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Abstract: Sodium silicate is a commonly used activator in geopolymer that is produced commercially.
In this study, rice husk ash (RHA) from agricultural waste was used to synthesize sodium silicate
as an activator for geopolymer cement. This white ash was applied for producing sodium silicate
with different molarities (8, 10, and 12) and then used to synthesize fly ash-based geopolymer cement.
Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared
Spectroscopy (FTIR) were applied to investigate the micro-characteristics of the geopolymerization
products. Bulk density, water absorption, compressive strength, flexural strength, and fracture
toughness were carried out to measure and evaluate the geopolymers with sodium silicate. The
combination of 10 M NaOH with sodium silicate increased the compressive strength by 16.21%
and the flexural strength and fracture toughness by 81.6%. However, sodium silicate combined
with 12 M NaOH decreased compressive strengths by 13.23% and flexural strength and fracture
toughness by 61.94%. The lowest water absorption value of 12.3% was obtained in a geopolymer
paste using sodium silicate combined with 10 M NaOH, and the largest was 13.3% for sodium silicate
combined with 8 M NaOH. The microstructure analysis showed the hydrated calcium alumina silicate
gel (C–A–S–H) and the SEM image also revealed a compact geopolymer matrix. Thus, it can be
concluded that sodium silicate from rice husk ash can be utilized as an activator or reactive material
to produce geopolymer cement with a good geopolymer network.

Keywords: sodium silicate; activator; geopolymer cement; rice husk ash; fracture toughness

1. Introduction

Ordinary Portland Cement (OPC) is a construction material that is widely used due
to its availability, ease of application, cost-effectiveness, superior mechanical properties,
and durability. Currently, cement production is 2.8 billion tonnes yearly and will rise by
4 billion tonnes yearly [1]. This trend shows that global cement demand will grow to 5.5 Gt
yearly by 2050 [2]. Its production leads to carbon dioxide (CO2) emissions, causing global
warming. Cement is an energy-dense material that depletes available natural resources
and releases 0.8 tonnes of CO2 for every tonne of cement production [3,4].

Several studies have been conducted to find a substitute for cement that is more
environmentally friendly and possesses good durability. Many researchers have suggested
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geopolymers because they are stronger than cement, are more environmentally friendly,
and can be produced at lower temperatures [5–7]. Geopolymers are a class of “inor-
ganic polymers processed by polycondensation of aluminum and silicon monomeric or
oligomeric species in metal alkali-activated solutions” [8]. The geopolymer precursors can
be generated from silica and aluminosilicate sources, such as fly ash, metakaolin, clays, etc.

In producing geopolymers, commercial sodium silicate is applied, and they are pro-
duced from sand containing high silica and use a high temperature of approximately
1400 ◦C [9]. An alternative is needed in producing sodium silicate so that it can be more
environmentally friendly. Sodium silicate is required by a geopolymer as an activator
along with a solution of sodium hydroxide to become an alkaline solution. One alternative
material that can be used to produce sodium silicate is rice husk ash (RHA). This material
is a reasonably available agricultural waste containing up to 90% SiO2, and its application
to geopolymers has been reported [10,11]. RHA has been widely examined recently as a
promising additive to cement and geopolymer and is also used to produce sodium sili-
cate [12]. However, the mechanical testing of geopolymers on flexural strength and fracture
toughness using sodium silicate from RHA has never been carried out.

Using agricultural waste, geopolymer preparation for new applications can be more
complicated than using pure materials, because of the impurities in rice husk ash and fly
ash. Studies investigating the use of RHA activators in geopolymer applications are limited.
Therefore, the chemical explanation of geopolymer formation from industrial byproducts
is a challenge. The primary objective of this study was to investigate RHA as a material for
making sodium silicate and using it as an activator in geopolymer cement. The monitoring
of geopolymer cement formation was characterized by water absorption, bulk density, and
compressive strength after 28 days at room temperature. The microstructural properties of
at least 28 days of geopolymer cement was determined using X-ray Diffraction (XRD) and
Scanning Electron Microscopy Coupled with Energy-Dispersive X-ray (SEM-EDX).

