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The name human contact system is related to its mode of action, as “contact” with artifi-
cial negatively charged surfaces triggers its activation. Today, it is generally believed that 
the contact system is an inflammatory response mechanism not only against artificial 
material but also against misfolded proteins and foreign organisms. Upon activation, 
the contact system is involved in at least two distinct (patho)physiologic processes: 
i. the trigger of the intrinsic coagulation via factor XI and ii. the cleavage of high molecular 
weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin 
is involved in the regulation of inflammatory processes, vascular permeability, and blood 
pressure. Due to the release of AMPs, the contact system is regarded as a branch of the 
innate immune defense against microorganisms. There is an increasing list of pathogens 
that interact with contact factors, in addition to bacteria also fungi and viruses bind and 
activate the system. In spite of that, pathogens have developed their own mechanisms 
to activate the contact system, resulting in manipulation of this host immune response. In 
this up-to-date review, we summarize present research on the interaction of pathogens 
with the human contact system, focusing particularly on bacterial and viral mechanisms 
that trigger inflammation via contact system activation.
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inTRinSiC COAGULATiOn PATHwAY—THe PROCOAGULAnT 
ARM OF THe COnTACT SYSTeM

The human contact system consists of two proteases, factor XII (FXII) and plasma prekallikrein (PPK) 
as well as the non-enzymatic cofactor high molecular weight kininogen (HK, see Figure 1). The 
proteins are produced in the liver and circulate as zymogens in the blood stream or are assembled on 
endothelial cells, neutrophils, and platelets. When blood is exposed to foreign biological or artificial 
surfaces, zymogen FXII binds through and autoactivates into an enzyme. Activation is accompanied 
by a major conformational change in the structure of FXII (1). Classically, it is stated that FXII has to 
interact with negatively charged surfaces for activation, but the current paradigm is that any artificial 
surface has the potential for FXII autoactivation (2). HK, which is in a noncovalent complex with PPK 
(3), also binds to the surface, thereby exposing PPK for activation by FXII cleavage. In turn, activated 
plasma kallikrein (PK) cleaves and activates more FXII, forming a powerful activation feedback loop. 
When sufficient amounts of FXII are activated on the surface, FXII activates coagulation factor XI 
(FXI), leading to subsequent thrombin formation. This result—in vitro—in the formation of a fibrin 
clot and is used as a diagnostic coagulation test—the activated partial thromboplastin time (aPTT). 
However, individuals with congenital deficiencies in FXII, PPK, or HK, who show a prolonged aPTT, 
do not have bleeding diathesis or abnormal hemostasis, indicating that the intrinsic coagulation 
pathway does not contribute to physiological hemostasis (4). Moreover, contact activation in vivo 
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FiGURe 1 | The human contact system. Assembly of contact system factors on foreign biological or artificial surfaces activates factor XII (FXII). FXIIa activates factor 
XI (FXI) that triggers the intrinsic pathway of coagulation, which is involved in thrombosis. FXII also activates plasma kallikrein (PK), which cleaves high molecular 
weight kininogen (HK), followed by the release of the pro-inflammatory peptide bradykinin and antimicrobial peptides (AMPs). FXII and PK contribute in vitro to 
complement activation.
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always occurs under pathological conditions, such as thrombosis 
(5), sepsis, or ARDS (6, 7), which makes FXII a promising thera-
peutic target to limit thrombosis without increasing bleeding 
risk (8). Thus, it has been questioned whether activation of the 
intrinsic coagulation by FXII is really its main physiological func-
tion. Instead, it was suggested that the pro-inflammatory arm of 
the contact system—the kallikrein–kinin system—is more related 
to physiological in vivo functions (9).

THe PRO-inFLAMMATORY KALLiKRein–
Kinin SYSTeM AS A LinK TO innATe 
AnD ADAPTive iMMUniTY

High molecular weight kininogen is encoded by the KNG1 gene, 
which is alternatively spliced into two products, high and low 
molecular weight kininogen. High molecular weight kininogen 
(HK) contains six domains (D1–D6) with a range of procoagulant, 
pro-inflammatory, or antimicrobial functions. Low molecular 
weight kininogen (LK) lacks D6, wherefore it cannot bind PK or 
FXI and does not belong to the contact system. Upon activation 
by FXII, PK cleaves HK and the nonapeptide bradykinin will be 
released from D4 (10).

