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Simple Summary: Accurate recognition and detection of pests is the basis of integrated pest manage-
ment (IPM). Manual pest detection is a time-consuming and laborious work. We use computer vision
technology to design an automatic aphid detection network. Compared with other methods, our
model can improve the performance and efficiency of aphid detection simultaneously. Experimental
results prove the effectiveness of our method.

Abstract: It is well recognized that aphid infestation severely reduces crop yield and further leads to
significant economic loss. Therefore, accurately and efficiently detecting aphids is of vital importance
in pest management. However, most existing detection methods suffer from unsatisfactory perfor-
mance without fully considering the aphid characteristics, including tiny size, dense distribution,
and multi-viewpoint data quality. In addition, existing clustered tiny-sized pest detection methods
improve performance at the cost of time and do not meet the real-time requirements. To address
the aforementioned issues, we propose a robust aphid detection method with two customized core
designs: a Transformer feature pyramid network (T-FPN) and a multi-resolution training method
(MTM). To be specific, the T-FPN is employed to improve the feature extraction capability by a
feature-wise Transformer module (FTM) and a channel-wise feature recalibration module (CFRM),
while the MTM aims at purifying the performance and lifting the efficiency simultaneously with a
coarse-to-fine training pattern. To fully demonstrate the validity of our methods, abundant experi-
ments are conducted on a densely clustered tiny pest dataset. Our method can achieve an average
recall of 46.1% and an average precision of 74.2%, which outperforms other state-of-the-art methods,
including ATSS, Cascade R-CNN, FCOS, FoveaBox, and CRA-Net. The efficiency comparison shows
that our method can achieve the fastest training speed and obtain 0.045 s per image testing time,
meeting the real-time detection. In general, our TD-Det can accurately and efficiently detect in-field
aphids and lays a solid foundation for automated aphid detection and ranking.

Keywords: aphid detection; tiny size; dense distribution; multi-viewpoint detection; convolution
neural network; transformer; multi-resolution training

1. Introduction

Aphid infestation seriously reduces grain yield by soaking up plant juices and trans-
mitting wheat virus disease. Pesticides are often used to deal with pest infestations [1,2].
However, the overuse and misuse of pesticides lead to environmental degradation and
food safety issues. Accurately and efficiently detecting pests is the foundation of integrated
pest management (IPM) [3]. Due to the manual recognition and location being a time-
consuming and laborious work, researchers attempt to solve this problem by computer
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vision techniques. Traditional machine-learning-based algorithms [4–7] identify specific
pests by hand-designed feature extraction methods, which result in inadequate generaliza-
tion for practical application. Since the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [8], deep-learning-based methods obtained state-of-the-art (SOTA) performance
in general object detection. Therefore, researchers transfer the deep-learning-based detector
to pest recognition and location.

Rustia et al. used insect sticky paper traps and wireless imaging devices to construct a
greenhouse dataset for detecting and recognizing pests in a fixed environment [9]. With
light-trap devices, Liu et al. designed a pest detector by using global and local activation
features to recognize and localization 16 species from 2 orders, including Lepidoptera and
Coleoptera [10]. Jiao et al. proposed an anchor-free network to identify and locate pests of
24 types, but the incomplete feature fusion resisted the improvement in the detection per-
formance [11]. Subsequently, a sampling-balanced region proposal network was designed
to improve the performance of small-size pests by introducing an attention mechanism
into the residual network (ResNet) [12] for obtaining richer pest feature appearances [13].
Aimed at the small-size high-similarity pest detection problem, Dong et al. designed a
CRA-Net to improve the feature extraction capability of the CNN-based method with a
channel recalibration feature pyramid network and an adaptive anchor module [14].

