effect of different features. For ex-

ample, in the context of a laboratory test, the occurrence of the

word abnormal would increase the associated risk, while the effect

of specific numbers (or looser quantitative categorization like high

or low) would depend on the specific test. Ideally, the model

should contain both features that consistently affect the risk across

all tasks, and task-specific features when there is sufficient evi-

dence to justify them.

Multitask learning covers many distinct machine learning sce-

narios.27 However, in all cases, the potential benefit relies on the de-

gree of relatedness between tasks. Learning multiple tasks in parallel

is useful only if the models for different tasks can be compactly rep-

resented together. One can then constrain the complexity of the

models such that either novel tasks28 or a fixed set of tasks can be ef-

ficiently learned.

In this regard, neural networks form internal representations

from features that are shared across tasks.24,25 Local sharing of the

factorized weights for every neuron can also be beneficial.29 More

flexible information sharing between tasks can be exploited using

empirical Bayes methods30–35 for neural networks or linear models.

Linear models are well studied in the context of multitask learn-

ing. They remain competitive to more complex models for high-

dimensional sparse data with limited training instances and allow

problem-specific model assumptions and regularization schemes.36

For instance, the coefficient vectors for different tasks can be regu-

larized by penalizing their distance to a common coefficient vec-

tor.36 The difference between any pair of tasks can also be

constrained.37 Our linear model is similar but distinct, as we mea-

sure closeness to a common vector using the L1 norm, while also pe-

nalizing the L1 norm of the common vector.

Rather than restricting the coefficient vectors individually, many

studies have used the L2,1 norm applied to the matrix of coefficient

vectors to encourage common subset selection across tasks (reducing

the number of unique features for task-specific features).38–40 This

regularization is a structured case of group LASSO,41 in which a

group corresponds to a feature across all tasks. However, this regu-

larization neither encourages the similarity of coefficients between

tasks nor limits the number tasks using a selected feature, thus re-

ducing the model interpretability.

Alternatively, task-specific coefficient vectors can be approximated

as linear combinations of a small set of shared vectors.25,42,43 A similar

effect with better optimization guarantees can be achieved by using

trace-norm regularization on the matrix of coefficient vectors.44–47 The

optimization for the L2,1-norm and trace-norm regularizations are re-

lated,39,40 but the latter does not perform feature selection.

To deal with multiple assumptions regarding the varied relation-

ships between features and outputs across the tasks, multiple con-

straints are needed in parallel.48 Similar to our model, dirty

models49 assume the coefficients are a combination of 2 sets: one

with L2,1-norm regularization and another with L1-norm regulariza-

tion for task-specific features. Different assumptions may need other

combinations of regularizations.50
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MATERIALS AND METHODS

Risk factor analysis
This study is part of an effort to automatically assess the mortality

risk of an individual based on textual health records. Toward this

goal we aim to recognize and determine the level of each individual

risk factor occurring within a given text. By risk factor we mean any

medical concept mention which, when encountered in a patient’s

medical records, should be taken into account to predict their life-

span. Therefore, we include both mentions that influence mortality

directly (eg, heart attack, diabetes) and more indirect clues of a risk

(eg, cardiologist, MRI).

After preliminary analysis and discussion with 4 domain experts,

we decided to assess the following categories of the most common

and significant risk factors:

• Symptom: any simple abnormality in bodily state or function

that could be observed by a patient
• Laboratory test: a procedure analyzing patient’s bodily fluids or

tissue
• Condition: diseases, injuries, and other abnormalities detectable

through medical investigation
• Investigation: any procedure performed to investigate patient’s

condition (other than a laboratory test)
• Behavior: a patient’s habits that may affect their health
• Healthcare provider: an institution, organizational unit or a

medic providing medical service
• Treatment: a procedure intended to improve a patient’s state.

Each risk factor mention is assigned a qualitative measure of the

risk severity given the context, which is limited to the current sen-

tence. The risk level is encoded as 1 of 4 possible categories:

• None: the factor does not influence the patient (eg, it is negated

or associated with unrelated person)
• Low: the factor applies to the patient, but does not pose a signifi-

cant mortality risk
• Medium: the factor is associated with mild or moderate mortality

risk
• High: the factor is associated with major mortality risk

Analysis workflow
Our risk extraction workflow, shown in Figure 1, consists of the fol-

lowing steps:

1. annotating a corpus of medical records with the desired catego-

ries using human experts

2. training a named entity recognizer to extract factors of the given

categories

3. training a binary classification model that filters out factors with

risk level none.

