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ABSTRACT: The development of tissue engineering hollow
fiber bioreactors (HFB) requires the optimal design of the
geometry and operation parameters of the system. This
article provides a strategy for specifying operating condi-
tions for the system based on mathematical models of
oxygen delivery to the cell population. Analytical and
numerical solutions of these models are developed based
on Michaelis–Menten kinetics. Depending on the minimum
oxygen concentration required to culture a functional cell
population, together with the oxygen uptake kinetics, the
strategy dictates the model needed to describe mass trans-
port so that the operating conditions can be defined. If
cmin�Km we capture oxygen uptake using zero-order
kinetics and proceed analytically. This enables operating
equations to be developed that allow the user to choose
the medium flow rate, lumen length, and ECS depth to
provide a prescribed value of cmin. When cmin 6 �Km, we use
numerical techniques to solve full Michaelis–Menten
kinetics and present operating data for the bioreactor.
The strategy presented utilizes both analytical and numerical
approaches and can be applied to any cell type with known
oxygen transport properties and uptake kinetics.
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Introduction

Hollow fiber bioreactors (HFBs) are ideal for tissue
engineering on a clinical scale because the large surface
area to volume ratio will reduce the requirements of
reagents, labor, and space: a hollow fiber system can be used
to culture the same number of cells in 0.58 L as 1m3 using
standard flask culture techniques (Ellis et al., 2005), and
large cell numbers of up to 2� 108 cell/mL can be obtained
(Scragg, 1991). Knazek et al. (1972) were the first to report
using a HFB for mammalian cell culture; since then the use
of HFBs for mammalian cell expansion has become well
documented (Tharakan and Chau, 1986) and several cell
types have been cultured in HFBs including lymphocytes
(Gramer and Poeschl, 2000; Gloeckner and Lemke, 2001),
hepatocytes (Nyberg et al., 1994), and the osteogenic cell line
560pZIPv.neo (Ellis and Chaudhuri, 2007). There is
extensive understanding of HFB fluid dynamics and mass
transport obtained from experimental and modeling
studies, and a wealth of data on tissue physiology and cell
metabolism in vivo and in vitro. For example, Abdullah et al.
(2009) and Abdullah and Das (2007) have focused on high-
density bone cell populations, whereas hepatocyte culture
has provided a focus for bioartificial liver development
through studies such as Hay et al. (2000), Kawazoe et al.
(2006), Nyberg et al. (2005), Patzer (2004), Sielaff et al.
(1997), Sullivan et al. (2007), and Wurm et al. (2009).
Together these studies provide insight into the interaction
between the cell environment and the fluid dynamics and
mass transfer of nutrients across the membrane. Oxygen is
recognized as the limiting nutrient with respect to growth of
a cell population and has been the most widely modeled
(although glucose has also been considered). The uptake of
oxygen is usually modeled using Michaelis–Menten kinetics,
which captures the dependence on the uptake rate on the
underlying concentration.
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As a consequence of the nonlinear nature of Michaelis–
Menten kinetics, numerical solutions to the transport
equations associated with HFBs are commonly seen in
literature. These use full Michaelis–Menten; examples of
finite differencemethods include Pillarella and Zydney (1990),
whereas examples of finite element methods include Abdullah
andDas (2007), Chen and Palmer (2010), Das (2007), Sullivan
et al. (2007, 2008), and Ye et al. (2006). Analytical approaches
have also been used in literature for situations where
Michaelis–Menten can be approximated by zero- or first-
order kinetics. Example of zero-order kinetics are Piret and
Cooney (1991), whereas examples of first-order kinetics are
Jayaraman (1992) and Kim and Cooney (1976). Although
Kim and Cooney (1976) use first-order kinetics, the functional
forms for the substrate concentrations that they determine are
not dissimilar to those presented in this article. A good review
of a range of transport models in HFBs is given by Brotherton
and Chau (1996).

To ensure the efficacy of HFB for clinical applications it is
necessary to have information that allows accurate and
correct operation of the HFB. This article presents a tool to
select the modeling approach best suited to obtain cell type-
specific operating data. As such, the approach presented
here differs significantly from existing studies in the
literature. First of all, previous studies have considered only
analytical or numerical solutions in isolation. Here we use
both approaches, and specify how to differentiate between the
two based on cell data. Secondly, the analytical solutions that
we present are based on zero-order kinetics and have not been
reported previously in the literature. Finally, a strategy is
outlined for providing operating data (specifically the lumen
length, extra-capillary space (ECS) depth, and lumen flow

rate) that ensure the oxygen concentration throughout a HFB
is held above a prescribed tissue-specific minimum. When an
analytical approach is applicable this data takes the form of
operating equations that relate the underlying parameters;
for the numerical approach operating data are presented
graphically. This strategy enables a user to fix the geometry
(e.g., lumen length, ECS depth) and operating conditions
(e.g., lumen length) of the bioreactor to obtain their required
cell culture environment.