Bradykinin is one of the most potent inflammatory mediators 
in humans, after binding through its cell receptor B2R (11) it 
activates signaling pathways resulting in increased vascular per-
meability, vasodilation, hypotension, pain, fever. Furthermore, 
kinin receptors appear to be involved in autoimmune diseases 
(12). Although bradykinin is a short-lived mediator, it stimulates 
the production of superoxide radicals and nitric oxide and 
modulates the mobilization and release of histamine, arachidonic 
acid, prostaglandin E2, pro-inflammatory interleukin-1, and 
TNF-alpha (13).

Additionally, bradykinin is involved in activation of cellular 
innate immune responses, such as migration of neutrophils 
(14) and stimulation of alveolar macrophages (15). Exogenous 
bradykinin activates immature dendritic cells via B2R, thereby 
stimulating adaptive immunity (16). Moreover, cooperative 
activation of B2R and toll-like receptor 2 is responsible for an 
interferon-γ response in dendritic cells, linking innate and adap-
tive immune responses (17).

It has been proposed that neutrophils interact with the 
contact system to boost neutrophil extravasation by bradykinin-
mediated vasodilatation (18). Moreover, PK and FXII itself 
trigger inflammation by causing aggregation and degranulation 
of human neutrophils (19, 20). FXII contributes further to 
inflammation by induction of pro-inflammatory cytokines from 
macrophages (21).

Neutrophil extracellular traps (NETs) have been shown to 
bind and activate contact factors (22). Released from neutrophils 
in response to infectious and pro-inflammatory stimuli, NETs 
immobilize invading pathogens within a fibrous matrix consist-
ing of DNA, histones, and antimicrobial peptides (AMPs) (23), 
providing a suitable surface for contact system activation. The 
overall consequences of NETs release are not clear, far from being 
univocal. NETs may also be protective for the invading pathogen 
and contribute to autoimmune diseases (24).

Recent studies further reveal that also procoagulant 
microvesicles are equipped with a surface that allows binding 
and activation of contact factors and bradykinin release (25). 
Microvesicles are continuously shed from the membrane of 
every cell type examined to date. Procoagulant microvesicles are 
shed due to an infectious stimulus from the plasma membrane 
of monocytes (25, 26). The outer surface of such microvesicles 
is enriched in phosphatidylserine, which provides a catalytic 
surface for the assembly of contact and coagulation factors (27). 
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Moreover, microvesicles can explore antimicrobial activity (28), 
entrap bacteria, and prevent their dissemination from the local 
focus of infection in an animal model of sepsis (29). Formation 
and release of procoagulant microvesicles follows the principles 
of pattern recognition, as activation of monocytes is triggered by 
the binding of streptococcal M1 protein to toll-like receptor 2 
(30), which suggests that microvesicle release is part of the innate 
immune reaction.

A further link between the contact system and host defense 
is activation of the alternative complement pathway by FXII that 
triggers activation of the C1 complex (31). In the alternative 
complement pathway, PK can replace factor D for the activation 
of C3 convertase (32, 33). Simultaneous activation of the contact 
and complement system results in the generation of nascent 
molecules that have significant impact in various in inflammatory 
diseases including angioedema and cancer (34). Whether con-
tact system factors trigger activation of the complement system  
in vivo remains to be investigated.

Due to the generation of bradykinin by PK, the cleavage 
product HKa is formed, which differs from HK because of 
conformational changes (35). HKa stimulates secretion of the 
cytokines TNFα, interleukin IL-1β, IL-6, and the chemokines 
IL-8 and MCP-1 from human mononuclear cells, all of which are 
known to contribute to the inflammatory process (36).

Finally, HK-derived peptides display potent antibacterial and 
antifungal properties (37–40), contributing pivotal components 
of innate immunity, as such AMPs represent a first-line defense 
against invading pathogens. Recently Cagliani et al. (41) published 
a phylogenetic analysis indicating that mammalian kininogen 
genes evolved adaptively, in contrast to the other contact system 
genes. It has been proposed that kininogen gene KNG1 has been 
a target of long-lasting and strong selective pressures, suggesting 
that kininogen plays a central role in the modulation of immune 
responses (41).

Taken together, the kallikrein–kinin system contributes to 
innate immune defense by bradykinin dependent and independ-
ent mechanisms. Activation of contact factors triggers inflamma-
tory reactions that potentiate the host response against invading 
pathogens.