4. training a model that estimates the risk level for non-none risk

factor mentions (the focus of the proposed methodology).

The annotation process was carried out in close cooperation

with experts in medical risk assessment. First, annotation guide-

lines were developed through discussion with the experts and trial

annotations to ensure the rules are straightforward and cover the

important risk. Second, a corpus consisting of anonymized health

records was gathered. The majority of content (300 reports, 80%

of risk factors) was obtained by extracting discharge summaries

from the openly available MIMIC-III database, which had been

de-identified and approved for release.51 This dataset, produced

by critical care units, frequently describes very serious medical

problems. To balance it with some lower-risk content, it was ex-

tended with a synthetic set of 231 documents (20% of risk fac-

tors) by asking the experts to generate free-text health reports in

the style produced by general practitioners for routine medical his-

tory summarization.

All the manual annotation was performed within brat.52 To ex-

pedite the process, the corpus was preannotated by mapping con-

cepts recognized by UMLS MetaMap53 to risk factor categories.

Three annotators took part in the annotation. After an initial anno-

tation round, documents were selected for annotation by applying

active learning with a named entity recognition model. This means

that in each subsequent round a named entity recognition model

was trained on annotations available then and applied to the unla-

beled documents. Next, a model’s uncertainty about each document

was computed by averaging the entropy of label probabilities across

tokens. The documents with the highest average entropy (the lowest

model certainty) were chosen for the next round of manual annota-

tion. In total, of 531 annotated reports, 121 were double-annotated

(approximately one-third by each annotator pair) to assess interan-

notator agreement between them. Interannotator agreement for en-

tity extraction, measured using the relaxed F-score (considering 2

entities matching if their spans overlap), reached a value of 0.865.

To measure risk assignment agreement, we computed accuracy on

the matching entities and obtained a value of 77%. For the purpose

of risk quantification evaluation baseline (see Results), the risk levels

were converted to continuous values as described in the next section

and used to compute mean squared error.

The main focus of this article is on the last stage of the work-

flow, namely risk quantification. The Supplementary Appendix pro-

vides information on the previous stages and evaluation of the

performance of the entire workflow.

Risk quantification
The goal of risk quantification is to select a risk level (low, me-

dium, or high) for each non-None risk factor mention in context.

Due to their intrinsic ordering, we represent them quantitatively

(low as 0.0, medium as 1.0, high as 2.0) and consider their predic-

tion as a regression task. The trained model will output a real-

valued score, which is mapped to low, medium, or high by choos-

ing appropriate threshold values.

The risk quantification problem is informed by 2 sources: the

risk factor concept itself and neighboring words. When MetaMap

Lite54 recognizes a concept overlapping with the mention, the corre-

sponding UMLS concept ID is used; otherwise, a surrogate ID is

formed by concatenating the included words (ignoring capitaliza-

tion). A concept is represented in the model using one or both of the

following:

• a sparse representation in which every concept ID is represented

with a separate binary feature,
• a dense vector from continuous (L2-normalized) UMLS concept

embeddings trained on a large corpus55

The latter allows us to improve the performance in the case of

concepts unseen in training data, by leveraging their distributional

similarity to known concepts.

Each mention in a sentence is represented using the following

features:

• the category label for the mention,
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• the bag-of-words representation of lemmata (base forms) of up

to 5 words preceding the mention,
• the bag-of-words representation of lemmata of up to 5 words fol-

lowing the mention,
• the value of the logarithm of the first number following the men-

tion (within 4 words), discretized by dividing the range between

–5.0 and 10.0 (manually selected to cover the vast majority of en-

countered numbers) into 50 equal-sized sections.
• mention attributes (negation: affirmed or negated, experiencer:

patient or other, and temporality: historical, recent, not particu-

lar) recognized by ConText,56 a tool based on regular expres-

sions.

All features are represented with binary indicator variables.

Context-aware linear modeling
Examples in the training set are triplets ðt; x; yÞ 2T�X� R con-

sisting of the task identifier, the features, and the target value,

where T ¼ f1; . . . ;Tg is the set of tasks (corresponding to concept

IDs), X ¼ R
d is the feature space, and the target values are real-

valued risk scores. The tasks also index the task embeddings

E ¼ fetgt2T, where tasks lacking a trained embedding vector are

mapped to a vector of zeros.

