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Commentary

Summary

In the study by Coudray et  al.[1] titled “Classification and 
mutation prediction from non–small cell lung cancer 
histopathology images using deep learning,” the authors use 
a commercially available convolution neural network (CNN) 
platform  (Google’s Inception v3) to accurately classify 
different types of lung cancer and predict known and potential 
cancer driver mutations from hematoxylin and eosin (H&E) 
slides. Whole slide images from The Cancer Genome 
Atlas  (TCGA) database were first divided into 512  ×  512 
pixel tiles and used to train the CNN to identify the two major 
histologic subtypes of non–small cell lung cancer (NSCLC), 
lung adenocarcinoma  (LUAD),  and lung squamous cell 
carcinoma (LUSC). The performance of this algorithm when 
tested on a held‑out dataset from TCGA was shown to be 0.97 
of the area under the curve. The CNN classification model was 
subsequently validated on two independent cohorts of NSCLC. 
The validation accuracy remained high, regardless of tissue 
preparation for these cohorts  (i.e.,  frozen; formalin‑fixed, 
paraffin‑embedded [FFPE]; and biopsies).

The authors also compared the deep‑learning model 
classification to that of three pathologists who manually 
scored the test‑set images and further compared the model 
to classifications per TCGA. The deep‑learning model had 
comparable overall agreement (i.e., not statistically different) 
to the pathologists’ classification using TCGA as the ground 
truth. When comparing each pathologist with another, the 
agreements ranged from 0.52 to 0.78, whereas the deep‑learning 
model ranged from 0.64 to 0.77, indicating that the model 
had comparable inter‑reader agreement with individual 
pathologists. The deep‑learning model was also comparable 
to molecular profiling methods used to distinguish LUAD 
from LUSC. The authors also developed an “automatic tumor 
selection” model that was trained using pathologist‑selected 
tumor areas and tested on different tissue preparations (frozen, 
FFPE, and biopsies). In each instance, automatic selection 
performed comparably to manual selection methods.

Importantly, the authors subsequently trained their model to 
predict ten specific driver mutations in NSCLC, including 
STK11, EGFR, SETBP1, TP53, FAT1, and KRAS, with 
accuracies of 0.856, 0.826, 0.775, 0.760, 0.750, and 0.733, 
respectively, when validated on the TCGA test set. The CNN 
model used to predict the EGFR mutation was subsequently 
tested in an independent cohort of lung resection specimens 
from New York University (NYU) Langone Medical Center that 
contained both wild‑type and known EGFR mutation status. 

The CNN model predicted EGFR mutation status in the NYU 
cohort with ~69% accuracy, demonstrating better‑than‑chance 
estimates. The lower accuracy compared with validations in 
TCGA was attributed to the differences in EGFR mutation 
determination methods, namely the sequencing model used 
in TCGA and the immunohistochemistry  (IHC)/sequencing 
model used by NYU.

Comments

There are two aspects of this report that are worth highlighting. 
The first is the perception that differentiating LUAD from 
LUSC will benefit from the use of artificial intelligence (AI), 
and the second is the observation that specific mutations can be 
predicted from H&E using AI. With respect to the former, it is 
not clear that AI will benefit lung cancer classification as much 
as the authors suggest. In the current treatment paradigm for 
newly diagnosed NSCLC, distinguishing histologic subtypes 
is critical both for triggering downstream molecular testing[2] 
and for defining appropriate chemotherapeutic regimens given 
with or without immunotherapy.[3] Histologic classification of 
NSCLC by microscopic review of H&E‑stained slides relies 
on the identification of classic morphologic features. For 
poorly differentiated tumors, an IHC panel (i.e., TTF‑1, p63, 
and CK5/6) can facilitate accurate classification.[4‑6] Diagnoses 
are typically rendered within 1–2 days such that the added 
value of an AI algorithm for improving the speed of initial 
diagnosis is unclear.

In contrast, the utility of AI may be of great interest in defining 
the heterogeneity of tumor cell differentiation. NSCLC may 
show elements of both LUAD and LUSC histology, leading 
to a diagnosis of adenosquamous carcinoma when the less 
dominant histology constitutes at least 10% of the tumor.[7] 
While uncommon (0.4% to 4% NSCLC[8,9]), adenosquamous 
carcinoma is an aggressive tumor with inferior prognosis 
relative to LUAD or LUSC, and thus may be treated with 
chemotherapy even if early stage, underscoring the importance 
of accurate diagnosis.[10] Of note, in Supplementary Figure 1, 
Coudray et al. showed an example of a tumor classified overall 
as LUAD; however, a subset of the tiles were classified as 
LUSC by the algorithm.[1] If AI approaches can accurately 
identify small foci of divergent differentiation within a tumor, 
this could enable defining the true frequency and significance 
of this phenomenon with regard to association with a specific 
mutational profile, with stromal features including level and 
type of immune infiltrate, and potentially with response to 
immunotherapy. Further, such data have potential to provide 
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important information related to clonal heterogeneity, which 
may help inform new target and therapeutic approaches as well.

The second important aspect of the Coudray et al. study is 
the finding that AI can predict driver mutations from H&E 
images.[1] Next‑generation sequencing  (NGS) is gaining 
a foothold in diagnostic medicine as the list of potentially 
actionable driver mutations grows and the cost of NGS 
decreases.[11] Recent US Food and Drug Administration 
clearances for NGS panels developed by commercial 
laboratories and by academic cancer centers have paved 
the way for NGS to be used routinely in the assessment of 
molecular cancer subtypes, several of which are associated 
with specific therapeutic approaches.[12,13] The potential for 
assessing tumor mutational burden as a potential predictive 
biomarker for immunotherapy may further drive NGS 
demand.[14,15]

In relation to the significant advances in NGS, there is a 
perceived comparative paucity of technological advances 
in tissue‑based H&E‑stained slides. However, several 
important studies published over the past decade have 
reminded the scientific community that there are tremendous 
amounts of information in tissue sections that can be used to 
predict molecular test status and/or predict patient outcomes 
with accuracy similar to molecular methods.[16‑18] While it is 
becoming clearer that deep learning applied to tissue‑based 
pathology can predict outcomes, there has been little attempt 
to directly connect specific driver mutations to morphological 
patterns within cancer subtypes. It is relevant to note that the 
genetic predictions in the Coudray et  al. study are within 
NSCLC subtypes. Other studies have linked cancer subtypes 
to unique molecular profiles,[19] but this is very different from 
identifying specific mutational status within morphological 
subtypes. The Coudray et al. report is the most comprehensive 
and well‑validated method to date that has demonstrated such 
connections are feasible.

The practical implications of predicting driver mutation status 
from H&E should not be underestimated. The ability to make 
important treatment decisions regarding targeted therapy 
using a low‑cost and accessible test, such as H&E, would be 
disruptive to the current NGS methods aiming to do the same. 
While this concept is exciting, we also need to be cognizant 
of the challenges related to improving predictive accuracy for 
stringent clinical validations, accessibility of digital pathology 
platforms, and the lack of standardization in H&E staining 
methods across laboratories, all of which are currently major 
obstacles to implementing H&E‑based AI approaches broadly 
into medical practice.
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