The light-trap methods automatically detect crop pests by using light-trap devices, but
the expensive equipment overhead limits the development of IPM. In addition, the above-
mentioned methods accurately detect pests in a fixed background but are not suitable
for the in-field environment because of the complex lighting, various shooting angles,
different image quality, and intricate background. Due to the limitation of light-trap
methods, researchers tend to recognize and locate pests in the field environment. Wu et al.
constructed a large-scale insect dataset IP102 including 75,000 images with 102 pest species,
which laid the foundation of pest recognition and location [15]. Pattnaik et al. explored the
feasibility of deep learning-based pest identification methods with the 10-class tomato pest
dataset [16]. Ayan et al. combined different convolutional neural networks (CNNs) into a
unified pest identification network and automatically selected the combination weight to
carry out pest identification through the genetic algorithm [17]. Thenmozhi et al. explored
the results of four deep-learning-based methods (AlexNet [8], ResNet [12], LeNet [18], and
VGG [19]) on three pest datasets using the method of transfer learning [20]. Xie et al. used
multi-task sparse representation and multi-kernel learning to identify 24-class common
field pests [21].

The above methods use the CNN-based model to recognize pests in the simple in-
field environment, in which most images consist of one or two pest close-ups. Although
these methods obtain satisfactory performance, they lack practical application value. In
the complex in-field environment, Wang et al. solved the difficulty of small-size pest
recognition by combining the context-aware information (longitude, latitude, temperature,
and humidity) with the Faster R-CNN [22]. Due to the clustering habits of pests, the real in-
field data exhibit dense distribution. Li et al. proposed a coarse-to-fine network to recognize
and detect aphids by combining the two-stage network and one-stage network into a
uniform pipeline. The network used two-stage architecture to capture the region of aphids
and employed another fine network to detect aphids by regarding the region from the two-
stage network as a new image, which results in inadequate timeliness [23]. Subsequently, a
data augmentation method was designed to improve the detection performance of multi-
scale and multi-attitude pests. It expanded data by rotating and scaling in the training
phase and detected pests with multi-resolution images in the testing phase. This method
improved the performance but ignored the time cost regardless of the training and testing
phase resulting in inadequate practical application ability [24]. Du et al. defined the
problem of densely clustered tiny pest detection and proposed an aphid detector that used
a cluster region proposal network to find the region of aphid and employed a local detector
group to recognize each aphid by transforming the aphid region to a single image [25]. The
method could accurately detect aphids but the significantly slow test speed limited the
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practical application. Due to the detection difficulty of tiny-sized dense pests in the real
field environment, existing methods improve performance at the cost of time. In addition,
the incomplete feature enhancement capacity of existing methods results in inadequate
performance improvement in aphids detection.

In summary, aphid data have three characteristics, including tiny size, dense distri-
bution, and multiple viewpoints. Figure 1 shows the characteristics of aphid detection
compared with other pest datasets (simple in-field environment dataset IP102 [15] and light-
trap pest dataset Pest-26 [26]). Firstly, the average relative size of the APHID-4K dataset
is 0.067%, which is significantly less than IP102 (37.622%) and Pest-26 (2.674%). Secondly,
pests living in groups result in the situation of dense distribution on the APHID-4K dataset.
The APHID-4K has an average of 12.60 aphid objects per image, which is significantly
more than IP102 (1.17 pests per image) and Pest-26 (6.73 pests per image). Thirdly, due to
the focusing difficulty of the data-collection device, multi-viewpoint aphids (aphids with
varying degrees of clarity) exist in images.

Figure 1. The comparison of the APHID-4K and other pest datasets.

Due to the above-mentioned characteristics, existing methods have a couple of lim-
itations in aphid detection: (1) Due to the tiny size characteristics of aphids, the feature
can difficult to extract, resulting in unsatisfactory detection performance [11,14,26]. The
tiny-sized features gradually disappear in the process of convolution operation and the
misty features are not satisfied with the accurate location of dense distribution aphids.
(2) Due to multi-viewpoint aphids in the image, vague aphids will be missed. (3) Due to
the dense distribution, existing methods have to detect the same aphid image multiple
times, even finely detecting the aphid region as a new image resulting in inadequate prac-
tical application value (improve performance without considering efficiency) [23–25]. To
solve the above-mentioned defects, we design a tiny-size dense aphid detection network
(TD-Det) to improve the performance and efficiency simultaneously with two core designs:
a Transformer feature pyramid network (T-FPN) and a multi-resolution training method
(MTM). The T-FPN improves the feature expression ability of tiny-sized dense aphids by a
feature-wise Transformer module (FTM) and a channel-wise feature recalibration module
(CFRM), while the MTM is designed to train networks more robust (accuracy and efficiency)
by using a coarse-to-fine resolution setting without extra time cost. In addition, extensive
experiments on the APHID-4K dataset verify the feasibility of this study, and the results
show that this study can improve detection performance and training efficiency. Ablation
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experiments show that our T-FPN and MTM can improve the detection performance of
other methods in a plug-and-play manner.