For a previously unseen task, with unknown task embedding, the

model prediction of the risk is computed as

ŷ ¼ bþ u>x; (1)

where b 2 R is a bias, u;x 2 R
d are the common coefficient vector

and feature representation. For tasks unseen in the training set, but

with known embedding, the prediction is

ŷ ¼ bþ u>xþ v>et; (2)

where v; et 2 R
de are the task-embedding coefficients and task em-

bedding. Since the task embedding is constant for every instance of a

task, v>et acts like a bias for the task. The full context-aware model

prediction is expressed as

ŷ ¼ bþ u>xþ v>et|{z}
shared

þbt þw>t x|{z}
task-specific

; (3)

where bt 2 R is the task-specific bias and wt is the task-specific coef-

ficient vector.

The vector of task-specific biases and matrix of task-specific

coefficients in the training set are denoted bT ¼ ½b1;b2; . . . ; bT�> and

W ¼ ½w1;w2; . . . ;wT �, respectively. Equation 3 is linear with respect

to all of the parameters b; u; bT; v;W. The total number of parame-

ters is 1þ d þ de þ T � ð1þ dÞ. The parameters are optimized to

minimize the mean squared error of the risk estimate in the training

set. This corresponds to a maximum likelihood estimate assuming

the predictions errors e have a zero-mean Gaussian distribution with

some variance r2, such that the risk is expressed as ŷ þ e.

For an intelligible model, the goal is to select a subset of features

that are common (shared) across tasks at the same time as selecting

a subset of features that have a task-specific relationship. The subset

of task-specific features could be common across tasks,38–40 or each

task could have an independent subset.49

These diverse constraints can be enforced during training using

regularization terms on the parameters. Collecting the parameters

into the vector u0 ¼ ½u>; v>�> and the matrix W0 ¼ ½bT;W
>�>, we

propose to balance the regularization terms and the mean squared

error loss using trade-off parameters w and k:

Figure 1. Outline of the risk assessment workflow. The focus of this article is on the last stage (ie, risk quantification). CALM: context-aware linear modeling; CRF:

Conditional Random Field; EHR: electronic health record.
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min
b;u;v;bT ;W

Xn

i¼1

1

n
ðyi � ŷiÞ

2 þ k
1� w

X1ðu0Þ þ
k
w

X2ðW 0Þ: (4)

This formulation is valid for values of w between 0 and 1. When

w ¼ 0 it reduces to single-task learning (an infinite penalty on the X2

term forces the task-specific coefficients to be zero), and when w ¼ 1

this is a multitask model without any shared coefficients.

To select a subset of features, the common coefficients and

the task-embedding coefficients are regularized with the sparsity-

inducing L1 norm (jj � jj1):

X1ðu0Þ ¼ kuk1 þ /kvk1; X2ðW 0Þ ¼ kvecðW 0Þk1 ¼
Xd

i¼1

XT

j¼1

jW 0
ijj; (5)

where / is set to 1 enable the task embedding, or set to infinity to re-

move the task embedding from the model.

The task-specific biases and coefficients can be regularized with

either the L1 norm or combinations of structured matrix norms. For

instance, the L2, 1 norm will encourage the selection of features that

are relevant across all tasks (ie, the task-specific coefficients for a

given feature are either zero for all tasks or nonzero for all tasks).

Thus, this regularization scheme is equivalent to a group LASSO

where the task-specific coefficients for a single feature form a group:

X2ðW0Þ ¼ kW0k2;1 ¼
Xd

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

j¼1

ðW0
ijÞ

2

vuut : (6)

Both of these regularization schemes lead to convex minimiza-

tion problems. In particular, using the L1 norm for each regulariza-

tion term,

k
1� w

ðkuk1 þ /kvk1Þ þ
k
w
ð
X

t

jbtj þ kwtk1Þ; (7)

encourages only a subset of the common features and the task specific

features and biases to be nonzero. Due to the high-dimensional sparse

data, we use glmnet57 to solve the model with the L1þL1 regulariza-

tion. The values of w and k are chosen via 5-fold cross validation on

the training set. For a given value of w 2 f0;0:05; . . . ; 0:95; 1g the

coefficients across a range of k values are computed efficiently via the

regularization path.

Alternatively, the structure of the optimization problems for L2,1

or trace-norm regularizations requires special solvers for large-scale

problems46,58,59 or general optimization frameworks such as alter-

nating direction method of multipliers approaches.60–64 In particu-

lar, we implement an alternating direction method of multipliers

approach to estimate the model coefficients for a regularization ex-

pression combining the L1 norm on the common factors and the L2,1

norm for multitask feature selection:

k
1� w

ðkuk1 þ /kvk1Þ þ
k
w
kW0k2;1; (8)

where k
1�w ;

k
w 2 f10ig2

i¼�2 are chosen via 5-fold cross-validation.

