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1  |  INTRODUC TION

As anthropogenic changes to the planet increasingly threaten 
ecosystems, species can respond in four ways (Hughes, 2000, 
Williams et al., 2008). They can migrate to new habitats that re-
semble the environmental conditions to which they are adapted 
(Wallingford et al., 2020). Individuals and populations can 

acclimate to changing environments via phenotypic plasticity in 
traits that allow them to persist in the same habitat (Williams et al., 
2008). Genetic changes in populations can lead to adaptation to 
changing environments if driven by natural selection on individ-
uals with heritable traits that confer greater fitness in the new 
environment (Carlson et al., 2014; Gomulkiewicz & Holt, 1995). 
Populations that are strongly affected by a changing environment, 
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Abstract
In many cases, understanding species’ responses to climate change requires under-
standing variation among individuals in response to such change. For species with 
strong symbiotic relationships, such as many coral reef species, genetic variation 
in symbiont responses to temperature may affect the response to increased ocean 
temperatures. To assess variation among symbiont genotypes, we examined the pop-
ulation dynamics and physiological responses of genotypes of Breviolum antillogor-
gium in response to increased temperature. We found broad temperature tolerance 
across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. 
Genotypes differed in the magnitude of the response of growth rate and carrying 
capacity to increasing temperature, suggesting that natural selection could favor dif-
ferent genotypes at different temperatures. However, the historical temperature at 
which genotypes were reared (26 or 30°C) was not a good predictor of contemporary 
temperature response. We found increased photosynthetic rates and decreased res-
piration rates with increasing contemporary temperature, and differences in physiol-
ogy among genotypes, but found no significant differences in the response of these 
traits to temperature among genotypes. In species with such broad thermal tolerance, 
selection experiments on symbionts outside of the host may not yield results suffi-
cient for evolutionary rescue from climate change.
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but unable to respond in any of these ways, are likely to go extinct 
(Hughes, 2000).

The nature of the response of species to anthropogenic change 
may depend on the extent of genetic variation in traits among indi-
viduals within a species. Ample evidence suggests that ecological 
responses to environmental changes are influenced by the extent of 
genetic variation within a population (Bolnick et al., 2011; Hughes 
et al., 2008; Violle et al., 2012) and that within-species variation can 
be as important for determining ecological outcomes as variation 
among species (Des Roches et al., 2018). Although the benefits of 
genetic diversity can derive from complementarity, in which some 
individual genotypes perform better in the presence of other indi-
vidual genotypes, benefits often arise from increased sampling of in-
dividual genotypes that are more tolerant of environmental change 
(Hughes et al., 2008; Reusch et al., 2005).

Understanding variation in individual responses to environ-
mental shifts may be critical for predicting ecological responses 
to anthropogenic change (Bolnick et al., 2011; Forsman, 2014). 
Populations may be better equipped to respond to changes to the 
environment when the population's niche includes the altered en-
vironmental conditions. Often species described as generalists are 
composed of a population of individual specialists (Bolnick et al., 
2003), so individual variation can allow the broader population to fill 
more niche space. The increase in niche use or different responses 
to environmental change can allow populations with greater genetic 
diversity to be more resistant to disturbance and lead to greater sta-
bility and increases in ecosystem function (Hughes & Stachowicz, 
2004; Schweitzer et al., 2011). The presence of genotypes toler-
ant to environmental change can allow acclimation of populations 
to such change. For example, individual genotypes of wild emmer 
wheat showed variation in their response to temperature and water 
stress, allowing the broader population to acclimate to changes in 
temperature and water availability (Li et al., 1999). Additionally, gen-
otype by environment (GxE) interactions can fuel natural selection 
for genotypes with traits more adapted to a new environment and 
can result in rapid evolution in response to a changing environment 
(Hairston et al., 2005; Thompson, 1998). Increasing temperature re-
sulted in the evolution of temperature tolerance in a diatom pop-
ulation because genotypes that were capable of maintaining high 
growth rates at that temperature became more common in the pop-
ulation (O’Donnell et al., 2018).