2. Materials and Methods
2.1. Materials

This study utilized these materials for synthesizing sodium silicate and industrial
by-product-based epoxy-geopolymer pastes. Rice husk ash (RHA) is taken from a refinery
in the Aceh Besar District, Aceh, Indonesia. The RHA is white. Table 1 presents the chemical
composition of RHA, indicated by XRF, and Figure 1 illustrates the SEM images and XRD
of RHA. Class C fly ash (SiO2 + Al2O3 + Fe2O3 > 70%) (ASTM C618) was taken from the
Nagan Raya Thermal Power Project (PLTU Nagan Raya), Aceh, Indonesia. The chemical
composition of fly ash was indicated by XRF, as shown in Table 1. The SEM image in
Figure 1 shows that the fly ash particles are not spherical and tend to be irregular. From
a workability point of view, the fly ash particles with non-spherical particle shapes will
increase internal friction, absorption ability, and liquid demand. The fly ash used has an
average size of 30 m and an average specific gravity of 2.45. The SEM micrographs obtained
for RHA and fly ash are shown in Figure 1, presenting their specific morphologies.

Table 1. Chemical composition of fly ash and rice husk ash (by weight).

Chemical Composition (%) Fly Ash Rice Husk Ash

SiO2 21.07 93.27
Fe2O3 27.23 0.15
CaO 32.58 1.03
Mno 0.44 0.17
K2O 1.17 3.41
SO3 5.69 0.26
Cl 0.22 0.35
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Table 1. Cont.

Chemical Composition (%) Fly Ash Rice Husk Ash

Ag2O 0.23 0.10
Al2O3 9.65 -
TiO2 1.68 -

Yb2O3 0.06 -
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Figure 1. SEM and XRD from fly ash and RHA, (a) RHA, (b) Fly ash.

The alkaline solution is the combination of 10 M sodium hydroxide pellets (NaOH)
and sodium silicate (Na2SiO3). The industrial-grade sodium hydroxide pellets, with 98%
purity, were dissolved in distilled water. The sodium silicate used in this study is a solution
made in the laboratory with the sol –gel method as purposed by some researchers [13,14].
The alkaline solutions in this study for different Na2SiO3 to NaOH volume ratios were 1:1
and were prepared in the laboratory the day before use. The role of the alkaline solution is
to improve the polymerization process with fly ash.

2.2. Synthesis of Sodium Silicate

In this study, sodium silicate was prepared in three variations with 8, 10, and 12 M
NaOH solutions. Beforehand, NaOH solution was prepared with a molarity of 8, 10,
and 12 M. Sodium silicate from RHA was synthesized by attaching the RHA to sodium
hydroxide pellets with a ratio of RHA/NaOH solution = 1:6 (w/v). One hundred grams
of rice husk ash was weighed and dissolved in a 600 mL NaOH solution. The assembly
was mixed for 1 h at 90 ◦C under reflux conditions to improve the silica dissolution from
RHA, and the mixture was undertaken at 1100 rpm. It was filtered, and then 1 N HCl
was added so that the pH of the solution was 7. The gel was then left for 18 h at room
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temperature. Next, it was washed using warm distilled water and re-filtered. The addition
of HCl resulted in a pH of 7 for the solution, and the initial pH of the solution was 12. The
addition of HCl, up to pH 7, causes polymerization and the formation of Si-O-Si bonds.
This bond will contribute to the geopolymer. The obtained products were nanosilica-based
sodium silicates. Specimens prepared with these silicates were denoted as N-X, where X
refers to the molarity of the NaOH used in the preparation of sodium silicate. The synthesis
of sodium silicate is shown in Figure 2a.
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Figure 2. Geopolymer production process, (a) synthesis of sodium silicate, and (b) preparation of
geopolymer paste.

2.3. Preparation of Geopolymer Paste

Geopolymer cement pastes were made by placing fly ash into an alkaline solution and
mixing for 20 min. Afterwards, the specimens were cast in 5 × 5 × 5 cm3 cubes. Specimens
were released from the mold after three days. The geopolymer cement specimens, after
casting, were placed at ambient temperature (28–30 ◦C) until the test age of 28 days.
Samples are denoted as Geo N-X, where X refers to the molarity of the NaOH used in the
preparation of sodium silicate. Table 2 illustrates the mix proportion of geopolymer pastes.
The preparation of geopolymer paste is shown in Figure 2b.