Evaluation
To evaluate the CALM method on the risk quantification problem,

we use the corpus described in the Analysis Workflow section,

which contains 99 376 risk factor mentions assigned a risk level

other than None. In total, 21 776 binary features are generated;

there are 9988 distinct risk factors (tasks). Figure 2 shows the un-

even distribution of the number of instances among the tasks follow-

ing Zipf’s law,65 typical for word frequencies: from a few common

risk factors (the most frequent has 824 mentions) to 3613 single-

mention ones. 6534 of the risk factors are assigned a UMLS ID and

5114 of these have concept embeddings.

To allow us to focus on the problem of risk quantification, the

risk factors and their risk levels are taken from the human annota-

tions (evaluation of an end-to-end solution, where risk quantifica-

tion is run on automatically recognized mentions, is provided in

the appendix). The data is divided into a training (70%), develop-

ment (15%) and test set (15%, 79 documents, 11 596 mentions)

for the final evaluation. The division is random, and stratified,

such that the ratio of MIMIC summaries and manually created

reports is consistent in each portion and all double-annotated

documents are in the training set. Due to the distribution of risk

factors, 8.88% of the test instances correspond to risk factors that

only appear in the test data.

The evaluation measure is the mean squared error (MSE)
1
n

X
i

ðyi � ŷiÞ
2. Two baselines are available:

• Naive: MSE between the test instances and the mean risk in the

training data
• Human: MSE between pairs of risk factor mentions in double-

annotated documents

The naive baseline represents the performance of a simplistic

model that assigns the same risk value (mean risk from the training

portion) to every single instance in the test data and the human base-

line indicates the performance that we could expect from a human

(measured through interannotator agreement).

To assess the significance of differences in MSE between com-

pared methods, a randomized permutation test66 was performed.

Specifically, to compare outputs of methods A and B, a set of R sur-

rogate pairs A’ and B’ was created by swapping the predictions of A

and B for randomly selected documents. Next, let r denote the num-

ber of surrogates for which the absolute difference of the perfor-

mance measure (ie, MSE) was at least as large as the original

difference between A and B. For large R (we used 100 000), the

value computed as rþ1
Rþ1 approaches the significance level and we treat

.01 as the threshold for significance.

RESULTS

Table 1 shows the MSE for different approaches, comparing base-

lines (human agreement and mean risk in the training data), single-

task models and multitask CALM. The table includes the MSE com-

Figure 2. Risk factor mention count distribution plotted on log-log scale.
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puted on subsets of risk factors present in the training data (known)

and only in testing (unknown). The results show that taking into ac-

count the problem’s multitask structure reduces the error substan-

tially: MSE falls from 0.33 to 0.25. This is mostly due to better

performance on known tasks, as the error on unknown ones is lower

with the single-task approach (0.40) compared with CALM (0.45).

The addition of the task embeddings reduces this gap, achieving the

lowest overall error of 0.2425, which is better than the human

agreement level over double-annotated documents. The value of w
selected through 5-fold cross-validation for this configuration is 0.5,

which corresponds to an equal penalty for the common and task-

specific feature coefficients. The randomized permutation test indi-

cates statistical significant differences (significance level of .01) be-

tween the overall MSE of the best method (L1þL1 with

embeddings) and each of the other methods (P<10�5), except for

multitask feature selection.

Due to the high number of both tasks and features, the total

number of coefficients is over 182 000 000. Table 2 shows the num-

ber of nonzero coefficients in the 3 models that use embeddings. We

can see that the 2 best-performing models differ greatly, mostly due

to number of task-specific coefficients: L1þL1 is a simpler model,

making it more usable and interpretable.

To provide greater insight into the best-performing model, Table

3 lists the most important features based on the magnitude of the

feature coefficient. For example, many of the common features with

negative coefficients are words related to family (fh, father), since a

condition mentioned in the context of family history carries less risk

than if it was experienced by the patient. In contrast, the appearance

of the word critical increases the risk of the following mention. The

task-specific features frequently correspond to laboratory tests, with

the risk depending on the following numerical expression. They can

also describe more subtle phenomena (eg, the word due increases

risk associated with alcohol, as an expression such as “likely due to

alcohol abuse” suggests that alcohol problem is serious enough to

cause other factors).

To provide more insight into the type of errors made by the best-

performing model, Figure 3 shows the empirical probability density

plot of the predicted risk values for the mentions annotated as low,

medium, or high by the experts. We can see that the higher true

risk level is, the harder it is for the model to assess it properly. While

low-risk factors are well separated from the rest, distinction between

medium and high remains a bigger challenge, especially given the

underestimation and the range of predictions associated with high-

risk factors.

To illustrate the results in terms of discrete categories of low,

medium, and high risk, we performed quantization of the continu-

ous risk score using the manually selected thresholds:

Low < 0:5� Medium < 1:3�High:

To compare the differences between predicted and actual risk

levels with differences between annotators we computed confusion

matrices, which are shown in Table 4. They show that the CALM

model achieves better performance for medium-level risk

factors and is less likely to assign low or high values compared

with human annotators. This could be linked with the loss function

associated with the linear regression in CALM imposing a lower

penalty for confusing low or high with medium than with the al-

ternative.

Finally, Figure 4 shows the differences in terms of the proportion

of high-, medium-, and low-risk factors in each document displayed

as ternary plots. Consistently with the confusion tables, we can see

the systematic bias of the model to assign the medium risk value,

compared with the variety of directions caused by interannotator

disagreements.

Table 1. Error values for baseline approaches and different CALM methods (with their regularization schemes) calculated on all mentions in

the test set (all) and the subsets of mentions with risk factors present or absent in the training data (known and unknown, respectively)

MSE

Method Regularization Scheme All Known Unknown

Human baseline (interannotator agreement) – 0.2465 — —

Naive baseline (mean risk in training data) – 0.5362 0.5335 0.5631

Single task without embeddings Eq. 7, / ¼ 1; w ¼ 0; k ¼ 0:002636 0.3295 0.3228 0.3978

Single task with embeddings Eq. 7, / ¼ 1, w ¼ 0, k ¼ 0:002432 0.2977 0.2908 0.3680a

L1þL1 without embeddings Eq. 7, / ¼ 1, w ¼ 0:55, k ¼ 0:002116 0.2533 0.2345 0.4454

L1þL1 with embeddings Eq. 7, / ¼ 1, w ¼ 0:5, k ¼ 0:002432 0.2425a 0.2289a 0.3817

Multitask feature selection Eq. 8, / ¼ 1, w ¼ 1
11, k ¼ 10

11 0.2461 0.2306 0.4052

CALM: context-aware linear modeling; MSE: mean squared error.
alowest error values in each set.

Table 2. Number of available coefficients in each of the elements of CALM models and number of nonzero values in 3 of the methods

employed

Nonzero Coefficients

u Common

Feature Coefficients

bT Task-Specific

Biases

v Task Embedding

Coefficients

W Task-Specific

Coefficients

All

Available 19 835 9215 500 182 779 525 182 809 075

Single task with embeddings 2118 — 94 — 2212

L1þL1 with embeddings 1928 2000 77 7735 11 740

Multitask feature selection 2656 9215 37 63 319 75 227

CALM: context-aware linear modeling.
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DISCUSSION

The results demonstrate that the multitask nature of the problem

can be successfully captured by the CALM framework. CALM per-

forms better than a single-task model, and is able to generalize to

new tasks by exploiting the similarity of the risk assessment for simi-

lar risk factors. Two of the regularization schemes, namely the

L1þL1 scheme and the multitask feature selection, achieve similar

error values, but differ in terms of model complexity. Given that the

L1þL1 model uses less than one-sixth of the coefficients, it would

be preferable in scenarios where interpretability of model decisions

is a factor.

Any supervised model is limited in its accuracy by the consis-

tency of the training data. For this data set, the model achieved an

error rate on par with the level of disagreement between human

experts. However, specific discrepancies in the model’s risk assess-

ment remain, as shown by the aggregated summaries of the risk cat-

egories (Table 4) or documents (Figure 4). For example, 40% of the

high-level risk factors were assigned the medium level by the model.

As in most applications, the cost of overestimating a risk is lower

than underestimating it, the MSE cost function could be replaced by

an asymmetric cost function that penalizes underestimation of risk.

Alternatively, the risk levels may be better modeled with ordinal re-

gression, with appropriate regularization.67 The interannotator dis-

crepancies shown in Table 4 and Figure 4 show that the human

experts also had difficulties in agreeing on risk levels. The risk scale

we used is relatively coarse-grained and some risk factors that are

currently annotated as high risk may in fact differ in significance in

human judgement, so adding finer-grained risk levels (e.g., me-

dium-high and very high) or quantitative judgements of

expected impact to lifespan may be beneficial.

Based on this outcome, future work should incorporate the feed-

back of the experts and use their knowledge to perform detailed

manual error analysis. This would help to understand, which of the

prediction errors are caused by imperfections of the algorithm and

which are caused by the differences of subjective risk judgement. En-

Table 3. Top 11 features with the highest importance for the model (features with at least 5 occurrences selected according to absolute coef-

ficient value) of 2 types: common and specific to a risk factor (quoted as appearing in text)

Risk Factor Feature Coefficient Explanation

(common) <lumbosacral –0.7471 Abnormalities in the lower back have a low mortality risk

(common) >her2 þ0.6864 Overexpression of HER2 associated with breast cancer

(common) <fh –0.6606 A risk factor listed as family history (fh) carries lower risk

(common) <pint þ0.6443 Alcohol quantity influencing the risk

(common) <lid –0.6131 Treatments or symptoms near an eyelid have a lower mortality risk

(common) <critical þ0.6077 Critical state of a condition

(common) <vodka þ0.6047 Indicating higher alcohol consumption

(common) <subdiaphragmatic –0.5761 Increased risk for factors regarding the body cavity below the diaphragm

(common) >detox þ0.5620 Mentioned in context of alcohol or drug problems

(common) <methadone þ0.5549 An analgesic that can be administered to treat withdrawal from illicit drugs

(common) <father –0.5368 Conditions experienced by the patient’s father

BUN [40–55] þ0.9039 A high level of blood urea nitrogen (mg/dL)

CAD ConText.OTHER –0.7943 Risk of coronary artery disease lessened when experienced by someone other than the

patient, such as family member

Alcohol <due þ0.7823 Alcohol abuse causing other condition, as in due to alcohol use

BUN [55–74] þ0.7657 A high level of blood urea nitrogen (mg/dL)

EtOH [445–601] þ0.7510 Alcohol level measured on admission (mg/dL)

Smoking >day þ0.7380 Smoking daily (eg, smoking 23/day)

BP [181–245] þ0.7375 Increased risk from high systolic blood pressure (mm Hg)

Varices >leg –0.7134 Varices, when located in legs, carry less risk

SBP [181–245] þ0.7120 Increased risk from high systolic blood pressure (mm Hg)

Triglycerides [2.72–3.67] þ0.7119 Increased triglyceride level (mmol/L)

Bnzodzp >pos þ0.7043 Positive results of benzodiazepines measured on admission, possible drug abuse

Features include several types: numbers falling in specific ranges (square brackets), words in left or right neighborhood (<, >) and labels assigned by the Con-

Text tool.56

BP: blood pressure; BUN: blood urea nitrogen; CAD: coronary artery disease; EtOH: ethanol; SBP: systolic blood pressure.
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Figure 3. Empirical probability density function of the risk values predicted by

the best-performing model for the risk factors belonging to the low, medium,

and high category according to manual annotation.
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hancing the quality and consistency of annotations using limited

resources could be facilitated by using annotator reliability assess-

ment methods, such as proactive learning,68 and supporting annota-

tion tools.69 Improving the performance of other elements of the

end-to-end solution could also result in better risk assessment (see

the Supplementary Appendix for details).

In a broader context, the current model is limited to assessing

individual statements because it only considers the features

within the same sentence. Assessing individual statements is use-

ful to pinpoint risks, but to move toward overall mortality risk

the context of the whole medical record across multiple visits

could be considered. In this case, the subjectivity of human

judgement could be avoided by using patient survival data in-

stead. However, a classifier using an entire medical history,

which is itself extremely difficult to obtain, may become biased

toward serious conditions occurring late in the record and ignore

earlier and less serious risk indicators. Using expert judgement

allows us to identify known risk factors within portions of

reports, even if their effect is subtle. To move beyond individual

statements, the association between different risk factors per re-

cord could be captured by introducing aspects of collaborative

filtering,70 another direction for future work.

CONCLUSION

In this work, we have introduced a novel framework, CALM, and

used it to categorize individual mentions of risk factors in free-text

EHRs as having a high, medium, or low level of mortality risk, depend-

ing on both the medical concept to which they refer and the lexical

context in which the mentions occur. To assess the influence of both

features that are independent of risk factors and those which are spe-

cific to individual risk factors, we cast risk quantification as a multitask

learning problem, which benefits from prior information in the form of

concept embeddings. Experimental results validate our approach: the

performance of our multitask approach is better than the single-task

approach and approaches the level of interannotator agreement.
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