2. Materials and Methods
2.1. Dataset

The in-field pest datasets usually adopt mobile phones or handheld data acquisition
devices to collect pest images [27]. For tiny-sized dense distribution pest detection, some
research constructed corresponding datasets [23–25]. To research the problems of tiny-sized
dense distribution detection more equitably and effectively, we use APHID-4K as the
experimental dataset. The APHID-4K includes 4294 images, and the resolution range is
from 1440 × 1080 to 4640 × 3480. The aphids are annotated using the top-left and bottom-
right coordinates and the format of annotation files is XML, such as the PASCAL-VOC [28].
The composition of APHID-4K is shown in Table 1.

Table 1. The constitution of the APHID-4K dataset.

Training
Images

Test
Images

Training
Aphids

Test
Aphids

Macrosiphum
avenae 2125 546 20,043 5203

Rhopalosiphum
padi 2093 507 23,074 5525

2.2. Methodologies

The in-field pest detection task involves two requirements: accuracy and real-time.
(1) We hope that the detector can recognize all the pests in an image, rather than precise
positioning. Even the non-precise bounding box can be accepted because, in IPM [3],
the number of pests in an image is more important than the precise location. (2) Due to
portable devices (mobile phones or portable data-collection devices [27]) being usually
used to investigate crop growth, efficiency is also a core requirement. However, existing
methods have difficulty satisfying the performance and efficiency simultaneously because
of the characteristic of in-field pest data. The next best thing is existing methods [23–25]
that improve detection performance at the cost of time, resulting in insufficient practical
application ability.

Therefore, we design a tiny-sized dense distribution aphid detection network (TD-Det)
to detect aphids accurately and efficiently in the field environment. The TD-Det includes
two core designs: a Transformer feature pyramid network (T-FPN) and a multi-resolution
training method (MTM). The T-FPN is employed to improve the feature extraction capability
of networks, and the MTM is applied to improve the performance with faster training time.
Specifically, the network architecture of TD-Det includes a backbone feature extraction
network [12], a Transformer feature pyramid network (T-FPN), and a detection head
network [29], as shown in Figure 2. Firstly, the backbone network is used to obtain feature
maps from aphid images. Secondly, the T-FPN is employed to enhance tiny-sized, dense
distribution aphid features by a feature-wise Transformer module and a channel-wise
feature recalibration module. Thirdly, the detection head network is utilized to obtain
classification and location results.
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Figure 2. The network architecture of TD-Det with T-FPN, where LN is layer normalization, MLP is
multi-layer perceptron, FC is fully connected, ReLu is rectified linear activation function, and C0–C4
are feature maps.

2.2.1. Transformer Feature Pyramid Network (T-FPN)

When manually recognizing a blurry pest (hard sample) in an image, we consider
surrounding pests to be homogeneous pests because of the clustered living habits of in-
field pests. Due to the limitation of the receptive field, recent CNN-based pest detection
methods only consider the features but ignore the clustering and interactions of pests.
Unlike the CNN-based model, the Transformer model focuses on global information in the
field of natural language processing [30]. Inspired by this, we design a Transformer feature
pyramid network (T-FPN) to improve aphid detection performance with a feature-view
Transformer module and a channel-wise recalibration module.

The FPN [31] uses top-down adjacent feature fusion to promote feature extraction for
general object detection. However, in aphid detection, the tiny-sized features gradually
disappear in the process of feature extraction (backbone), resulting in blurry semantic
information misled by the bottom texture information via FPN. Therefore, we fuse all the
features into a unified feature map and use the fused feature as the input of the feature-wise
Transformer and the channel-wise recalibration to ensure efficiency.