BinDinG OF COnTACT FACTORS AT THe 
PATHOGen SURFACe

In order to respond to a broad range of microbes the innate 
immune system uses a variety of proteins, which recognize 
surface features of microbial pathogens that differ from human 
cell membranes. Although the contact system is activated in vitro 
by high doses of purified bacterial lipopolysaccharides (LPS) 
(42, 43), contact factors bound to specific proteins and virulence 
determinants on the bacterial surface. Over 20 bacterial species 
are known to bind and activate contact factors on their surface, 
but the bacterial binding protein and the activating mechanism 
is often unknown (44). However, there are certain similarities in 
structure and property of bacterial proteins, which interact with 
contact factors. Many bacterial species possess long filamentous 
structures known as curli, fimbriae, or pili extending from their 
surfaces (45). Gram-negative bacteria, such as Escherichia coli 

and Salmonella enterica subsp. enterica ser. Typhimurium express 
curli fibers that bind all contact factors (46, 47). Curli play a major 
role in biofilm formation (48) and as adhesins, as they bind to 
proteins of the extracellular matrix. Similarly, Porphyromonas 
gingivalis, a Gram-negative periodontal pathogen, expresses long 
peritrichous, filamentous components, known as fimbriae, on the 
bacterial surface that are implicated in binding of contact factors 
(49). Interestingly both, curli from E. coli or Salmonella enterica 
as well as fimbriae from P. gingivalis (50) belong to a class of 
stable, ordered proteins, characterized structurally by repeating 
beta-strand units and known as bacterial amyloids (51). It might 
be that FXII recognizes bacterial exogenous amyloid structures 
as a pathogen-associated molecular pattern (52). This idea is 
supported by studies showing that FXII binds and activates on 
endogenous amyloids and misfolded proteins (53, 54), proposing 
that FXII-dependent activation of PK is a conserved protective 
response that recognize and clear non-physiological or damaged 
host proteins in the extracellular space (55). We have recently 
shown that different pili of Streptococcus gallolyticus—a Gram-
positive strain and endocarditis isolate—are involved in binding 
and activation of contact factors. The adhesin from the pilus binds 
FXII with high affinity, and we proposed that S. gallolyticus may 
trigger inflammation on the endocardium by activation of host 
blood coagulation and contact system activation (56). For both, 
the pilin adhesin Gallo2179 and the major pilin (Gallo2178) 
several amylogenic regions can be predicted by using “Waltz” 
an amyloid-prediction tool (57, 58). Nevertheless, whether these 
proteins are amyloids remains to be investigated.

The Gram-positive group A Streptococcus (GAS) bind HK, 
FXII, and FXI via their surface M protein (59), which forms 
fibrous hair-like structures at the bacterial surface (60), but is not 
part of a pilus (61). Protein FOG, a fibrinogen-binding M-like 
protein, and protein G, from Group G streptococci also bind HK, 
FXII, and FXI (62). Interestingly in this context, immunoglobulin 
binding domain of the streptococcal protein G also forms amy-
loid fibrils (63).

Moreover, several adhesins from Candida spp. have been 
demonstrated to bind all contact factors (64).

Factor XII binds to human proteins with amyloid-like proper-
ties by the fibronectin type I domain (54); however, the precise 
binding site for pathogens on FXII are unknown. In HK some 
interactions have been mapped to D3, D5, and D6 (41).

Thus, so far identified bacterial and fungal proteins that are 
bound by contact factors have several properties in common, 
a fibrous hair-like structure, extension from the bacterial cell 
surface, and function as adhesins by binding of fibrinogen, 
fibronectin, collagen, or laminin. It remains to be investigated to 
what extend bacterial amyloid proteins play a role for activation of 
FXII, as also Streptococcus mutants or Mycobacterium tuberculosis 
display amyloid fimbriae (65, 66).

COnTACT SYSTeM ACTivATiOn BY  
THe PATHOGen

Binding and local activation of contact factors at the pathogens 
surface triggers inflammatory reactions that support the first line 
in host defense against the invaders. However, eukaryotic and 
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TABLe 1 | Enzymes produced by pathogens that activate or cleave contact factors.