Coral reefs around the world are in crisis, due to a number of fac-
tors, but chiefly increasing ocean temperatures (Brown, 1997; Glynn 
& D’Croz, 1990; Hoegh-Guldberg, 1999). When ocean temperatures 
exceed a threshold, the mutualism between coral reef species and 
their dinoflagellate algal symbionts breaks down, resulting in coral 
bleaching. Given the dependence of hosts on photosynthetically de-
rived carbon from the algae, bleaching often results in the death of 
the host organism (Eakin et al., 2010, 2019; Glynn & D’Croz, 1990). 
Given sufficient time, coral reef species and their associated symbi-
onts may acclimate or evolve in response to increasing ocean tem-
peratures, but predictions of severe or total reef loss by 2050, and 
the consequences for the multitude of species that are associated 

with reefs, are dire (Heron et al., 2016; Hughes et al., 2018; Oliver 
et al., 2018; van Hooidonk et al., 2016).

Standing genetic variation among individuals in response to 
temperature may offer some hope in the face of these worrisome 
circumstances. The temperature at which bleaching occurs depends 
largely on the traits of both the host and the algal symbionts (Baird 
et al., 2009; Quigley et al., 2018). Acclimation to temperature may 
occur if hosts are able to shuffle or switch symbionts with more 
temperature-tolerant strains from either background populations 
within the host or populations in the ocean (Baker et al., 2004; 
Berkelmans & van Oppen, 2006; Buddemeier & Fautin, 1993; Jones 
et al., 2008). Standing variation in traits that confer thermal tolerance 
may allow for human-assisted evolution of reef species via artificial 
selection on symbionts (van Oppen et al., 2015). Both of these mech-
anisms of acclimation and adaptation via symbionts require stand-
ing genetic variation in thermal tolerance. There is some evidence 
that these mechanisms are possible on some reefs. Measurements 
of growth rates of symbionts in vitro suggest that there may be 
sufficient standing variation in thermal tolerance within species in 
many cases (Bayliss et al., 2019; Díaz-Almeyda et al., 2017; Grégoire 
et al., 2017; Pelosi et al., 2021). Symbiont genotypes from historically 
warmer reefs can allow for higher growth rates of hosts at higher 
temperatures (Howells et al., 2012). There is also emerging evidence 
that symbiont evolution in response to increased temperature can 
reduce bleaching (Chakravarti et al., 2017; Chakravarti & van Oppen, 
2018; Zilber-Rosenberg & Rosenberg, 2008).

Here we quantified the population dynamics and physiol-
ogy of several genotypes of a single species of algal symbiont 
that resulted from a long-term selection experiment at different 
temperatures. Breviolum antillogorgium is the dominant symbiont 
found in octocoral hosts from the genus Antillogorgia. Symbionts 
are transmitted horizontally and acquired from the environment. 
Our selection experiment and following in vitro experiments are 
likely to mimic conditions in the environment, rather than in hos-
pite, but we measured traits likely to affect the strength of the 
mutualism with the host that may ultimately determine which 
symbionts are able to successfully colonize hosts. We used the 
genotypes resulting from the selection experiment to quantify 
changes in traits in response to increasing temperature (acclima-
tion) and effects of historical temperature of the selection ex-
periment (adaptation), and to identify standing genetic variation 
in thermal tolerance that could allow for further acclimation or 
adaptation in the future. In a previous study, we found broad ther-
mal tolerance in growth rate and host survival among genotypes 
of Breviolum antillogorgium up to 30°C (Pelosi et al., 2021). Here 
we exposed these same genotypes to temperatures up to 32°C 
while also measuring additional traits, including growth rate, max-
imum sustainable population size, photosynthetic rate, and res-
piration rate. Algal symbionts trade photosynthetically derived 
carbon in exchange for nitrogen waste and other nutrients from 
their hosts. Respiration and photosynthesis affect the amount of 
carbon available for trade with the host, and thus may affect the 
strength of the mutualism. Symbiont growth rate and population 
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dynamics may have a non-linear effect on benefits to the host. At 
low symbiont densities inside hosts, rapid growth or high carrying 
capacity may allow the symbiont population to grow quickly and 
provide resources, but at high symbiont densities, rapid growth 
or overcrowding could lead to less net benefit per cell (Cunning & 
Baker, 2014).

2  |  METHODS

The genotypes used in this study were the same as those used by 
Pelosi et al. (2021). Briefly, we collected octocoral colonies in the 
genus Antillogorgia from Elbow Reef and Pickles Reef in the Florida 
Keys in September 2016 (11–18 m depth), homogenized the octoc-
oral tissue samples, and collected the symbionts by centrifugation. 
The resultant heterogenous slurry of symbiont strains was added to 
flasks with 30 ml f/2 media (Guillard & Ryther, 1962), and replicate 
flasks (n = 3) from each colony were immediately placed at and main-
tained at 26 and 30°C as a selection experiment for genotypes ca-
pable of survival and growth at the respective temperatures. After a 
year at these temperatures, molecular analysis confirmed that single 
genotypes dominated most flasks (Pelosi et al., 2021). As Breviolum 
antillogorgium appears to be specialized for octocorals within the 
genus Antillogorgia¸ we focused our study on this symbiont spe-
cies and recovered three B. antillogorgium genotypes from the 26°C 
treatment (G1, G2, G3) and two B. antillogorgium genotypes from the 
30°C treatment (G4, G5). Following isolation, these five genotypes 
were kept in monocultures at their respective temperatures for an 
additional 5 years (~650 to 700 generations), allowing for the po-
tential for accumulation of mutations in each genotype. These five 
genotypes were used in the present study. We confirmed the pres-
ence of a single algal genotype in each culture using five microsat-
ellite loci (Andras et al., 2009; Pettay & Lajeunesse, 2007; Santos 
et al., 2003), but cultures were not axenic with respect to bacte-
ria, archaea, and fungi, which we did not quantify. All cultures were 
maintained in identical growth chambers and transferred to fresh 
f/2 media monthly. Further details of collection and genotyping are 
available in Pelosi et al. (2021).

In March 2021, we initiated a laboratory experiment to measure 
population dynamics and physiology of each genotype at three dif-
ferent temperatures. We used the stock cultures of each genotype 
to initiate 15 new replicate 50-ml cultures at an initial density of 
10,000 cells/ml. Five of these cultures of each genotype were main-
tained in a growth chamber set at 26°C (actual mean temperature 
±SD determined by HOBO Data Logger: 25.5°C ±  0.51). Another 
five cultures of each genotype were grown in identical growth 
chambers set at 30°C (30.1° ± 0.28) and 32°C (31.6° ± 0.23). Lights 
were set on a 12:12 day:night cycle, with average day illumination 
of 4244 Lux (approximately 59 µmole m−2 s−1 based on a conversion 
of 1 lux = 0.014 µmole m−2 s−1). Mean temperature data from Elbow 
Reef from 2005–2015 indicate that in some years, mean tempera-
tures at Elbow Reef can exceed 30°C for months, but in other years, 

mean temperatures do not reach 30°C; however, the warmest years 
in that time period are the most recent (Pelosi et al., 2021).

Every 3 days, we removed 50 μl from each culture and performed 
four replicate hemacytometer counts and used the mean as an esti-
mate of cell density. We estimated densities over time for 34 days, 
by which time, all cultures had peaked in density and were in steady-
state growth. Due to a scheduling error, the cultures grown at 30°C 
were not counted on day 19. We used the time series data up to 
the time of maximum density in each culture to estimate per-capita 
growth rate (r) and carrying capacity (K) using the “growthrates” 
package (Petzoldt, 2019) in R v. 4.0.2 (R Core Team, 2020).

On Day 27 of the experiment, when all cultures were in steady-
state growth, we removed 2 ml from each culture grown at 26°C 
and used these samples to estimate rates of photosynthesis and 
respiration at each temperature. Replicate samples were placed in 
randomly assigned wells in a microrespirometry plate that quanti-
fied changes in oxygen concentrations over time (Loligo Systems, 
Viborg, Denmark) in the 26°C growth chamber. We also placed 
sterile f/2  samples in two wells in each plate to account for any 
background changes in oxygen concentration. Samples were dark-
adapted for 10  min before measuring oxygen levels in each well 
every 15 s for 10 min. Following this, we turned the lights on in the 
growth chambers, allowed samples two minutes to acclimate, and 
then again measured oxygen levels every 15 s for 10 min. The micro-
respirometry plates were then moved to the 30°C growth chamber, 
and later the 32°C growth chamber, and allowed to acclimate for 
15 min in each growth chamber before measurements were taken. 
We estimated respiration as the slope of a linear fit to declining oxy-
gen levels over time in the dark, subtracting any background changes 
in oxygen. Similarly, we estimated net photosynthesis as the slope of 
a linear fit to increasing oxygen levels, accounting for background 
changes in oxygen in the light. We estimated gross productivity by 
adding the absolute value of respiration in each culture to net pho-
tosynthesis. We standardized respiration, net photosynthesis, and 
gross photosynthesis by the number of cells in each well, determined 
by replicate hemacytometer counts, as above. We used the mean of 
the two replicate measurements of respiration and photosynthesis 
for each culture as the estimate for each culture.

At the end of the experiment, samples of each replicate were 
preserved in 95% ethanol. DNA was extracted and amplified follow-
ing the methods in Pelosi et al. (2021) to verify symbiont genotype at 
the end of the experiment. We used Analysis of Variance (ANOVA) 
to determine the fixed effects of historical temperature, contem-
porary temperature, and their interaction on maximum growth rate 
(r), carrying capacity (K), respiration, gross photosynthesis, and net 
photosynthesis in separate tests. Genotypes were nested within 
historical temperature. All data were visually inspected for nor-
mality and heteroscedasticity using Q–Q plots and plots of resid-
uals against fitted values. All data met the assumptions of ANOVA, 
except for r, which was log-transformed to meet assumptions. We 
performed model selection using Akaike's Information Criterion 
(AIC). When necessary, we used Tukey's post-hoc tests to compare 
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individual genotypes to each other. All analyses were conducted in 
the R Statistical Computing Platform (v. 4.0.2).

3  |  RESULTS

At the end of the experiment, genetic analyses indicated that each 
culture contained only the genotype we expected, except for cul-
tures of G3, which contained both G1 and G3. The extent of contam-
ination suggests that the stock culture of G3 likely contained both 
G1 and G3. We do not know the relative abundances of genotypes 
in these cultures, so observed results may be driven largely by either 
G1 or G3, or a combination of the two. Here we present results with-
out genotype G3 but include results of analyses including G3 in the 
supplemental material.

All genotypes had positive growth rates at each temperature. 
However, different genotypes had different growth rate responses 
to increasing temperature (Temperature  *  Genotype: F6,48  =  3.55, 
p = .005). Although every genotype experienced the highest mean 
growth rate at 30°C, the extent to which growth rates dropped at 
32°C varied among genotypes. For example, G1 and G4  showed 
a steep decline in growth rate at the highest temperature, but 
G2 showed little decline (Figure 1a). Similarly, the extent to which 
growth rate increased between 26°C and 30°C varied among gen-
otypes, with sharp increases observed for G1, G4, and G5, but little 
difference observed for G2 (Figure 1a). Although carrying capacity 
tended to be highest at 26°C, we observed more variable responses 
among genotypes in the response of carrying capacity to tempera-
ture (Temperature  *  Genotype: F6,48  =  5.53, p  <  .001). Genotype 
G4  showed a steady decline in K with increasing temperature 
(Figure 1b). G1 showed a peak in K at 30°C and G2 showed a de-
crease in K at 32°C, but G5 showed relatively little variation with 
temperature (Figure 1b). Historical temperature was not a part of 
either best-fit model (ΔAIC = 15.5 for r; ΔAIC = 16.2 for K).

All genotypes demonstrated the ability to acclimate their physi-
ology to each temperature to some extent, but these responses did 
not reveal a strong effect of historical temperature (ΔAIC  =  13.8 
for respiration; ΔAIC = 11.8 for gross photosynthesis; ΔAIC = 14.4 
for net photosynthesis). Genotypes had different respiration re-
sponses at different temperatures (Temperature  *  Genotype: 
F6,48 = 8.38, p <  .001). One genotype (G5) showed little variation 
in respiration across temperatures. The remaining three genotypes 
showed decreases in respiration at higher temperatures (30 and 
32°C) relative to 26°C, but the magnitude of the decrease varied 
among genotypes (Figure 2a). Temperature also had a significant 
effect on gross photosynthesis (F2,48 = 5.03, p =  .010), and geno-
types differed in gross photosynthetic rate (F3,48 = 28.5, p < .001), 
but, in contrast to the respiration results, there was no significant 
difference among genotypes in response to increasing temperature 
(Temperature * Genotype: F6,48 = 0.624, p = .710). Gross photosyn-
thetic rate increased with increasing temperature, and genotypes 
G2, G4, and G5 tended to have higher photosynthetic rates than G1 
(Figure 2b). Patterns of net photosynthetic rate were similar to those 

for gross photosynthesis; temperature (F2,48 = 15.1, p <  .001) and 
genotype (F3,48 = 23.5, p < .001) had a significant effect on net pho-
tosynthesis, but again, there was no significant interaction between 
temperature and genotype (F6,48 = 1.32, p = .267, Figure 3).

4  |  DISCUSSION

Our results demonstrate broad thermal tolerance in symbionts iso-
lated from Antillogorgia octocorals, with positive growth at tempera-
tures up to 32°C, which is beyond the bleaching threshold observed 
in many coral reef species (Berkelmans, 2002). We also observed the 
highest photosynthetic rates and lowest respiration rates at higher 
temperatures, suggesting that the potential benefits these symbi-
onts can provide to their mutualist hosts are considerable at tem-
peratures that appear to be stressful to many reef hosts. Population 
dynamics and physiology were largely dependent on genotype, sug-
gesting that individual variation among symbionts may be impor-
tant for the strength of mutualism. The lack of difference between 

F I G U R E  1 Mean (±SE) growth rate (a) and carrying capacity 
(b) of four genotypes of Breviolum antillogorgium grown at three 
temperatures. Genotypes in blue (G1–G2) were isolated and grown 
at 26°C and genotypes in orange (G4–G5) were isolated and grown 
at 30°C
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historical temperatures suggests that the observed responses are 
more likely the result of acclimation to different temperatures, 
rather than evolution in response to historical temperatures.

The increased photosynthetic rates we observed with increasing 
temperature may be explained by increased enzyme activity at higher 
temperatures, which can be especially important for acclimation to 
temperature changes (Iglesias-Prieto et al., 1992). An increase in net 
photosynthesis with increasing temperature suggests that symbi-
onts have more carbon available to provide to the host and may be 
beneficial across this range of temperatures. Increased respiration 
rates are often a sign of physiological stress for many organisms, but 
we generally observed decreased respiration rates with increasing 
temperature, further indicating broad thermal tolerance. Notably, 
we measured respiration and photosynthesis at steady-state popu-
lation growth, so these measures may not reflect physiology during 
exponential population growth. However, as hosts typically regulate 
symbiont cell densities, physiology during steady-state growth may 
best reflects the strength of mutualism with the host. Although the 
response of respiration to temperature varied among genotypes, 

photosynthetic responses to temperature did not. Across species of 
Symbiodinaceae, respiration and photosynthesis may become de-
coupled at different temperatures, with respiration often more sen-
sitive to temperature than photosynthesis (Pierangelini et al., 2020). 
These responses are species-specific, with strong coupling in some 
species and strong decoupling in other species (Pierangelini et al., 
2020). If similar mechanisms occur within species, this may help to 
explain the different responses of respiration and photosynthesis 
among genotypes in this study.

Although we observed increased growth rates between 26 and 
30°C, this is in contrast to Pelosi et al. (2021), where decreased 
growth rates were observed at 30°C in the same genotypes. We gen-
erally did not observe decreased growth rates until 32°C. Potentially, 
this difference could be driven by the rise of beneficial mutations 
over the hundreds of generations between studies. An alternative 
explanation is that these two studies were conducted in different 
laboratories (University at Buffalo vs. California State University, 
Northridge). Although the mean and variance in temperatures were 
similar between growth chambers in different laboratories, the light 
levels in this study were ~50% to 58% of the intensity of those in 
the previous study (~60 µmols m−2 s−1 here, vs. 103.8 to 120.6 µmols 
m−2 s−1 in Pelosi et al., 2021). The seawater in both labs was made 
from Instant Ocean, but the University at Buffalo water comes from 
the Aquarium of Niagara, in tanks with animals and may have higher 
nitrogen content. For many photosynthetic organisms, the optimal 
growth temperature depends on the light and nutrient environment 
(Edwards et al., 2016), which may explain the discrepancy between 
studies. This also highlights the potential importance of light and nu-
trient levels in conducting selection experiments in the laboratory 
and how they may change in natural environments or inside host 
tissues (Grottoli et al., 2021).

This experiment demonstrates significant differences among 
algal genotypes, but these differences were observed in vitro. These 

F I G U R E  2 Mean (±SE) respiration rate (a) and gross 
photosynthetic rate (b) of four genotypes of Breviolum 
antillogorgium grown at three temperatures. Rates were 
standardized by cell density. Genotypes in blue (G1–G2) were 
isolated and grown at 26°C and genotypes in orange (G4–G5) were 
isolated and grown at 30°C

F I G U R E  3 Mean (±SE) net photosynthetic rate of four 
genotypes of Breviolum antillogorgium grown at three temperatures, 
standardized by cell density. Genotypes in blue (G1–G2) were 
isolated and grown at 26°C and genotypes in orange (G4–G5) were 
isolated and grown at 30°C
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algae spend a portion of their life cycle outside the host, and in vitro 
conditions might better mimic this part of the life cycle, although 
nutrient levels are certainly initially higher in f/2 media than in trop-
ical oceans (Bayliss et al., 2019). The portion of their life cycle of 
most interest to those studying mutualisms in coral reef ecology is 
that spent in hospite. Whether these in vitro differences translate to 
effects on holobiont responses to temperature remains to be seen. 
Individual differences in traits outside of the host may be important 
if hosts regularly switch symbionts and incorporate new symbionts 
with different traits from the environment. Because newly settled 
polyps take up symbionts from the environment, the potential for 
such switching occurs at least every generation, although newly 
settled polyps reduce uptake after 5 months (McIlroy & Coffroth, 
2017), suggesting limited exchange in adults of this host species. The 
genotypes in this experiment affected symbiont density at different 
temperatures in young polyps but had no effect on polyp survival 
at increased temperatures (Pelosi et al., 2021). Hosts are likely to 
regulate symbiont growth rates, maximum density, and physiology, 
but the magnitude of this effect relative to the differences among 
genotypes is unknown.

Our results suggest that each genotype has a different optimum 
temperature for growth, respiration, and photosynthesis. However, 
these optima measured in vitro may not be the same as what is opti-
mal for the holobiont. When considering a single symbiont species, 
long-term growth rate of a genotype would be a good proxy for 
fitness, and covariances between traits and fitness should be good 
estimates of selection on those traits. However, several studies in-
dicate that symbiont physiologies vary between in vitro and in hos-
pite (Bellantuono et al., 2019; Bhagooli & Hidaka, 2003; Ravelo & 
Conaco, 2018). Thus, when considering evolution in a community 
context (terHorst et al., 2018), where fitness of the host and asso-
ciated microbes are tightly linked, selection on the holobiont might 
not be easily predicted from studies in monocultures. For example, 
increased symbiont growth rates that are indicative of high fitness in 
vitro or metabolic demand in response to temperature stress might 
result in increased demand for resources from the host and subse-
quent breakdown of the mutualism (Rädecker et al., 2021). Although 
nitrogen is abundant in vitro, at least initially, it is likely to be more 
limiting in hospite, with increased nitrogen often destabilizing the 
mutualism (Morris et al., 2019; Rädecker et al., 2015). The broad 
availability of nutrients when conducting selection experiments in 
vitro may obscure trade-offs with other algal traits, trade-offs with 
host traits, or trade-offs with other traits only observed in the con-
text of the holobiont (Chan et al., 2021). Selection experiments on 
symbionts outside of the host may not yield the evolutionary rescue 
necessary to adapt to climate change, but rather may require selec-
tion experiments on the holobiont.

Conservation-minded assisted evolution for coral reef organisms 
proposes that selection experiments in the laboratory could yield 
temperature-tolerant symbiont genotypes that could be later used 
to seed reefs experiencing temperature stress (van Oppen et al., 
2015). Selection experiments could be conducted on heterogenous 
cultures composed of standing genetic variation found within and 

among hosts on reefs (Chan et al., 2021; Pelosi et al., 2021). The gen-
otypes used in this experiment are the result of a long-term selection 
experiment. Heterogenous cultures of algae were allowed to grow 
at both 26 and 30°C, and the isolated genotypes in this study were 
unique genotypes that were able to grow well at those temperatures 
(Pelosi et al., 2021). Additionally, cultures continued to grow at these 
temperatures for hundreds of generations prior to this experiment 
and any beneficial mutations would have potentially been subject to 
positive selection. Nevertheless, we did not observe any obvious ef-
fects of historical temperature environment on population dynamics 
or physiology.

Although our ability to detect an effect of historical tempera-
ture was limited to only two genotypes from each temperature, 
the patterns we observed suggest the opposite of what we would 
hope for from a successful selection experiment. Genotypes from 
different evolutionary histories tended to be more similar to each 
other than genotypes from the same evolutionary history. This 
suggests that the genotypes recovered from our different selec-
tion environments may more likely be the result of genetic drift and 
random chance than natural selection, or that selection is acting 
more strongly on traits unrelated to temperature tolerance, such 
as nutrient uptake rate, that may cause trade-offs with tempera-
ture tolerance. As species on coral reefs have repeatedly been ex-
posed to high temperatures in recent decades (Heron et al., 2016; 
Hughes et al., 2018; Oliver et al., 2018; van Hooidonk et al., 2016), 
it is possible that these genotypes are already the result of winnow-
ing of non-tolerant genotypes and adaptation to temperature in the 
ocean, making it difficult to artificially impose further selection. 
For species such as this that exhibit broad thermal tolerance and 
are able to acclimate to temperature, selection experiments may 
prove more difficult. Whether temperature tolerance results from 
past adaptation or contemporary acclimatization, hosts that harbor 
these thermally tolerant symbionts may have increased resilience 
to changes in ocean temperatures.
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