Table 2. Mix proportion of geopolymer pastes.

Specimens Fly Ash (g) NaOH (g) Na2SiO3 (g); Was Prepared in Three
Variations with Water (l) Ratio

Na2SiO3/NaOH

Geo N-8 100 14 35; NaOH 8 M 35 2.5
Geo N-10 100 14 35; NaO 10 M 35 2.5
Geo N-12 100 14 35; NaOH 12 M 35 2.5

2.4. Microstructure Characterization

The XRD scans were performed at 10 to 50 ◦2 Theta with a scan speed of 0.5 s/step.
XRD samples were prepared by pressing raw materials between two glass slides into
flattening sheets and were analyzed using Shimadzu XRD-7000, Kyoto, Japan. FTIR spectra
were measured using Shimadzu-IRPrestige-21, Japan. The spectra were collected in the
transmittance mode from a 4 cm−1 resolution over a 4000–500 cm−1 range. Spectra were
recorded at a spectral resolution of 4 cm−1, a scan speed of 0.2 cm/s, and were analyzed
with Spectrum software.

The microstructures and surface morphologies were tested by the scanning electron mi-
croscope (SEM, EVOMA 15, ZEISS, Oberkochen, Germany). The specimens were observed
and imaged at an 8 mm working distance and 5 kV accelerating voltage. Sulfur mapping
was conducted using EDS adjunct to SEM at a spot size of 5 and magnification of 5000 with
a 5 kV accelerating voltage. Synthesized nanosilica-based sodium silicate was measured
and analyzed by TEM (JEOL JEM 1400, Peabody, MA, USA). TEM was used to obtain
microstructural observations of sodium silicate-based nanosilica with high resolution with
a voltage commonly used of 100 kV. The particle size of sodium silicate-based nanosilica
was measured using a Particle Size Analyzer (PSA, Horiba SZ-100V2, Kyoto, Japan).
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2.5. Testing Procedure
2.5.1. Water Absorption, Bulk Density, and Compressive Strength

The water absorption test was conducted following the ASTM C67-07 method. The
three specimens were calculated at the average value and were set at 28 days. The bulk
density was determined following the ASTM C8300-00 method. The compressive strength
test was performed using a testing machine in accordance with ASTM C109. The geopoly-
mer’s compressive strength was calculated after 28 days under the ambient temperature.
Three specimens of each synthesized geopolymer cement were examined and reported the
average compressive strength values. The testing machine of compressive strength and the
test setup are displayed in Figure 3. After the compressive strength test had been carried
out, some of the geopolymer fragments were crushed. The powder obtained was used to
identify the microstructure such as SEM, XRD, and infrared spectroscopy.
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2.5.2. Flexural Strength and Fracture Toughness

Three-point bending tests were undertaken to obtain the flexural strength and fracture
toughness using Testometric material testing machines with a loading rate of 10 mm/min
with a specimen size of 40 mm × 40 mm × 160 mm. At the bottom of the specimens, a
crack length (a) of 20 mm was created. A saw was used to trim the specimens. This method
was conducted following the ASTM D5045–14 standard. The test setup schematic is shown
in Figure 4.
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The flexural strength (σF) was analyzed using the following formula:

σF =
3 Pm S
2 BW2 (1)

where Pm is the maximum load read on the tool, S is the span of the specimen, B is the
specimen width, and W is the specimen thickness.

Fracture toughness (KIC) was analyzed using the following formula:

KIC =
Pm S

BW3/2

( a
W

)
(2)

( a
W

)
=

3(a/W)1/2
[
1.99 − (a/W)(1 − a/W) ×

(
2.15 − 3.93a/W + 2.7a2 /W2

)]
2(1 + 2a/W)(1 − a/W)3/2 (3)

where
( a

W
)

is the ratio of the crack length and the thickness of 0.4, and (a/W), is the
polynomial correction factor.

3. Results and Discussion
3.1. Mechanical Properties of Geopolymer Cement
3.1.1. Bulk Density

The quality of geopolymer cement can be analyzed by its bulk densities. Geopolymer
cement’s bulk density range is from 1.2 to 1.7 g/cm3 [16,17]. The bulk density values of
specimens containing different sodium silicates are shown in Figure 5. The results indicate
that increasing the molarity of NaOH during the sodium silicate synthesis, from 8 M to
10 M, increased the overall bulk density of geopolymer cement. Figure 5 shows that bulk
density increased at 10 M NaOH concentration but decreased at 12 M concentration. This
may be related to the fact that Geo N-12 paste looked more viscous, which may have
made the formation of polymer gels more difficult. The lower bulk density of Geo N-12
geopolymer may also indicate a worse compaction of the specimens with respect to Geo
N-10, which may be explained by a higher viscosity of the paste at a fresh state.
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Figure 5. Density and water absorption values with various NaOH concentrations in sodium silicate.

3.1.2. Water Absorption

The degree of geopolymerization can lead to a less permeable matrix structure and one
that is more dense (less porous). The specimens of Geo N-10 paste presented a minimum
water absorption of 12.3% m while the maximum value was obtained at 13.3% at an N-8
sodium silicate concentration. Furthermore, for a given sodium silicate (N-8) value, the
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geopolymer exhibited a higher water absorption as compared to N-12. This is due to
the higher porosity in the specimens and the lower bonding between the fly ash and the
geopolymer gel.

Referring to Figure 5, in general, water absorption is reduced with an increase in the
density of geopolymer paste. The water absorption value was from 12.3 to 13.3%, under the
maximum value of the ASTM-C216 standard (15%). Based on this standard, this material
could be used in construction and buildings.

3.1.3. Compressive Strength

The critical parameter in the material is the compressive strength that is used to meet
engineering quality. Thus, the impact of sodium silicate on the compressive strength of
geopolymer cement was decided, and the means are illustrated in Figure 6.
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The geopolymer cement’s compressive strength depends on the strength of the
geopolymer gel and the interfacial bonding [18]. The results revealed that the compressive
strength increased due to the increase in C–S–H and N–A–S–H gels in geopolymer gels
formed from sodium silicate in Geo N-10 specimens. Sodium silicate plays a role in the
formation of this geopolymer gel. The compressive strength of geopolymers containing
sodium silicate with NaOH concentrations of 8 and 10 M reached around 23.69 MPa and
27.53 MPa, respectively. Using the sodium silicate produced with 12 M NaOH concen-
tration, the compressive strength decreased to 23.89 MPa. These results are consistent
with studies conducted by previous researchers [13,19,20]. The increase in compressive
strength is related to a high amount of silicon dioxide (SiO2) in the Geo N-10 specimen. This
silica plays a role in the interfacial bonding reaction between the fly ash matrices, thereby
increasing its strength [21]. The lower strength was observed for the geopolymer specimens
prepared at 12 M NaOH. This can be attributed to the reduced quantity of Si-Al-O bonds.

3.1.4. Compressive Strength and Flexural Strength

A similar trend with compressive strength can also be observed regarding flexural
strength. The addition of sodium silicate with NaOH molarities of 8, 10, and 12 M resulted
in the flexural strength values of 1.69, 3.07, and 1.17 MPa of the geopolymers, respectively.
The relationship between compressive strength and flexural strength is shown in Figure 7.
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Figure 7 shows an increase in compressive strength by 16.21% for sodium silicate
with a molarity of 10 M. In contrast, sodium silicate with a molarity of 12 M reduces the
compressive strength by 13.23%. A similar trend also occurs in the flexural strength, which
increases in sodium silicate with a molarity of 10 M by 81.61% and decreases in sodium
silicate with a molarity of 12 M by 61.94%.

Increasing the molarity of sodium silicate can increase the amount of reaction produc-
tion of the geopolymer matrix significantly so that the compressive and flexural strength
of the geopolymer paste also increases. High alkali and calcium from the fly ash react to
form C–H–S, or C–A–S–H and N–A–S–H gels and contribute to the increased mechanical
strength of the geopolymer paste [22,23].

3.1.5. Fracture Toughness

Fracture toughness and flexural strength show a similar trend. The magnitude of the
fracture toughness of geopolymer pastes with different molarities on sodium silicate and
its relationship to flexural strength are shown in Figure 8.
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Geopolymers made of sodium silicate with a molarity of 10 M significantly improved
the fracture toughness. The sodium silicate with a molarity of 10 M is believed to enhance
the mechanical parameters of the gel polymer matrix. Sodium silicate with 8, 10, and
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12 M molarity on geopolymer paste resulted in a fracture toughness of 0.47, 0.86, and
0.32 MPa·m1/2, respectively. The increase in the fracture toughness of the geopolymer
with 10 M sodium silicate is related to the good dispersion and reaction of the silica in the
sodium silicate throughout the matrixso as to increase the geopolymer gel and fracture
toughness [24].

Table 3 compares the mechanical strength results of this study with several other
studies using commercial sodium silicate.

Table 3. The comparison of mechanical strength across studies.

Reference Alkaline
Activator

Compressive
Strength

(MPa)

Flexural Strength
(MPa)

Water Absorption
(%)

Fracture
Toughness
(MPa·m1/2)

This study NaOH + Na2SiO3 23.69–27.53 1.17–1.69 12.3–13.3 0.32–0.86
[25] NaOH + Na2SiO3 88.0–110.6 2.93–9.32 1.1–7.5 -
[26] NaOH + K2SiO3 20–50 0.6–2 - -
[27] NaOH + Na2SiO3 38.3–46.9 4.73–6.63 - -
[28] NaOH + Na2SiO3 - 6.2–7.8 9.9–12.4 -
[24] NaOH + Na2SiO3 17.77–22.69 0.91–3.02 - 0.37–1.07
[15] NaOH + Na2SiO3 18.16–26.26 0.45–2.62 - 0.16–0.74
[29] NaOH + Na2SiO3 50.1–56.7 7.0–9.3 10 -

3.1.6. XRD Patterns of Geopolymers

Figure 9 presents the XRD patterns of selected geopolymer paste showing a typical
broad hump pattern between 2θ = 25 and 30◦ centered around 26.64–26.78◦2 Theta, which
corresponds to the quartz phase that is well-identified in FA.
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Figure 9. XRD patterns of geopolymer cement: (a) fly ash, (b) Geo N-8, (c) Geo N-10, and (d) Geo N-12.

All XRD patterns show similar behavior. The presence of mineral quartz is observed
with the peaks at 26.64◦, 26.78◦, and 26.72◦ (2θ, CuKα) in geopolymers with sodium silicate
Geo N-8, Geo N-10, and Geo N-12, respectively. The intensity of the X-ray diffraction
patterns of the geopolymer with sodium silicate shows nearly similar bands to fly ash
(Figure 9a), which is related to the formation of geopolymer networks in all specimens. The
intensity of this broad hump is higher on the XRD patterns of sodium silicate with 10 M
NaOH (Figure 9c). Mineral phases, mullite, and quartz were visible in the geopolymer XRD
patterns, indicating that these minerals remain present during the geopolymerization pro-
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cess. This implies that the higher the SiO2/Na2O molar ratio, the more sialate (Si–O–Al–O)
bonds tend to increase, enhancing the geopolymer network [30].

3.1.7. FTIR Spectra of Geopolymers

Figure 10 represents the FTIR spectrum of geopolymer paste measured after 28 days.
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Figure 10. FTIR spectra of geopolymer paste with the sodium silicate from RHA: (a) Geo N-8,
(b) Geo N-10, and (c) Geo N-12.

The FTIR spectrum of the geopolymer pastes showed a band around 464 cm−1, as-
cribed to the Si–O vibration. A very weak band discerned at 459–572 cm−1 related to the
formation of sialate bonds (Si–O–Al–O) related to the sodium silicate’s polycondensation.
This band is characteristic of crystalline cristobalites [31]. The band at 978–991 cm−1 indi-
cated that the main geopolymer structure from RHA was Si–O–Al [32,33]. This showed that
RHA’s sodium silicate could be used as an activator to produce good geopolymer cement.
This band is recognized as the primary band of geopolymer cement and is assigned to
Si–O–M (M = Si, Al, Na) [34]. The bands that appeared at 1387–1392 cm−1 showed the C–O
bond of the carbonate groups. This indicated the emergence of sodium bicarbonate due to
atmospheric carbonation. The bending of H–O–H and stretching of (OH) appeared to have
formed in the bands at 1664 and 3182 cm−1. This signified the presence of bound water
molecules in the polymeric framework.

On the specimens of Geo N-8, Geo N-10, and Geo N-12, the value of the wavenumber
showed that the asymmetric Si–O–M (M Si, Al, Na, H) almost changed at 1387 cm−1. The
reduction in this wavenumber that appeared at about 991 and 3182 cm−1 in the IR spectrum
indicates the depolymerization of the silica network [35].

3.1.8. Microstructure

Specimens were analyzed to identify geopolymer paste’s morphological paste obtained
with sodium silicate from RHA as an activator. The scanning electron microscope images of
geopolymer pastes at 28 days on Geo N-8, Geo N-10, and Geo N-12 specimens are shown
in Figure 11.
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Figure 11. SEM images of geopolymer paste with sodium silicate (a) Geo N-8, (b) Geo N-10, and
(c) Geo N-12.

All images show the presence of micro-fissures related to the previously tested geopoly-
mer paste. The images with higher magnification showed that geopolymer paste has a
homogeneous microstructure. Figure 11a,c show the presence of a bright, sponge-like pow-
der indicating that the NaOH present in the alkaline solution did not react to form Na2CO3.
This Na2CO3-like sponge is commonly found in a NaOH solution-activated geopolymer
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when excess Na+ ions are not bound to the Al3+ sites of the geopolymer matrix [20]. This
finding is the same as the result of the FTIR analysis in the band 1387–1392 cm−1, indicating
that the vibration of sodium bicarbonate’s C–O bond is due to atmospheric carbonation.

Micrographs (Figure 11b) did not show much white powder, and the paste appeared
to be denser. Thus, Na+ ions can bind to Al3+ and play a role in improving the mechanical
strength of the geopolymer and produce good connectivity between fly ash and sodium
silicate solution from rice husk ash. From micrograph investigations, it was observed that
sodium silicate made from rice husk ash could be used as an alternative to commercial
sodium silicate. Micro-cracks and visible pores appeared in all specimens. RHA dissolved
in 10 M NaOH solution showed that the soluble silica formed could play the same role as
standard sodium silicate.

4. Conclusions

This study showed that silica obtained from an agricultural byproduct can be used
to produce sodium silicate and can be applied as an activator for geopolymer cement
based on fly ash. The test results demonstrated that the sodium silicate from RHA with
NaOH concentrations of 8 and 10 M increased the geopolymers’ density and increased
the compressive strength; however, at 12 M, the NaOH concentration in sodium silicate
decreases. The best compressive strength and water absorption were at 27.53 MPa and
12.3%. The compressive strength of the geopolymer pastes with NaOH concentrations in
sodium silicate 8, 10, and 12 M were 23.69, 27.53, and 23.89 MPa, respectively. The bulk
density of the geopolymer based on sodium silicate from NaOH also showed a similar
trend. In this study, the best value was found for sodium silicate with 10 M NaOH, namely
1.59 g/cm3. In sodium silicate with a 12 M NaOH concentration, there was an increase
in the chemical compound Na2CO3. On specimen Geo N-12, the mechanical strength of
the geopolymer paste decreased because the excess Na+ was not bounded to Al3+ from
the geopolymer matrix. The same trend was confirmed in compressive strength, flexural
strength, and fracture toughness which each increased by 16.2, 81.6, and 81.6%. The method
in this study can be used as an alternative for communities in rice-producing areas to use
RHA waste to produce this valuable chemical reagent. The utilization of agricultural waste
materials is not only economical but also can lead to environmental pollution control.
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