Species enzyme Target Reference

Bacteria
Aeromonas sobria Serine protease (ASP) Plasma kallikrein (PK), HK, LK (71)
Bacillus stearothermophilus Thermolysin Factor XII (FXII)/PK (72)
Bacillus subtilis Subtilisin FXII/PK
Group A Streptococcus (Streptococcus pyogenes) Cysteine protease (SpeB) HK (67)

Streptokinase-activated plasmin FXII/PK, HK (73)

Porphyromonas gingivalis Lysine-specific gingipain (Kgp) HK (74)

Arginine-specific gingipains (RgpA, RgpB) PK (69)

Pseudomonas aeruginosa Alkaline phosphatase FXII (72, 75)

Elastase FXII
Serratia marcescens 56-, 60-, and 73-kD proteinases FXII (72)
Staphylococcus aureus Staphopains A and B (ScpA and SspB) HK (68)

V8 proteinase HK (72)

Streptomyces caespitosus Proteinase HK (72)
Vibrio cholerae Protease Not known (76)
Vibrio parahaemolyticus Serine protease FXII/PK (77)
Vibrio vulnificus? Metalloprotease FXII/PK (72, 78)

Fungi
Aspergillus melleus Proteinase FXII (72)
Candida albicans Carboxyl peptidase FXII/PK (79)
Candida spp. Aspartic proteases HK (80–82)

Parasites
Fasciola hepatica Cysteine proteases HK (83)
Plasmodium chabaudi and Plasmodium falciparum Falcipain-2

Falcipain-3
HK (84)

Trypanosoma cruzi Cysteinyl-Proteinase (Cruzipain) HK (70, 85)
Schistosoma mansoni Secreted enzyme FXII/PK, HK (86)
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prokaryotic microorganisms can exploit the system and induce 
its activation by different mechanisms. This may promote invasive 
spread via bradykinin-induced vascular leakage, since inflowing 
nutrient-rich plasma to the infected tissue site might serve as a 
route for the disseminating pathogen. Microbial cysteine pro-
teases such as SpeB from GAS (67), staphopain A and B from 
Staphylococcus aureus (68), gingipains from Porphyromonas 
gingivalis (69), and cruzipain from Trypanosoma cruzi [for a 
review see Ref. (70)] can directly liberate kinins from HK (see 
Table 1). Aeromonas sobria, a pathogen causing gastroenteritis 
and sepsis, secrets a serine protease that activates PK, and also 
directly cleaves HK as well as LK, thereby producing vascular 
leakage activity (71).

Plasmodium parasites, which cause malaria in the host, gener-
ate bradykinin in a different way. They process HK intracellular, 
probably by cysteine proteases. Thus, by releasing vasoactive 
peptides, derived from host HK, plasmodium is able to induce 
vasodilatation and endothelial cell permeability to facilitate 
parasite survival (84, 87).

Furthermore, extracellular bacterial or fungal proteinases 
generate proteolytic activity of FXII or PK, thereby producing 
bradykinin indirectly [see Table 1, for a review see Ref. (44, 72)].  
Indirect bradykinin liberation can also be induced by activation 
of host proteinases, as it has been recently shown for secreted 
streptokinase, a GAS plasminogen activator (73). Many invasive 
pathogens exploit plasmin as a virulence factor to degrade 
fibrin clots, overcome tissue barriers, and evade peptide-
derived host immune defenses (88, 89). Contact activation by 

streptokinase-activated plasmin could explain systemic contact 
activation and bradykinin liberation seen during invasive strep-
tococcal infection (90). Moreover, dysregulation of the tightly 
regulated hemostasis by contact system activation may represent 
another virulence mechanism for streptokinase. Accordingly, 
the data reveal that GAS isolates from invasive infections trigger 
an activation of the contact system more potently than strains 
isolated from noninvasive infections (73).

Hence, activation of the contact system by the pathogen adds 
another level of complexity to the interaction between pathogen 
and host during infections.

ACTivATiOn OF THe COnTACT SYSTeM 
in ReSPOnSe TO viRAL inFeCTiOnS

Besides pro- and eukaryotes, there are few studies describing 
contact system activation arising from viral infections. Infection 
of ferrets with influenza A virus results in an increased genera-
tion of bradykinin in nasal secretion, suggesting that kinins may 
contribute to local symptoms of sneezing, nasal congestion, and 
rhinorrhea (91).