Specifically, we use bilinear interpolation to resize the C2–C4 feature maps to the size
of the C1 feature map and use 3 × 3 convolutions to resize the C0 feature map to the size of
the C1 feature map. After the resize operation, we use the concat operation to fuse features.
For feature map Ci, the size is (wi, hi, di), where the wi, hi, di is the width, high, and depth
(channel), respectively. We stack the resized features C0–C4 at the dimension of the channel
(depth), and the size of fused feature is (w1, h1, 5× d1). Then, 1 × 1 convolutions are used
to change the channel number to the original size d1. We choose the C1 feature map rather
than the C2 feature map to balance the performance and efficiency because the size of pests
is small. The feature fusion method improves the feature expression ability and reduces
the gap between semantic information and texture information. Meanwhile, using the
feature-wise Transformer module and the channel-wise recalibration module on the fused
feature only once ensures sufficient efficiency.

2.2.2. Feature-Wise Transformer Module (FTM)

Transformer technology has been successfully used in machine vision [32,33]. How-
ever, these methods need lots of memory, while using Transformer technology in backbone
networks results in insufficient efficiency because the bigger image size brings a lot of
computation. Although the Swin Transformer [33] has improved efficiency by calculating
attention information in each patch and conveying attention information using a few key
points, information loss is essential in the transmission process, resulting in degraded per-
formance. Therefore, we design a feature-wise Transformer module to calculate attention
information on the whole feature map to provide sufficient efficiency and accuracy.

With the fused feature, we design a feature-wise Transformer module to improve the
aphid detection performance, as shown in Figure 2b. the feature-wise Transformer module
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includes a feature encode/decode, layer normalization (LN), multi-head attention, and a
multi-layer perceptron (MLP). For the fused feature Fx,y,c, where (x, y) is the horizontal
position coordinate of the feature map, and c is the channel number. We shift the size
to Vx×y,c using feature encoding. After LN [34], we put the Vx×y,c into the multi-head
attention, as shown in Formula (1):

Attention(Q, K, V) = so f tmax(
QT K√

dk
) ·V (1)

where Q, K, and V are the results of Vx×y,c through linear mapping, [·]T is transpose
operations, and dk is the dimensionality of K (here is the channel number). The multi-
head attention uses the linear layer to map (Q, K, V) to different distance spaces, and the
attention mechanism enhances the fuzzy aphid feature with other aphid features in the
image. Subsequently, the MLP maps the attention information to the original distance space.

Figure 3. The architecture of the multi-resolution training method (MTM), where R is the resolution
of images, Lr is the learning rate, and the red bounding boxes are detected aphids.

2.2.3. Channel-Wise Feature Recalibration Module (CFRM)

SENet [35] is a convolutional neural network, which uses a channel-attention mecha-
nism to calculate channel weights for improving feature extraction capability. However, the
incomplete attention is not satisfied with tiny-sized dense distribution aphids. For a fused
feature map F(x, y, c), where x, y is the point of feature and the c is the feature channel.
After the feature-wise Transformer, the point-wise feature has been improved. Therefore,
we use a channel-wise recalibration to improve channel-wise feature expression ability and
combine the feature-wise Transformer to comprehensively improve performance.

After the feature-wise Transformer module, we use max pooling and average pooling
to obtain the channel value and the full connection (FC) is utilized to calculate the relation
between each channel. The learned weights are multiplied by feature maps, as shown in
Figure 2c. After feature-wise Transformer and channel-wise recalibration, we use bilinear
interpolation and 3 × 3 convolutions to resize the fused feature to the size of the original
feature map. In addition, our T-FPN can improve the detection performance in a plug-and-
play manner and can combine simply with other detectors .

2.2.4. Two Versions of TD-Det

To increase the application value, we design two versions of TD-Det, including the
real-time version (RV) and the precision version (PV). The TD-Det with PV pays more
attention to precision and the TD-Det with RV balances the accuracy and efficiency. The
distinction between PV and RV is the different selection of feature maps, in which the PV is
partial to using the bottom layer features and the RV is inclined to use top layer features.
Specifically, the RV version uses the C1–C5 features as the input to the T-FPN, and the PV
version uses the C0–C4 features as the input to the T-FPN. The experimental results in
Section 3.4 show that the RV already has more accuracy and efficiency than other methods,
and the PV is more accurate than RV.

2.2.5. Multi-Resolution Training Method (MTM)

Different from other tiny-sized datasets such as TinyPerson [36], aphid images are
mostly taken at the micro-focal length, resulting in multi-viewpoint objects in the same
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image. This causes degraded performance in two situations: (1) one detected bounding box
contains multiple aphids and (2) a large number of undetected fuzzy aphids. Therefore, we
design a multi-resolution training method (MTM) to improve the detection performance
with higher efficiency.

The MTM uses a coarse-to-fine resolution setting to train the network in the form of
augmenting low-resolution aphid data by resizing high-resolution images, as shown in
Figure 3. In general object detection, we resize the variably sized images to a given size
(COCO [37] is 1333 × 800, and PASCAL VOC [28] is 1000 × 600) for uniform network
training. The machine-made resizing operation cannot change the resolution discrepancy
of aphid objects. Our MTM improves the performance of low-resolution aphid predictions
by using the coarse-to-fine resolution setting. Specifically, we first resize all images to a low
resolution (667× 400) for training 8 epochs. The training time is much less than the original
resolution due to the reduced image size. Then, we resize all images from the original to
high resolution (1333 × 800) for training high-resolution images using 4 epochs. Finally,
we reduce the learning rate by 0.1 times to fine-tune 4 epochs, similar to common methods.
Our MTM is a practical method that could improve detection performance with higher
efficiency.

2.3. Loss Function of TD-Det

For training our TD-Det, we design the loss function including classification loss,
center-ness loss, and regression loss, as shown in Formula (2). In the test phase, we
multiply the center-ness branch to the regression branch to ensure points situate the center
of the prediction bounding box:

Ltotal = Lcls + Lreg + Lcenter (2)

Lcls =
1

Npos

Ncls

∑
i=1

FL(pi, p̂i) (3)

Lreg = −In
Intersection(B, B̂)

Union(B, B̂)
(4)

Lcenter = BCE(centerness, ˆcenterness) (5)

where Lcls is the focal loss [38], Lreg is the Intersection over Union (IoU) loss [39], Lcenter uses
binary cross entropy loss, and the target of center-ness is followed by the fully convolutional
one-stage object detection (FCOS) [29].

3. Experiments and Discussions
3.1. Experiment Settings

The backpropagation and Stochastic Gradient Descent (SGD) [40] are employed to
train our TD-Det. In the training phase, each SGD mini-batch is constructed from a single
pest image that contains 256 samples with the ratio of 1:1 selected between negative samples
and positive samples. Gaussian distribution with a mean of 0 and a standard deviation of
0.01 is used to initialize the parameters of the classification regression layer. We train a total
of 16 epochs with a Momentum of 0.9, among which the first 12 epochs have a learning
rate of 0.0025, and the last 4 epochs are 0.00025. With the MTM, the resolution of 667× 400
is set in the first 8 epochs, and the resolution of 1333× 800 is set in the last 8 epochs. Our
experiment is deployed on a Dell 750 server with NVIDIA Titan RTX GPU (24G memory)
using the Mmdetection2.0.0 [41] framework and Python 3.8. Unless otherwise stated, all of
the methods use ResNet50 as the backbone network and use the same parameter settings.

3.2. Evaluation Metrics

IoU is the foundation of detection evaluation and is defined as Formula (6):
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IoUa,b =
area(a) ∩ area(b)
area(a) ∪ area(b)

(6)

where area(·) is the area of the region in an image. We use true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) to determine the results of the prediction.
Precision and recall are defined as Formulas (7) and (8), respectively:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

To evaluate models comprehensively (accuracy ratio and recall ratio), we use average
precision (AP), as shown in Formula (9):

AP(c) =
∫

Precision(c)dRecall(c) (9)

where c is the category. The function graph of precision with respect to recall is the
precision–recall (PR) curve. mAP is the mean AP of all categories, and AP50 is the AP with
IoU = 0.5. Due to the ground truth being annotated by manual means, the precision of
annotated bounding boxes has the situation of deviation. In addition, the number of aphids
is more important than the precise positioning. Therefore, the AP50 index is more reference
value than AP75 and mAP (general object detection dataset PASCAL VOC [28] use AP50
index only).

In addition, we use P_training and P_testing to show the practicability of detectors,
as shown in Formulas (10) and (11), respectively. The values of P_training and P_testing
display the practical application value of networks, and the higher values illustrate the
more accurate performance and higher efficiency:

P_training = AP50/training_time (10)

P_testing = AP50/testing_time (11)

3.3. Contrastive Methods Involved in Experiments

We compared the performance of our method with Faster R-CNN [31,42], Libra
R-CNN [43], ATSS [44], Cascade R-CNN [45], FCOS [29], Retinanet [38], FoveaBox [46],
CRA-Net [14], and DCTDet [25]. Among them, Faster R-CNN is the baseline of two-stage
object detection, and Libra R-CNN, Cascade R-CNN, and ATSS are the improved two-
stage object detection. The FoveaBox, FCOS, and RetinaNet methods are one-stage object
detection methods, and CRA-Net and DCTDet are existing pest detection methods.

3.4. Performance on the APHID-4K Dataset

The performance of the networks are shown in Table 2. Following experimental
results, two-stage networks almost outperform one-stage networks. However, our TD-Det
(a one-stage network) outperforms all methods, even the real-time version. The precision
version of TD-Det obtain 74.2% AP50 and 46.1% mRecall on the APHID-4K dataset, 15.9%
and 27.4% higher than FoveaBox, and 9.0% and 46.4% higher than CRA-Net detector.
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Table 2. Overall performance comparison.

Method mAP AP50 AP75 APs APm mRecall

Other detectors
Faster R-CNN w/ FPN [31] 26.1 68.0 13.1 21.9 30.1 36.7

Libra Faster R-CNN [43] 25.5 64.9 13.2 21.1 29.9 30.8
ATSS [44] 26.9 69.8 13.4 22.4 31.4 33.3

Cascade R-CNN [45] 27.3 69.3 14.1 23.4 31.0 38.3
FCOS [43] 24.9 66.2 11.3 19.9 29.3 32.3

RetinaNet [38] 21.7 60.0 9.4 15.4 26.7 37.1
FoveaBox [46] 23.1 63.4 10.1 18.2 27.7 36.2
CRA-Net [14] 26.1 68.1 13.0 21.8 30.1 31.5

DCTDet W/CCG [25] 27.1 68.5 13.7 22.0 30.4 32.8

Ours
TD-Det(RV) 27.2 71.6 13.4 22.8 31.4 34.6
TD-Det(PV) 29.2 74.2 15.4 25.7 32.7 46.1

Furthermore, Table 3 shows the efficiency comparison with other methods. Our TD-
Det (RV) achieves the fastest training speed of 0.045 s/iter and the highest P_training of
9.55%/s. The TD-Det (PV) achieves the best performance, and the test speed of 0.1 s/img
meets real-time requirements. For the TD-Det (RV), the value in practical application is
much higher than FCOS, although the test speed of 0.045 s/img is slightly lower than the
FCOS of 0.041 s/img. In general, our TD-Det, either the real-time version or the precision
version, outperforms other methods and achieves state-of-the-art (SOTA) results.

Table 3. The efficiency comparison.

Method Training Time (s/iter) Testing Time (s/img) AP50 (%) mRecall (%) P_training (%/s) P_testing (%/s) Parameters

Other detectors
FPN Faster R-CNN [31] 0.111 0.048 68.0 36.7 6.13 14.17 41,353,306

Libra R-CNN [43] 0.118 0.050 64.9 37.4 5.50 12.98 41,616,474
ATSS [44] 0.106 0.048 69.8 40.3 6.59 14.54 32,115,532

Cascade R-CNN [45] 0.133 0.058 69.3 38.3 5.21 11.95 69,154,916
FCOS[43] 0.093 0.041 66.2 37.6 7.12 16.15 32,113,484

RetinaNet [38] 0.102 0.048 60.0 37.1 5.88 12.5 36,350,582
FoveaBox [46] 0.103 0.042 63.4 36.2 6.16 15.10 36,239,942
CRA-Net[14] 0.114 0.050 68.1 31.5 5.97 13.62 41,361,498
DCTDet[25] 0.280 0.213 68.5 32.8 2.45 3.22 84,706,732

Ours
TD-Det(RV) 0.075 0.045 71.6 41.9 9.55 15.91 33,032,012
TD-Det(PV) 0.116 0.100 74.2 46.1 6.40 7.42 33,097,804

Due to the MTM improving the performance of detectors without extra testing time,
the P_testing is increased by AP50 value. In the training phase, the MTM reduces the
training time, and the P_training is increased by AP50 value and the training time simulta-
neously. Due to the unusable acceleration of MTM in the testing phase, the P_testing of
our TD-Det is inferior to FCOS. However, the 8.16% improvement in performance is more
important than the 1.49% P_testing decline. By comprehensive comparison, our TD-Det
achieves the best performance and efficiency.

3.5. Ablation Experiments

Performance of T-FPN with various networks. We compare the performance of T-
FPN with other methods in a plug-and-play manner, as shown in Table 4. The detection
performance of all methods is improved by using our T-FPN, which shows its practical
application value. The T-FPN can improve the AP50 from 0.4% to 1.1% with Cascade
R-CNN and FoveaBox, respectively. The experimental results show that our T-FPN can
help networks to improve feature extraction capability and performance.



Insects 2022, 13, 501 10 of 14

Table 4. The performance of various detection methods with or without T-FPN.

Method T-FPN AP AP50 mRecall

Faster R-CNN [31] 26.1 68.0 36.7√
26.6 68.4 37.2

Libra R-CNN [43] 25.5 64.9 37.4√
25.9 65.4 37.7

Cascade R-CNN [45] 27.3 69.3 38.3√
27.4 69.7 38.2

FCOS [29] 24.9 66.2 37.6√
25.0 67.1 37.4

RetinaNet [38] 21.7 60.0 37.1√
22.0 60.9 37.0

FoveaBox [46] 23.1 63.4 36.2√
23.5 64.5 36.3

Performance of MTM with various detection methods. We compare the performance
of MTM with various networks as shown in Table 5. Due to the simple structure of one-stage
networks having difficult extracting fine features, the improvement of one-stage networks
is higher than two-stage networks. This illustrates that the coarse-to-fine training pattern
can help networks to obtain fine-grained features. The improved values of mRecall show
that our MTM can improve detection results of fuzzy aphids by resizing high-resolution
images to low-resolution images. Because the low-resolution images are trained faster than
the high-resolution images, the training time of all networks is reduced by using our MTM.
The experimental results show that our MTM can improve the performance and shorten
training time simultaneously for both two-stage networks or one-stage networks.

Table 5. The performance of various detection methods with or without MTM.

Method MTM AP50 mRecall Training Time (s/iter) Test Time (s/img)

Faster R-CNN [31] 68.0 36.7 0.111 0.048√
68.5 37.2 0.079 0.047

Libra R-CNN [43] 64.9 37.4 0.118 0.050√
66.2 38.3 0.084 0.050

Cascade R-CNN [45] 69.3 38.3 0.133 0.058√
69.4 38.5 0.102 0.058

FCOS [29] 66.2 37.6 0.093 0.041√
69.3 38.9 0.062 0.040

RetinaNet [38] 60.0 37.1 0.102 0.048√
62.8 38.2 0.072 0.048

FoveaBox [46] 63.4 36.2 0.103 0.042√
66.5 37.5 0.071 0.042

Backbone of our TD-Net. Due to the requirement of aphid detection paying more
attention to position rather than high-value IoU, the AP50 is more important than AP75 and
AP. The performance of ResNet50 [12] is better than ResNet101 and ResNexts because the
tiny-sized aphid feature gradually disappears in the process of the convolution operation, as
shown in Table 6. For fairness, we choose the ResNet50 as the backbone of all the methods.

Table 6. The performance comparison of TD-Det with various backbones.

Resnet50 Resnet101 Resnext50 Resnext101

AP50 74.2 74.0 73.2 72.9
AP75 15.4 14.5 14.4 13.9
AP 29.2 29.1 28.6 28.3
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3.6. Analysis and Discussion

PR curve. To analyze the performance of our TD-Det in detail, we show the PR curve
in Figure 4. