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Abstract

Minimal hardware implementations able to cope with the processing of large amounts of
data in reasonable times are highly desired in our information-driven society. In this work we
review the application of stochastic computing to probabilistic-based pattern-recognition
analysis of huge database sets. The proposed technique consists in the hardware imple-
mentation of a parallel architecture implementing a similarity search of data with respect to
different pre-stored categories. We design pulse-based stochastic-logic blocks to obtain an
efficient pattern recognition system. The proposed architecture speeds up the screening
process of huge databases by a factor of 7 when compared to a conventional digital imple-
mentation using the same hardware area.

Introduction

Data explosion is the capability of current technologies to generate large amounts of data at dif-
ferent scientific disciplines. Data volumes are doubling every year in most areas of modern sci-
ence [1], and its proper analysis is becoming more and more complex. As a matter of fact, data
explosion has not led to an information explosion since current data analysis techniques are
unable to handle billions of data records in a reasonable period of time. Large scientific data-
bases containing several terabytes of information need to be continuously screened by scien-
tists, and current processor-based techniques are unable to provide an efficient response to this
problem. To solve this, different solutions have been developed based on artificial neural net-
works [2-5], the use of simple metrics [6] or the extraction of simplified datasets from the orig-
inal data [7].

An alternative to traditional deterministic computational methodologies is the use of sto-
chastic logic, introduced more than 40 years ago [8,9]. Stochastic computing is the result of
applying probabilistic laws to logic cells where variables are represented by random pulse
streams, thus providing a natural way of representing analog quantities with digital systems
[10]. Pulses can be converted to binary numbers by using digital counters (P2B converters)
while binary numbers can be translated to stochastic signals by combining a random (or a
pseudo-random) number generator and a comparator (B2P converters). Stochastic computing
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makes use of digital technology to perform complex arithmetic operations with a reduced
number of gates. When performing those types of operations, stochastic signals must be
completely uncorrelated for a proper behavior.

Stochastic computing is useful for those applications requiring parallel-processing tech-
niques [11-14]. Traditional parallel processing architectures have the shortcoming of requiring
a large amount of hardware resources. Therefore, the number of tasks that can be executed in
parallel within a single chip is relatively small. Stochastic computing could represent a solution
to this problem since the hardware used to solve each task is reduced in size if compared to tra-
ditional digital implementations. As a result, more complex tasks can be executed in parallel
when using stochastic computing elements. The greatest advantage of stochastic computing is
the potential of implementing hundreds of smart computing elements in one single integrated
circuit, thus obtaining a highly parallelized processing chip with a computing capacity that can
be several orders of magnitude higher than traditional binary-logic-based microprocessors.

In this work we generalize the basic stochastic computing principles, thus creating a more
general probabilistic processing. The primary basic principle of traditional stochastic computing
is that the stochastic bit streams must be completely uncorrelated in time and space to obtain
the desired arithmetic operations when using simple logic gates. Our extended probabilistic
processing approach will also use correlated signals in order to implement a set of non-linear
operations. This set of non-linear operations can be used for an efficient and fast comparison
between signals as we will show later.

Accordingly, probabilistic computing is characterized by the combination of two different
types of operations:

o Arithmetic operations implemented by uncorrelated signals (such as the multiplication, the
division or the addition). These ones are taken from the traditional stochastic computing
concepts [8].

« Non-linear operations performed by correlated signals evaluated through logic gates.

The introduction of the possibility of coherence between the signal phases enhances the ca-
pacity of stochastic computing by including those non-linear operations that can be applied to
perform fast similarity searches. Consequently, complex pattern recognition tasks can be exe-
cuted in parallel when using probabilistic processing operations.

In this work we present a highly efficient methodology for data mining based on probabilistic
processing. High dimensional data is inherently complex in clustering, classification and simi-
larity search [15]. The proposed approach is evaluated showing its application to a similarity
search over a huge database. Most data mining algorithms use similarity search as a subroutine
core [16-18], and thus the time taken for this task is the bottleneck of virtually all data mining
algorithms [19]. Similarity search plays a fundamental role in many data mining and machine
learning problems, e.g. text categorization [20], collaborative filtering [21], time-series analysis
[22,23], protein sequencing [24] or any application-specific task as petroglyphs comparison
[25]. At the same time, the mining of huge datasets implies the use of large computer clusters
[26,27]. The proposed approach based on the use of probabilistic processing shows large im-
provements in terms of hardware resources when compared with conventional solutions.

Basic Principles of Probabilistic Processing
Stochastic computing principles

In stochastic-based computations a global clock provides the time interval during which all
stochastic signals are stable (settled to 0 or 1). For each clock cycle, a particular node has
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Fig 1. Basic temporal behavior of stochastic signals. There is no correlation between the signal values at different clock cycles. The number associated
with the stochastic signal is the activation probability.

doi:10.1371/journal.pone.0124176.g001

a probability p of being in the HIGH state (see Fig 1). Stochastic pulsed signals follow probabi-
listic laws when evaluated with logic gates. As an example, an AND gate provides at the output
the product of its inputs (that is to say, the collision probability between signals) whereas a
NOT gate converts a probability p at the input to the complementary I-p at the output. One of
the requirements for these stochastic computing blocks is that signals must be un-correlated at
different clock cycles and between them. In Fig 2 we show the importance of the temporal de-
correlation when implementing arithmetic functions (we use the example of implementing f(p)
= p(I1-p)). The figure illustrates that if the inputs of the AND gate p and I-p are correlated the
output is always equal to zero. Such correlations can be eliminated using shift registers to delay
signals from one arithmetic level to the next one. In the correct case, the AND gate evaluates
properly the product between p and a delayed (and therefore uncorrelated) value of 1-p.

p I-p
D
Delay element

v 1-p
P L wo }— (1-p)p

Fig 2. Correlation between signals and mathematical relationship between inputs and outputs. If we
desire to implement the function p(1-p) we must add a delaying element to de-correlate signals at the input of
the AND gate.

doi:10.1371/journal.pone.0124176.9002
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Fig 3. (a) Binary to pulse converter (B2P), an LFSR and a comparator are combined to obtain the pulsed signal. (b) Linear Feedback Shift Register (LFSR)

used in the experiments.

doi:10.1371/journal.pone.0124176.9003

Random number generation

The generation of pseudorandom sequences is a key issue for the implementation of probabilis-
tic computing systems since stochastic bit streams are required to convert binary magnitudes
to their equivalent stochastic signals. In particular, in order to obtain a random variable from
Bernoulli sequences with a known generating probability p, we have to compare the binary
number to convert (P) and the generated random number (R). If P>R, the stochastic pulse will
be at high level, otherwise it will be low (Fig 3a).

A commonly used [28] source of pseudorandom digital noise is the linear feedback shift reg-
ister (LFSR), which is an array of interconnected flip-flops with feedback to its input from a
combination of the outputs of its various stages gated together in EXCLUSIVE-OR gates (see
Fig 3b). This linear feedback structure provides uniformly distributed sequences (which have
an autocorrelation delta function), but with a finite period of repetition, which has an exponen-
tial dependence with the number of bits. Since the sequences are produced deterministically,
uncorrelated sources must be generated using different initial values (seeds) for the registers.
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Fig 4. Autocorrelation function. Autocorrelation function of the pseudo-random number generator used in the experiments.

doi:10.1371/journal.pone.0124176.g004

The feedback configurations enabling maximal-length generators have been given [29,30]. The
configuration applied in the present work, which employs a 8-bit shift register, is shown in Fig
3b. The autocorrelation function of a pseudorandom sequence generated by the LFSR used is
shown at Fig 4. This function is a set of repeating delta functions separated by the number of
bits in the LESR’s sequence length (2"-1).

For operations that need un-correlated signals, we define different seeds for each LFSR
block. On the other hand, for operations requiring correlated signals we employ the same LFSR
output for all stochastic variables.

Generalization of stochastic computing

Different kinds of stochastic non-linear functions can be reproduced using stochastic correlat-
ed signals. In Fig 5a, we show an example of the implementation of the absolute value of a sub-
traction (|px-py|). Stochastic signals x and y are derived from binary numbers X and Y when
comparing with a random number R, generated using one LESR. The probability of getting x =
'T"ory="1"(values of p, and py) is proportional to X and Y respectively. Since X and Y are cor-
related (they share the same LFSR) the probability of getting both signals x and y with a high
level (x =y ='1") is min(py, py), while the probability of getting both signals with a low level

PLOS ONE | DOI:10.1371/journal.pone.0124176 May 8, 2015 5/20
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Fig 5. Similarity estimation of X and Y (with correlated signals). In contrast to the un-correlated scheme (case in which X and Y are compared with
different random values), a non-linear function is obtained. The probability of the R signal of being between X and Y is proportional to |P,-Py| that is the
switching activity of the output signal. (a) Probabilistic circuitry for the computation of |P,-Py|. (b) Experimental results when evaluating |P,-P,|.

doi:10.1371/journal.pone.0124176.9005
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(x=y="0") is min(1- py, 1- py). These two situations provide a low signal at the XOR output.
On the other hand, the probability of getting different values on x and y is equal to | px-py|. In
this situation, the XOR output (z) provides a high value with probability p, = | px-py|.

The experimental measurements of this circuit confirm this behavior (see Fig 5b). In gener-
al, correlated signals evaluated through logic gates would implement max-min algebra func-
tions. These types of functionalities are ideal for pattern recognition.

Data mining of huge databases

The probabilistic nature of stochastic logic is an advantage for the implementation of probabi-
listic-based pattern recognition methodologies [2] and pattern matching is in the core of many
data mining processes. The purpose is to compare parameters (the features) from different ob-
jects with reference vectors that represent different categories. All the features define each ob-
ject, thus configuring an m-dimensional vector (for m different features).

Fig 6 shows the stochastic circuit used to compare two m-dimensional vectors, providing at
the output an estimation of the similarity (s;,) of both objects (vector 7'in the database to
mine, and the vector defining the category 'j’ (x;)). A total of 2m’binary comparators and also
'm’ randomly selected binary numbers (R for the k-th descriptor) are configured in parallel to
create a total of 2m switching bits. Each pair of stochastic bits (x;, and rx) are compared
through XNOR gates connected with a block performing the AND function between the m sig-
nals, thus providing at its output an estimation of the similarity (s;,) between the vector (r) and
the category j (x;).

Note the combination of both correlated and uncorrelated stochastic signals to obtain s;, (all
the AND inputs must be uncorrelated between them so that we need m’random numbers Ry).
This block would represent the typical implementation of a probabilistic processing unit combin-
ing both types of signaling. Therefore, the probabilistic signal obtained (s;,) can be expressed as:

S = HZ; (1 - |xjk - rk|> (1)

The switching activity at the output of the AND block is therefore proportional to the simi-
larity between the object r and the category represented by vector x;. In Fig 7 we show the level
curves associated to the Manhattan-based metric used in (1). As it is shown, the selected metric
can be considered a good proximity estimator for fast mining of huge databases.

Hundreds of similarity estimators as the one shown in Fig 6 can be configured in parallel in
a medium-sized FPGA, thus increasing considerably the mining speed in comparison with tra-
ditional processor-based techniques. Different vectors can be compared in parallel by using a
Winner-Take All (WTA) architecture (see Fig 8). From 'n’ different vectors of the database, the
circuitry provides at its output the closer to reference vector r. Then, relative fraction of the
area used by the LESRs with respect to the total circuit area decreases with the number of vec-
tors x; that can be compared.

Thus, at the WTA output the category label j' that is activated is the one with the highest
similarity:

Category =j'|s, > s,Vi € {1..n} (2)

The WTA can be constructed by using binary counters (module-k) (see Fig 9). Only a maxi-
mum number of clock cycles per comparison (N>>k) are allowed, and therefore the number of
cycles needed to overflow fixes a minimum similarity value to be distinguished s,,,;,, so that
Nes,i, = k. If all the similarities at the input of the WTA (s;,) are lower than s,,,;,,, the most
probable scenario is not to obtain any positive result at the output of the WTA.
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Fig 6. Stochastic architecture for comparing m-dimensional vectors. A total of 'm' random signals are needed for each comparison.

doi:10.1371/journal.pone.0124176.9006

For any similarity value s;,>s,,;, between two vectors (x; and r) we have that the probability
of identifying vector r as belonging to class j'is close to 1. In Fig 10 we show the relationship
between the distances of two vectors (|x-y|) and the number of cycles (N) needed to obtain an
overflow of one of the counters of the WT'A. We compare the analytical formula of the theoret-
ical behavior (solid line showing the formula N = k/s, where the similarity is s = 1-d since we
only vary the distance in one dimension) and the measurements obtained with an ALTERA
Cyclone III FPGA (dashed lines). As it can be seen, a close relationship is obtained between the
expected behavior and the probabilistic implementation.

The probability of identifying vector r as belonging to class ' can be estimated considering
the probability of obtaining more than k" HIGH values from a signal with switching activity
s; when waiting a total of N cycles (N>k).

P, (Sj’) =P(rej) = Zik (7)%(1 _ ij)Nfz 5
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Fig 7. Level curves for the similarity metric used for the case of a two-dimensional space.
doi:10.1371/journal.pone.0124176.g007

where N is the total number of cycles used to compare any set of vectors. Function (3) is repre-
sented in Fig 11 for the special case in which k = 16 and N = 80 as a function of the similarity
s;r. For this case, s,,;, = k/N = 0.2, note that P;,>0.5 for sj,>s,, in Fig 11.

The similarity search function (1) has the inherent advantage of its analytical simplicity. In
this sense, given two randomly selected m-dimensional vectors x; and r, it is possible to com-
pute the cumulative distribution function of obtaining a similarity lower than a given selected
value z'. From basic probability theory we have that this cumulative distribution function can
be estimated as:

ﬂ@:L@ (4)

where F,(z) is the probability of obtaining a similarity lower than z, Q is the volume for which g
(y)<z, being g(y) the function under consideration (1). Vector y is composed by all the parame-
ters for which g"is dependent (the components of both x; and r vectors that are stochastic sig-
nals with values between 0 and 1).

After some algebra, and considering (1) for the estimation of Q and that each parameter is
bounded between 0 and 1 we have:

,x—m | —2lo " T(m, —2lo
FZ(Z):Z ijl[ (];g(lz))l] = ( F(m)g(Z)) (5)

where 'm’is the dimension of the vectors. If we want to estimate the probability density func-
tion f,(z), we have to derive the cumulative distribution function with respect the selected simi-
larity (2), f,(2z) = 0,F,(2)

From expression (5) we can estimate the number of positive identifications from a database
with W unknown objects if we select a minimum similarity of s,,,;,, (Positives~We(1-F(sn))).
Expression (5) is also very useful to estimate the minimum database width W,,;, needed to
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doi:10.1371/journal.pone.0124176.9008

identify an object with a specific property (assuming a random database):

1
Woin = o ot (©)
1- Smin Zj:l G—1)!

Results

We implemented the proposed methodology in a FPGA-based PCle board (ProcStarIV110E-
4B) fabricated by GIDEL Ltd (see Fig 12). This board incorporates four ALTERA STRATIX III
110E FPGAs along with 32GB of DDR2 SODIMM memory banks to allocate the database. The
communication with the board is done through a PCI-express connector of a PC. The clock
frequency of operation of the board is 87.5 MHz and the maximum power dissipation is about
100W.
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doi:10.1371/journal.pone.0124176.9009

Inside the four FPGA cores we configured a total of 400 similarity comparators per core (de-
sign shown in Fig 6), thus implementing a total of 1600 stochastic comparators in the board
that operate in parallel. The dimension of the vectors are selected to be m = 12. To test the
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doi:10.1371/journal.pone.0124176.g010

circuit effectiveness, we created a similarity search in a random database with a total of
2.5610° 12-D vectors setting an arbitrary minimum similarity of s,,,;,, = 0.2. The final positive
results are shown in Fig 13, where we show, as a function of the similarity 's': the number of
vectors of the database with this similarity (dark diamonds), the number of vectors that are fi-
nally selected by the circuitry as belonging to class 'c' (circles), the ideal number of vectors to be
selected (solid line) and the expected number of vectors to be selected (dashed line f.(s;,) P;,). It
is visible that the experimental and theoretical results (circles and dashed line) are similar. We
also can see that nearly all the vectors with a similarity higher than the selected threshold are
identified (circles and solid line). Unfortunately there is a non-negligible fraction of vectors
with a similarity lower than s,,;, that are selected (circles with s<s,,,;,, = 0.2). This fact is due to
the non-negligible tie of P;,(s;,) for s;,<s,,;, and the exponential dependence of f(s;,) with s;,.
The solution to erase such false positives is to filter-out the final results using software. The
impact of this filtering on the database screening timing is small since only a low volume of
vectors must be recomputed (rather than the billions of vectors that the database can contain).
The total number of positives to be selected by the stochastic circuitry can be estimated nu-

merically as:
jr

Positives = JP» (s)f.(s)ds (7)

Expression (7) can be used to select an optimal number for k and N to control the number
of positive results within reasonable values. In Fig 14 we show the different types of negatives

PLOS ONE | DOI:10.1371/journal.pone.0124176 May 8, 2015 12/20
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doi:10.1371/journal.pone.0124176.g011

and positives provided by the system. False positives are those positives with a similarity lower
than the threshold s,,,;,,. False negatives are those vectors that, even presenting a higher similari-
ty than s,,;,,, are not found by the system. Finally, the true positives and negatives are those vec-
tors that are correctly classified by the system.

Fig 12. FPGA-based PCle board used for the data mining process from GIDEL.

doi:10.1371/journal.pone.0124176.9012
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Although the false positives can be filtered-out by software, the vectors with s>s,,,;,, that are
finally not found by the hardware (false negatives) cannot be recovered (in Fig 13, the false neg-
atives are the difference between the solid line and the circles). In this sense, the precision of
the system is defined as the ratio between true positives and the total number of possible posi-
tives (true positives + false negatives).

_ Ll P_(s)f.(s)ds

min__JT

8
[ f(s)ds ®)

In Table 1 we show the dependence of n with respect to parameter k assuming f, = 1 with
Smin = 0.5. Increasing k increases the efficiency but decreases the screening speed of the circuit.
In Table 1 we find the relationship between 1 and the number of cycles needed to overflow a
WTA counter (k value). For most applications, a value of k = 8 provides good results in terms
of accuracy and computation time.

The circuit speed can be estimated from the time needed to screen a database (t,) with a
total of W vectors:

o W .size NT,W
P foam 1600

+ tsetup (9)

where W is the number of vectors in the database, fr4,, is the data transfer frequency of the
DDR-DRAM (of the order of 16GB/s for the PCle used in the experiment), T,y is the global
clock period of the circuit (operating at 87.5MHz), size'is the number of bytes per vector (12
bytes in our case), 1600 is the number of stochastic comparators implemented inside the
FPGAs, parameter N is the number of clocks used by the WTA to process the inputs (signals
sjr)> and finally t..,, is the setup time needed for board initialization (of the order of 1ms).
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Fig 14. For each computation, a given number of false positives and negatives are provided by the probabilistic system. False positives can be
filtered out by software while false negatives are lost.

doi:10.1371/journal.pone.0124176.9014

Finally, the speed of the screening process is estimated as a function of the number of vectors
in the database (f,,, = W/t,). In Fig 15 we show the screening speed (in millions of compari-
sons per second) as a function of the database width (in millions of vectors), where the vectors
are composed by 12 bytes (m = 12). The low speed obtained by the proposed methodology
when the database is small is basically due to the fixed setup time of the system.

We compared a conventional implementation using binary-based digital hardware of a
multi-vector comparator implementing the metric proposed in (1) with the proposed probabi-
listic system. In Fig 16 we show the conventional implementation of expression (1). Finally, in
Fig 17 we compare the result of such similarity comparators with the minimum similarity s,;,.
In Table 2 we compare both implementations in terms of FPGA resources when using an
ALTERA Cyclone IIT EP3C25F324C8 device. The vectors to be compared are fixed to 12

Table 1. Relationship between the k value and the precision of the system when fz = 1 and using
smin = 0.5 (i.e. N = 2k).

k Precision (n)
8 0.93
16 0.94
32 0.96
64 0.97
128 0.97

doi:10.1371/journal.pone.0124176.1001
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Fig 15. Data mining speed variation with database width when using probabilistic computing. Each comparison implies the processing of two vectors

of 12 Bytes each one.
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dimensions. As it can be seen, the ratio of Logic Elements needed by the conventional and the
probabilistic implementation increases as the number of vectors to be compared grows. The
area ratio between both systems is of the order of 56 while the ratio in terms of circuit speed is
constant and about 1/k (1/8). Therefore, the probabilistic implementation speeds up the
screening process of the database by a factor of 7 when compared to a conventional digital im-
plementation using the same hardware area. In other words, the total performance when using
the proposed architecture is higher by a factor of 7. It means that, the lack in speed can be com-
pensated by using less hardware area.

To sum up, the presented application is an example where stochastic computing is advanta-
geous over conventional computing systems. Since the presented implementation takes advan-
tage of the high parallelism of stochastic computing, less circuit area implies a lower power
demand to achieve a determined processing speed. The source code of both implementations
(conventional and probabilistic) can be found in S1 Appendix.

Conclusions

We have presented a new and unconventional computing technique for ultra-fast mining of
huge databases. The methodology is based on the use of probabilistic pulsed signals. We de-
scribe how correlated bit streams can be used to implement non-linear functions like the abso-
lute value function, which have been also developed by other research group [31]. In the final
architecture we allow the use of both correlated and uncorrelated stochastic bit streams. The
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Fig 16. Conventional implementation of a m-dimensional digital comparator where expression (1) is implemented. The first comparator and the
multiplexer implement the absolute value function while the multiplier provide the product for all the dimensions.

doi:10.1371/journal.pone.0124176.9016

combination of both types of switching signals increases the mathematical capacity of original
stochastic computing implementations. The data to be mined is translated to spikes and pro-
cessed by a simple digital circuitry. The simplicity of the circuitry is used to implement hun-
dreds of stochastic comparators inside Field-Programmable Gate Arrays and oriented to
screen huge databases. The final implementation uses an FPGA-based PCle board for the
screening. This implementation uses less hardware resources than conventional digital meth-
odologies (based on binary and not probabilistic logic) and is able to process the order of
13GBytes of information per second (in contrast to the estimated 2GBytes/s of speed that
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Fig 17. Global comparator between the reference vector and each vector in the database. Block CP is
implementing the circuitry shown in Fig 16. The result is compared with s,;,.

doi:10.1371/journal.pone.0124176.g017

could be achieved by the conventional implementation using the same hardware area). With
the 12-dimensional space used to allocate each vector in the example shown in this paper we
obtain the order of 1 billion of comparisons per second. A patent application has been done for
this new mining methodology [32].

Table 2. Relationship between conventional and probabilistic implementation in terms of FPGA resources for an Altera Cyclone lll device.

Number of vectors

Logic Elements (LE)

2 1.955

13.898
8 39.142
16 91.464
32 196.076
128 823.814

doi:10.1371/journal.pone.0124176.1002

Classical

Multipliers

126
132
132
132
132
132

Delay time (tp)

—_ a4 A a4 a4

Logic Elements

321
551
1.023
1.908
3.713
14.719

Probabilistic
Multipliers Delay time (tp)
0 8
0 8
0 8
0 8
0 8
0 8
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