Theory

Setup

The fibers in a HFB fiber bundle are assumed to be Krogh
cylinders, so that each fiber is identical and surrounded by
an annulus of ECS containing a homogeneous distribution
of cells (Krogh, 1918). The interstitial space between the
Krogh cylinders is neglected as a modeling assumption. In
this study, we consider transport in a single Krogh cylinder
unit of a HFB bundle. This unit consists of a central lumen
with a synthetic porous wall (referred to as the membrane),
and surrounding ECS containing cells. Let z be the axial
direction down the lumen centerline, starting at the lumen
inlet (z¼ 0) with the lumen outlet denoted by z¼ L. We
denote the radius of the lumen by d, the depth of the
membrane by s and the depth of the ECS by l. Typical values
are L¼ 10 cm, d¼ 100mm, s¼ 20mm, and l¼ 600mm
(Ye et al., 2007), although these should be varied as part
of the bioreactor design process. A schematic of the setup is
given in Figure 1.

Figure 1. A schematic of the HFB setup. The left-hand schematic shows the structure of a fiber bundle, comprising seven Krogh cylinder units. The right-hand schematic

shows a cross-section through an individual fiber, including the fluid velocity profile in the lumen.
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Culture medium is pumped through the lumen at an
imposed flowrate. There is no flow through the inlet to the
membrane or ECS, so that fluid enters the system through
the lumen only. Although this medium includes a mixture of
solutes and proteins, we consider the transport of oxygen
alone in this article. This is a widely adopted approach
in the literature as oxygen is generally considered to be the
rate-limiting nutrient, and reduces the complexity of the
modeling process (Martin and Vermette, 2005; Piret and
Cooney, 1991). Oxygen is transported by both advection
(by the fluid) and diffusion in the lumen. Furthermore,
oxygen diffuses through the membrane and ECS, where it is
taken up by the cell population. In the analysis that follows
we assume that the cell population is homogeneously
distributed throughout the ECS, and neglect expansion of
the cell population so that the parameters describing oxygen
uptake are constant in time.

Fluid flow in the lumen is described by Poiseuille’s law
whereas flow in the membrane and ECS is neglected (this is a
common modeling assumption for small aspect ratio HFB
when there is not a significant pressure drop across the
membrane or ECS (Brotherton and Chau, 1996; Piret and
Cooney, 1991)). We denote this fluid velocity in the lumen
by u ¼ 2Uð1�r2=d2Þez, where U is the mean velocity
(ms�1), r is the radial coordinate, and ez is the unit vector in
the z-direction. The oxygen concentration and flux are
denoted by c (molm�3) and J (molm�2 s�1), respectively,
with subscripts l,m, and e denoting the values in the lumen,
membrane, and ECS, respectively. The oxygen fluxes are

Jl ¼ clu�Dlrcl; Jm ¼ �Dmrcm; Je ¼ �Derce; (1)

where Dl, Dm, and De are the diffusion coefficients for
oxygen in the lumen, wall, and ECS, respectively (all
assumed constant, with units m2 s�1). The lumen oxygen
flux is comprised of advection due to the fluid velocity,
together with diffusion; the membrane and ECS fluxes are
comprised of diffusion only. The conservation equations
for the concentration of oxygen in each of the regions are:

@cl
@t

þr � Jl ¼ 0 in the lumen;

@cm
@t

þr � Jm in the membrane;

@ce
@t

þr � Je þ RðceÞ ¼ 0 in the ECS;

(2)

where the reaction term R(ce) captures the uptake of oxygen
by the cells. We will assume Michaelis–Menten kinetics
for this reaction term, so that

RðceÞ ¼ Vmaxce
ce þ Km

: (3)

It is necessary to prescribe boundary conditions on
the internal and external boundaries of the bioreactor. On

the lumen/membrane and membrane/ECS boundaries we
prescribe continuity of concentration and flux, so that

cl ¼ cm and Jl � n ¼ Jm � n
on the lumen=membrane boundary;

(4)

cm ¼ ce and Jm � n ¼ Je � n
on the membrane=ECS boundary;

(5)

where n is the unit outward pointing normal to the relevant
surface. Finally we prescribe the oxygen concentration as cin
(molm�3) at the lumen inlet (where cin may be chosen to
suit the application under consideration), and impose no
flux of concentration out of the outer ECS boundary,

cl ¼ cin on z ¼ 0; and Je � n ¼ 0

on the outer ECS boundary:
(6)

The assumption of no flux out of the outer boundary is
analogous to a symmetry condition representation of a
bundle of fibers. It compares directly to the Krogh cylinder
approach used frequently in the literature.

Next the solution of the model (2)–(6) is considered using
numerical or analytical techniques. For both strategies a
steady-state solution is sought and it is assumed that a 2D
axisymmetric geometry is described by the radial coordinate
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and the axial coordinate z.

Analytical Approach

To pursue an analytical approach, the system of equations
given by (2)–(6) can be simplified with various assumptions.
First of all the small aspect ratio of a fiber is exploited,
defined by " ¼ d=L � 1� 10�3 � 1. It should be noted
that whilst the lumen radius, d and fiber length, L can both
be varied as part of the design process so that neither d nor L
are fixed, e� 1 will be maintained throughout.

It is not possible to make progress analytically using the
nonlinear Michaelis–Menten reaction term given by (3).
Therefore, we assume that ce�Km so that the reaction term
R(ce) can be approximated by Vmax. This is an important
assumption and means that predictions of the analytical
model are only valid when the ECS oxygen concentration is
much larger than the half-maximal oxygen concentration.
As such, for cell types where the demand for oxygen is
similar to, or smaller than, Km it will not be appropriate to
use the analytical model (in this scenario a numerical
approach should be used, as outlined later in the article).

Finally the relative importance of advection and diffusion
in the lumen is evaluated by considering the Péclet number,
Pe¼UL/Dl. In fact it is the reduced Péclet number,
Pe� ¼ "2Pe ¼ Ud2=LDl, that is critical for this system, as
it also takes account of the small aspect ratio of the lumen (it
is analogous to the reduced Reynolds number that was used to
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characterize fluid transport for a similar study in Shipley et al.
(2010)). A large reduced Péclet number indicates an
advection-dominated regime, whereas a small reduced
Péclet number indicate a diffusion-dominated regime.
Typically for this system U� 1 cm s�1, L� 10 cm, and
D� 10�9m2 s�1, giving Pe�� 1 so that advection and
diffusion are both important in the lumen. It is assumed
that Pe�¼ e2Pe is of order 1 in the analysis that follows.
For the mathematical detail of the reduction of (2)–(6) based
on the assumptions above, together with the solution of the
resultingmodel, please refer to the SupplementaryMaterial A.

The outer radius of the lumen, membrane and ECS (each
measured from the lumen centerline) are denoted by Rl, Rw,
and Re so that Rl¼ d, Rm¼ dþ s, and Re¼ dþ sþ l. The
following dimensionless parameters are also defined:

Pe� ¼ Ud2

LDl
; M ¼ d2Vmax

Decin
; (7)

which capture the key physical features of the system. As
described above, Pe� is the reduced Péclet number and is
assumed to be of order 1. The parameter M represents the
balance of oxygen consumption versus diffusion in the ECS,
and can take a range of values depending on the relative
importance of these effects.

The analysis described above and in the Supplementary
Material results in the following expressions for the oxygen
concentration throughout the module:

cl
cin

¼ 1þ gr

d

þ
X1
n¼0

Enexp
lnr

2

2d2

� �
KummerM

1

2
þ ln

4
; 1;� lnr

2

d2

� �

� Gnexp � l2nz

2Pe�L

� �
þ Fn

l2n

� �
;

(8)

cm
cin

¼ MDe

2Dmd2
ðR2

m�R2
eÞln

r

d
þ BðzÞ; (9)

ce
cin

¼ M

4d2
r2�R2

m þ 2De

Dm
ðR2

m�R2
e Þln

Rm

d

� �
þ 2R2

e ln
Rm

r

� �� �

þ BðzÞ;
(10)

where

BðzÞ ¼ 1þ g

þ
X1
n¼0

Enexp
ln

2

� �
KummerM

1

2
þ ln

4
; 1;�ln

� �

� Gnexp � l2nz

2Pe�L

� �
þ Fn

l2n

� �
;

(11)

and

g ¼ MDe

2Dld2
½R2

m�R2
e �: (12)

Here ‘‘KummerM ðm; n; xÞ’’ is the confluent hypergeo-
metric function and is a solution of a specific differential
equation, as described in the Supplementary Material A (and
discussed in Abramowitz and Stegun, 1965). Further ln, En,
Fn, and Gn for n ¼ 0; . . . ;1 are constants. The ln and En are
the eigenvalues and normalization constants for the Sturm–
Liouville problem associated with the system (2)–(4); these
are constants independent of the geometry or cell
population properties and are provided in the
Supplementary Material B for n ¼ 0; . . . ; 49. By contrast
Fn and Gn are coefficients in a Sturm–Liouville expansion of
two different functions, and depend explicitly on the cell
population properties (specifically the consumption rate of
oxygen) and the geometry of the bioreactor (specifically the
radius of the lumen and depths of the membrane and ECS).

Although Equations (8)–(10) appear complex, the
behavior that they describe is relatively straightforward to
understand: the oxygen concentration in the lumen,
membrane, and ECS depends on the radial distance from
the lumen centerline. Each solution is also dependent on the
distance down the lumen centerline, z, as a consequence of
advection in the lumen. This is transmitted into the
membrane and ECS regions through the function B(z),
which is the lumen concentration value on the lumen wall
(i.e., the solution in (8) when r¼Rl¼ d). This function B(z)
reveals that the concentration decays exponentially down
the lumen from a maximum value at the inlet z¼ 0. The
remaining terms in the solution for cm and ce in (9) and (10)
describe the radial decay of the oxygen concentration from
the outer surface of the membrane as a consequence of
oxygen uptake by the cells in the ECS.

Through cell-specific design criteria, we must design the
bioreactor to ensure that the oxygen concentration exceeds a
prescribed minimum throughout the bioreactor. This
minimum oxygen concentration will be achieved at the
furthest distance from the inlet, that is, when r¼Re and
z¼ L. Denoting this minimum value by cmin, the analytical
method gives the following expression for cmin, in terms of
experimentally controlled and cell-specific parameters:

cmin

cin
¼ M

4d2
R2
e�R2

mþ
2De

Dm
ðR2

m�R2
e Þln

Rm

d

� �
þ2R2

e ln
Rm

Re

� �� �

þ BðLÞ:
(13)

Numerical Approach

For the analytical approach, the full system given by (2)–(6)
is solved using finite element method package ‘‘COMSOL
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Multiphysics 3.5a’’1 to evaluate the dependence of the
oxygen concentration on the underlying parameters. The
numerical approach is valid for all concentration values;
however, the full system of equations must be solved
iteratively each time. This is a computationally intensive
process and does not provide operating equations that
describe the dependence of the minimum oxygen concen-
tration on the underlying parameters. Therefore, the
numerical approach will be used when the analytical
approach is not valid, that is, when cmin 6 �Km. The mesh
used for the results in this article consists of approximately
7,000 finite elements (and refining the mesh to 29,312
elements did not change the results to three significant
figures).

Results and Discussion

The analytical and numerical methodologies outlined in
the Theory Section will be used to outline a strategy for
developing cell-specific operating criteria for the bioreactor.
These criteria will then be tested for specific cell types.

Strategy for Developing Optimal Operating Conditions

To develop operating conditions, it is necessary to
understand how the minimum oxygen concentration
depends on the geometrical properties of the bioreactor,
together with the parameters that can be controlled
experimentally. Through this understanding, the HFB
can be designed to optimally grow cells of a particular
type.

Once a cell type and seeding density are chosen the
following parameters are fixed:

(1) The maximal oxygen consumption rate, Vmax.
(2) The half-maximal oxygen concentration, Km.
(3) The diffusivity of oxygen in the ECS, De.

The diffusivity of oxygen in the lumen and membrane (Dl

and Dm, respectively) are known from the literature or
experiments. The outer radii of the lumen and membrane
(Rl and Rm, respectively) are fixed, and there are specific
values of the lumen inlet concentration cin and minimum
oxygen concentration cmin that must be achieved. So, the
bioreactor design parameters that are left to be determined
are:

(1) The depth of the ECS, l (which determines Re).
(2) The length of the lumen, L.

Finally, the mean inlet flow rate U can be controlled by
fixing the volumetric flow rate on the pump used to deliver
fluid to the bioreactor.

If cmin�Km the analytical approach is valid and the
results from the Analytical Approach Section can be used to
fix l, L, andU; however, if cmin�Km the analytical approach
is not valid, and the numerical methodmust instead be used.
These two approaches are detailed below.

cmin�Km The operating conditions are specified for
the bioreactor using Equation (13) for the minimum
oxygen concentration. When the parameters described
above are fixed, only Re and the ratio U/L (through Pe�)
can be determined independently using the analytical
approach. Two cases will be considered:

(1) The outer radius of the ECS, Re is fixed, and so Pe� can
be determined.

(2) The ratio U/L (and therefore Pe�) is fixed, and so Re can
be determined.

For the first case it is assumed that the outer radius of the
ECS is fixed so that Re (and thus g, Fn, and Gn for
n ¼ 0; . . . ;1) is known. In this case, (13) can be written as
the following operating equation for cmin in terms of the
reduced Péclet number Pe�:

cmin

cin
¼ Aþ

X1
n¼0

Bnexp � l2n
2Pe�

� �
þ Cn; (14)

where

A ¼ M

4d2
R2
e�R2

m þ 2De

Dm
ðR2

m�R2
eÞln

Rm

d

� �
þ 2R2

e ln
Rm

Re

� �� �

þ 1þ g;

(15)

Bn ¼ EnGnexp
ln

2

� �
KummerM

1

2
þ ln

4
; 1;�ln

� �
;

Cn ¼ EnFn
l2n

exp
ln

2

� �
KummerM

1

2
þ ln

4
; 1;�ln

� �
;

(16)

are all fixed constants. Given the values of these constants,
(14) can be used to determine the value of Pe� (and hence
the ratio U/L) that provides the required value of cmin (note
that it is this ratio rather that the individual values of U and
L that influence the minimum oxygen concentration).
Equation (14) shows that the minimum oxygen value cmin

decreases exponentially as the lumen length L increases, or
the lumen velocity U decreases. This means that for a lower
cmin requirement, a smaller flow velocity and longer fiber can
be used.

1Developed and distributed by COMSOL, Inc. Full details available online at

http://www.comsol.com/.
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Next it is assumed that the ratio U/L is prescribed so that
Pe� is given. Now the operating equation for cmin in terms of
the ECS depth is:

cmin

cin
¼ K þ QR2

e�
2M

d2
R2
e lnðRe=dÞ

þ
X1
n¼0

ðHnGn þ JnFnÞ; (17)

where

K ¼ M

4d2
2DeR

2
m

Dm
ln

Rm

d

� �
�R2

m

� �
þ 1þMDeR

2
m

2Dld2
;

Q ¼ M

4d2
1þ 2 ln

Rm

d

� �
1� De

Dm

� �
� 2De

Dl

� �
;

(18)

Hn¼Enexp
ln

2

� �
KummerM

1

2
þ ln

4
; 1;�ln

� �
exp � l2n

2Pe�

� �
;

Jn ¼ En

l2n
exp

ln

2

� �
KummerM

1

2
þ ln

4
; 1;�ln

� �
;

(19)

are all fixed constants. Given the values of these constants,
(17) depends on Re through the explicit appearance of Re in
(17) as well as Gn and Fn for n ¼ 0; . . . ;1. For a given value
of cmin, (17) can therefore be solved numerically to
determine Re.

cmin 6 �Km: In this scenario the numerical approach
will be used, as outlined in Numerical Approach Section.

Cell Types and Parameter Values

The parameters that will be kept fixed in our investigation
are:

(1) The oxygen diffusivities Dl¼ 3� 10�9m2 s�1,
Dm¼ 3� 10�10m2 s�1, and De¼ 6� 10�9m2 s�1 (Ye
et al., 2006).

(2) The lumen radius Rl¼ d¼ 100mm and the depth of
the membrane s¼ 20mm (so that Rm¼ 120mm) (Ye
et al., 2006).

(3) The inlet oxygen concentration will be fixed for each
individual cell type.

The kinetic data (i.e., Vmax and Km) for a range of cell
types, sourced from combined modeling and experimental
studies in the literature, are shown in Table I. For
cardiomyocytes, hepatocytes, and pancreatic cells we fix
cin¼ 0.22molm�3 (as is standard for culture medium
Piret and Cooney, 1991). However, chondrogenic differ-
entiation is limited when the oxygen concentration exceeds
approximately 0.1molm�3 (Lund-Olesen, 1970; Treuhaft
and McCarty, 1971); therefore cin¼ 0.1molm�3 is used for
chondrocytes.

Validation of Analytical and Numerical Approaches

The analytical approach is a reduction of the full model
given by (2)–(6) and therefore should be validated. This
validation could be performed against experimental data;
however, this data is difficult to collect accurately and is not

Table I. Oxygen uptake and culturing data for a range of cell types.

Cell type

Vmax

(molm�3 s�1)

Km

(molm�3)

Cell density

(cellsm�3)

cmin

(molm�3)

cin
(molm�3) Source

Neonatal rat cardiomyocytes 2.64� 10�3 6.9� 10�3 1012 8� 10�2 0.22 Radisic et al. (2005)

6� 10�3 Carrier et al. (1999)

Primary rat hepatocytes 1.76� 10�3 6.24� 10�3 1.25� 1013 2.1� 10�2 0.22 Sullivan et al. (2007)

Consolo et al. (2008)

Pancreatic bTC3 cells 6.37� 10�3 1.0� 10�2 2.8� 1014 1.46� 10�2 0.22 Tziampazis and Sambanis (1995)

Stabler et al. (2009)

Bovine chondrocytes 4.8� 10�5 5.0� 10�3 1.4� 1014 1� 10�2 0.1 Malda et al. (2004)

1.32� 10�2 Obradovic et al. (1999, 2000)

2.2� 10�3 Fermor et al. (2007)

For a description of the various minimum oxygen concentrations, please refer to the main text. The Vmax value for neonatal rat cardiomyocytes and
primary rat hepatocytes have been multiplied by a cell volume fraction of 0.3, as per the modeling in Sullivan et al. (2007). For the pancreatic cells it has also
been assumed that each cell has a 10mm diameter.

Note: For neonatal rat cardiomyocytes two values are listed. It has been observed that cardiac constructs cultivated in perfusion at oxygen concentrations of
	80mM exhibit weaker presence of cardiac markers and poorer organization of contractile apparatus compared with constructs cultivated at oxygen
concentrations of	200mMCarrier et al. (1999); this explains the first value. The second value (6mM) is a typical hypoxia value (Radisic et al., 2005). The cmin

value for primary rat hepatocytes is based the critical threshold value of 10mmHg quoted in the literature Consolo et al. (2008) (and transferred from a partial
pressure into a concentration using Henry’s law with an oxygen solubility value of 2.08mmolm�3mmHg). For pancreatic bTC3 cells, published experiments
found that oxygen tensions above 7mmHgwere required for the cells to retain their secretory capacity Stabler et al. (2009); using Henry’s law gives the value in
Table I. Finally, a range of minimum oxygen concentrations are presented for articular cartilage in the literature. In Obradovic et al. (1999), it is hypothesized
that articular cartilage is exposed to a minimum oxygen concentration in the range 0.01molm�3 to 0.08molm�3 in vivo, where lower oxygen concentrations
are not detrimental to chondrocyte viability but can impact synthesis of extracellular matrix; this explains the first cmin value in Table I. In Fermor et al. (2007),
it is reported that the superficial zone of articular cartilage exists at above approximately 6% oxygen concentration, whereas the deep zone exists at<1%; this
explains the final two cmin values of Table I.
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presented in sufficient detail in the literature. Given that the
numerical approach is valid for all concentration values and
solves the full model (2)–(6), it is appropriate to validate
results of the analytical model against numerical solutions.
This comparison is shown in Figure 2, where radial oxygen
concentration profiles are shown (at fixed values z¼ 0, L/3,
2L/3, L) for the primary rat hepatocyte data in Table I
(Sullivan et al., 2007) when U¼ 1� 10�2m/s, L¼ 10 cm,
Re¼ 220mm. For the analytical solutions, all sums have been
truncated at 50 terms, that is, n¼ 49, for ease of
computation. The agreement between the analytical and
numerical results is very strong, although it becomes weaker
as the concentrations decrease. The lowest concentration
value is at the ECS outlet (when r¼Re and z¼ L); here both
the analytical and numerical concentration values are
0.12molm�3 to two decimal places, with a percentage
difference of 3.39% (which is within experimental error).

Analytical and Numerical Results

It must first be decided whether to use the analytical or
numerical strategy to provide operating data. Table II
provides a summary of this decision making process. Data
on cmin and Km are provided for each cell type, together
with the value of the ratio cmin/Km. The analytical model
is valid when cmin�Km; here we choose a value of the
ratio cmin/Km¼ 2 as the critical value so that if cmin/Km> 2
the analytical model is used, whereas if cmin/Km> 2 the
numerical approach is used. Different critical values of cmin/
Km could certainly be implemented, even on a cell-specific
basis. The errors associated with using cmin/Km¼ 2 as the
critical value are within the bounds of experimental error,
and the errors associated with other modeling assumptions
(e.g., the Krogh cylinder approximation). On this basis, the
analytical model is appropriate for the cardiomyocytes
(cmin¼ 8� 10�2molm�3), hepatocytes, and chondrocytes
(cmin¼ 1.32� 10�2molm�3), whereas the numerical model
is used for the remaining examples in Table II. We present

data for the extreme cases of high and low oxygen
requirements, that is, cardiomyocytes and chondrocytes,
respectively.

Figures 3a–c and 5a–c show the variation in cmin/cin (with
cin fixed) as a function of 1/Pe� for fixed Re, as described by
operating equation (14), for the cardiomyocytes and
chondrocytes, respectively. As would be anticipated, cmin

is largest for low values of 1/Pe�, corresponding to either a
large lumen velocity U or shorter lumen length L (a larger U
ensures increased delivery of oxygen to the cells through
advection, whereas a shorter lumen length decreases the
distance of the furthermost cells from the oxygen source).
For each value of Re the maximum variation in cmin/cin is of
size 10�2, indicating that cmin is only weakly sensitive to the
value of Pe�. For Pe�< 2 (i.e., 1/Pe�> 0.5) cmin is virtually
constant, indicating a linear relationship between the values
of U and L required to achieve a chosen value of cmin.

Given that this linear relationship is representative of the
low cmin regime, it is mimicked by the numerical results of
Figures 4 and 6. These figures show how the critical lumen
length, Lcrit say, required to satisfy the minimum oxygen
concentrations of Table I varies as a function of the lumen
velocity U. For each cell type four different values of
Re were tested, each of which demonstrates a linear
relationship between Lcrit and U (with correlation factor
0.99). These figures can be used to read off a required
Lcrit and U value to satisfy the minimum oxygen
requirements summarized in Table I. For example, for
the cardiomyocytes with Re¼ 270mm with a lumen length
of 10 cm, a lumen flow velocity of U� 9� 10�3m s�1 will
ensure c> 6� 10�3molm�3 throughout the module.

In contrast, Figures 3d and 5d show the variation in cmin/
cin (with cin fixed in each case) as a function of Re for fixed
Pe�, as described by operating equation (17), for the
cardiomyocytes and chondrocytes, respectively. As antici-
pated, cmin decreases as the ECS depth (i.e., Re) increases.
The rate of this decay is heavily dependent on the uptake rate
of oxygen by the cell population, Vmax, which is largest for
the cardiomyocytes, and lowest for the chondrocytes. For
example, a value of cmin/cin¼ 0.2 is sustained by the
cardiomyocytes, hepatocytes, and chondrocytes when
Re� 267 and 720mm, respectively.

Figure 2. Comparison of the analytical and numerical approaches. The graph

shows the radial oxygen concentration profiles for primary rat hepatocytes (see

Table I) at fixed values of z, using both the analytical and numerical techniques. The

fixed parameters are U¼ 1� 10�2 ms�1, L¼ 10 cm, and Re¼ 220mm.

Table II. Use of the analytical or numerical models. If cmin/Km> 2, the

analytical model is used; otherwise the numerical model is used.

Cell type cmin/cin Km/cin cmin/Km

Analytical

model

Numerical

model

Neonatal rat

cardiomyocytes

0.36 0.031 11.6 U �

0.027 0.031 0.87 � U

Primary rat

hepatocytes

0.095 0.028 3.4 U �

Pancreatic

bTC3 cells

0.066 0.045 1.5 � U

Bovine

chondrocytes

0.1 0.05 2.0 � U

0.13 0.05 2.64 U �
2.2� 10�2 0.05 0.44 � U
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Case Study: Cells With a High Oxygen Requirement

Consider a HFB for culturing cardiomyocytes with the
following known parameters: cmin¼ 8� 10�2molm�3,
cin¼ 0.22molm�3, and cmin/Km¼ 11.6, together with the
ECS depth fixed at 95mm so that Re¼ 215mm. For HFB
operation it is necessary to specify the inlet flowrate and

fiber length to maintain the oxygen concentration above this
minimum. Since cmin/Km> 2 and the ECS depth is fixed, the
analytical approach (operating equation 14) will be used to
determine the value of Pe� (and corresponding possible
values of L and U) that achieves cmin/cin¼ 0.36. For this
scenario, A¼ 0.80 and the values of Bn and Cn for
n ¼ 0; . . . ; 49 are given in the Supplementary Material C.
Solving operating equation (14) yields Pe�¼ 0.2 so that the
ratio U/L¼ 6� 10�2. Any values of U and L that satisfy this
ratio will ensure c> 8� 10�2molm�3 throughout the
construct; two example values are L¼ 0.1m and
U¼ 6� 10�3m s�1.

By comparison, suppose the lumen flow velocity is fixed
at U¼ 1� 10�2m s�1 and the lumen length at L¼ 0.1m so
that Pe�¼ 1/3. Then operating equation (17) can be used to
determine the ECS depth that achieves cmin/cin¼ 0.36. For
this scenario, K¼ 1.01 and Q¼ 1.18� 106m�2, and the
values of Hn and Jn for n ¼ 0; . . . ; 49 are given in the
Supplementary Material C. Solving operating equation (17)
with cmin/cin¼ 0.36 now gives Re¼ 212.8mm so that the ECS
depth is 92.8mm.

Case Study: Cells With a Low Oxygen Requirement

Next consider a HFB for culturing chondrocytes with the
following known parameters: cmin¼ 2.2� 10�3molm�3,

Figure 3. Operating equation data for the neonatal rat cardiomyocytes (analytical model). a–c: The dependence of cmin/cin on 1/Pe� when Re is fixed. d: The dependence of

cmin/cin on Re when Pe� is fixed. a: [Re¼ 170mm], (b) [Re¼ 195mm], (c) [Re¼ 220mm], and (d) Pe�¼ 1/3.

Figure 4. Numerical results for the neonatal rat cardiomyocytes that show the

relationship between Lcrit and U when cmin¼ 6� 10�3 mol m�3 and cmin/Km¼ 0.87 are

held fixed (arrow in direction of Re decreasing). [Color figure can be seen in the online

version of this article, available at http://wileyonlinelibrary.com/bit]
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cin¼ 0.1molm�3, and cmin/Km¼ 0.44, together with the
ECS depth fixed at 150mm so that Re¼ 270mm. It is
necessary to specify the inlet flowrate and fiber length to
maintain the oxygen concentration above this minimum.
Since cmin/Km
 2 and the ECS depth is fixed, the numerical
approach will be used to determine possible values of L and
U that achieve cmin/cin¼ 2.2� 10�2. For this scenario, we
refer to Figure 6. Any values of L and U that lie on the blue
line (Re¼ 270mm) are appropriate: an example is
U¼ 2.8� 10�4m s�1 and L¼ 0.2m.By comparison, sup-
pose the lumen flow velocity is fixed at U¼ 3� 10�4m s�1

and lumen length L¼ 0.5. The red line of Figure 6 dictates
that Re¼ 170mm should be imposed in this case.

Discussion

The strategy that has been outlined enables mathematical
modeling techniques to inform bioreactor design based on
the oxygen requirements of the cell type. Two different
modeling approaches were employed to provide design
and operating data that ensure the oxygen concentration
throughout a HFB is held above a prescribed tissue-specific
minimum value, cmin that ensures the growth of a functional
cell population. When cmin�Km (the half-maximal oxygen
concentration), oxygen uptake by the cell population was

captured using zero-order kinetics, and operating equations
were derived analytically. These operating equations provide
insight into the relationship between the minimum
oxygen concentration and the geometrical properties of
the bioreactor, together with the operational parameters
(such as inlet oxygen concentration and flow rate) than can
be controlled by the user. A case study was presented that
demonstrated how to use these operating equations for cell
types with a high oxygen requirement. However, an
analytical approach is not valid when cmin 6 �Km. In this
case, full Michaelis–Menten kinetics must be solved in the
ECS using a numerical approach. This was achieved using
the finite elements package ‘‘COMSOL Multiphysics,’’ and
operating data on the relationship between lumen length
and flow rate required to achieve a specific minimum
oxygen concentration value were presented. This approach
has the advantage of being valid for all concentration values;
however, the full system of equations must be solved
iteratively each time and this is a computationally intensive
process. A case study was presented that demonstrated
how to use these operating equations for cell types with a low
oxygen requirement.