Dengue fever is a rapidly spreading mosquito-borne viral 
infection often manifests in severe forms. Dengue hemorrhagic 
fever and dengue shock syndrome can lead to life-threatening 
complications, including vascular permeability and hemorrhagic 
manifestations. Reduced serum levels of kininogen were observed 
in dengue fever patients, which may be due to proteolysis and 
generation of bradykinin to trigger inflammatory reactions (92).
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Human immunodeficiency virus (HIV) progressively damage 
the immune system, which can lead to endothelial dysfunction 
and liver damage leading to coagulopathy and over time acquired 
immunodeficiency syndrome. It was shown that HIV-positive 
patient have significant prolonged prothrombin time and aPTT 
(93). Another study showed significant decreased PK activity, but 
HK concentrations were not significant different between healthy 
controls and HIV-positive patients (94). Similarly, in patients 
with HIV–hepatitis B virus co-infections, a significant decrease 
of PK concentration was measured (95), indicating consumption 
due to activation.

Hantaviruses are responsible for hemorrhagic fever with 
renal and pulmonary syndrome, both of which present with 
edema and hemorrhage. Recently Taylor et al. demonstrated that 
hantavirus-infected cells trigger activation of the kallikrein–kinin 
system, revealing a novel mechanism of hantavirus-induced 
vascular leakage. Incubation of contact factors FXII, PK, and HK 
with hantavirus-infected endothelial cells leads to an increased 
cleavage of HK, increased amounts of activated FXII and PK, and 
liberation of bradykinin. In addition, cell permeability could be 
avoided using inhibitors that directly block bradykinin binding, 
the activity of FXIIa, or the activity of PK. Furthermore, they first 
demonstrated a FXII binding and autoactivation on hantavirus-
infected endothelial cells (96).

It has not been shown yet whether the virus will be bound and 
activate contact factors directly. But enveloped viruses probably 
provide an appropriate surface for contact activation as the viral 
envelop is typically derived from host cell membranes. Herpes 
simplex virus 1 (HSV-1) contains phosphatidylserine and tissue 
factor on its surface, both derived from the host cell membrane. 
After addition of HSV-1 to plasma, clotting was induced by the 
extrinsic and intrinsic pathway of coagulation (97), similarly to 
procoagulant microvesicles (25).

Thus, there is evidence that the contact system is involved in 
vascular leakage and inflammatory reactions seen in viral infec-
tions. It remains to be investigated whether contact factors bind 
and activate on the viral surface or on viral infected cells, and 
whether this interaction may protect from virus-induced disease.

THe ROLe OF COnTACT SYSTeM 
FACTORS in SePSiS

Sepsis is the archetypical disease state were systemic contact 
activation occurs (6, 98), and multiple animal studies were done 
targeting the system to evaluate potential therapeutic options. In 
animal studies with different species pharmacological interven-
tions that inhibit FXII, PK, or bradykinin-receptors during sepsis 
implicate beneficial for the host; however, human trials still lack 
the same confidence [for a review see Ref. (99)]. Moreover, little 

studies exist, revealing the role of single contact factors during 
microbial sepsis, using knockout animals or specific inhibitors.  
In a first study, FXII deficient mice were protected against 
hypotension induced by LPS, but coagulopathy, inflammatory 
responses, and lethality were not affected (100). Contrary, mice 
deficient in HK were resistant to LPS-induced mortality and 
had significantly reduced circulating LPS levels. Binding of LPS 
to HK induced cleavage and bradykinin release, proposing that 
HK—as a major LPS carrier in circulation—plays an essential 
role in endotoxemia (101). With regard to bacterial infection, a 
recent study by Stroo et  al. show, that FXII deficiency in mice 
improved survival and reduced bacterial outgrowth, in an airway 
infection with the Gram-negative Klebsiella pneumoniae, but the 
protecting mechanism is unclear. In contrast, FXII-deficient mice 
did not show a protective phenotype by using Gram-positive 
Streptococcus pneumoniae in the same infection model (102). 
Thus, the consequences of activating the contact system within 
the infection process have yet to be established.

COnCLUSiOn AnD OUTLOOK

John Hageman was the first patient identified with FXII deficiency, 
and he suffered from recurrent infections all his life. Beside this 
case, there are no reports in the literature linking contact protein 
deficiencies to increased susceptibility for infections. Because 
there are redundancies in the immune system, it is more than 
likely that such deficiencies only accidentally will be diagnosed, a 
phenomenon also seen in complement deficiencies.

Local activation due to contact factor binding on the patho-
gens surface may be protective against several infections, but 
activation by the pathogen may trigger systemic reactions that 
result in detrimental effects for the host.

These findings may offer a great promise for the development 
of novel therapeutic approaches, potentially complementing 
existing antibiotic therapies. However, the different mechanisms 
that trigger a systemic contact activation need to be understood 
more in detail.
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