Previous studies into the modeling of tissue engineering
bioreactors have focused on either numerical or analytical
approaches (under various simplifying assumptions) in
isolation. For example, Abdullah and Das (2007), Chen

Figure 5. Operating equation data for the bovine chondrocytes (analytical model). a–c: The dependence of cmin/cin on 1/Pe
�when Re is fixed. d: The dependence of cmin/cin on

Re when Pe� is fixed. a: [Re¼ 820mm], (b) [Re¼ 920mm], (c) [Re¼ 1,020mm], and (d) Pe�¼ 1/3.
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and Palmer (2010), Das (2007), Pillarella and Zydney
(1990), Sullivan et al. (2007, 2008), and Ye et al. (2006)
employed various numerical techniques to solve full
Michaelis–Menten kinetics for individual cell types in
HFBs. By comparison, analytical approaches such as Piret
and Cooney (1991), Jayaraman (1992), and Kim and
Cooney (1976) have been used to approximate Michaelis–

Menten by zero- or first-order kinetics. However, zero-order
kinetics have not previously been used to determine
operating equations, whilst first-order kinetics are only
valid when the substrate concentration is smaller than the
half-maximal substrate concentration, Km. This is not
appropriate in the development of oxygen-based operating
equations for the use of HFB for tissue engineering, where

Figure 6. Numerical results for the bovine chondrocytes that show the relationship between Lcrit and U for two different minimum oxygen requirements (arrows in direction of

Re decreasing). a: [cmin¼ 1� 10�2 mol m�3 and cmin/Km¼ 2.0 held fixed], (b) [cmin¼ 2.2� 10�3 mol m�3 and cmin/Km¼ 0.44 held fixed]. [Color figure can be seen in the online version

of this article, available at http://wileyonlinelibrary.com/bit]
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the oxygen concentration must typically be maintained
above Km to ensure the growth of functional tissue. While
these are all valid and workable models, they have not
previously been integrated to provide a strategy that could
be applied to any cell type to stipulate bioreactor design and
operation.

Conclusion

A strategy has been developed for modeling oxygen kinetics
in tissue engineering HFB. The strategy allows operating
parameters to be specified that ensure the oxygen
concentration is maintained above a prescribed minimum
throughout the HFB. The strategy dictates that the
appropriate approach is based on whether the Michaelis–
Menten kinetics can be reduced to zero-order; in the case
of high oxygen requirements zero-order kinetics is appro-
priate and so the analytical approach is used. In the case
of low oxygen requirements it is necessary to use full
Michaelis–Menten kinetics and so a numerical approach is
required. As such, the strategy developed here can be used
for any cell type to specify operating parameters.

Nomenclature

d radius of the lumen (m)

s depth of the lumen wall (m)

l depth of the ECS (m)

L length of a single module (m)

Lcrit critical length required to satisfy a minimum

oxygen requirement (m)

z axial length coordinate down the lumen

r radial coordinate

u fluid velocity vector (m s�1)

U Mean velocity in the lumen (m s�1)

ez unit vector in the z-direction

c oxygen concentration (molm�3)

J oxygen flux (molm�2 s�1)

U velocity scale (m s�1)

Dl oxygen diffusion coefficient in the lumen (m2 s�1)

Dw oxygen diffusion coefficient in the wall (m2 s�1)

De oxygen diffusion coefficient in the ECS (m2 s�1)

R uptake rate of oxygen (molm�3 s�1)

Vmax Maximal oxygen consumption rate (molm�3 s�1)

Km half-maximal oxygen concentration (molm�3)

n unit outward pointing normal to a surface

cin fixed oxygen concentration at the lumen inlet

(molm�3)

cmin minimum oxygen concentration in the HFB

(molm�3)

e aspect ratio of the lumen

Pe axial Péclet number in the lumen

Pe� reduced Péclet number in the lumen

Rl outer lumen radius (m)

Rm outer membrane radius (m)

Re outer ECS radius (m)

M dimensionless constant that represents the balance

of oxygen consumption versus diffusion in the

ECS

g algebraically convenient parameter that depends

on Re

ln eigenvalues of Sturm–Liouville problem for

n ¼ 0; . . . ;1
En normalization constants of Sturm–Liouville pro-

blem for n ¼ 0; . . . ;1
Fn, Gn Sturm–Liouville expansion constants for

n ¼ 0; . . . ;1
B(z) dimensionless oxygen concentration on the

lumen wall

A, Bn, Cn, K, Q, Hn, Jn constants associated with the analytic operating

equations
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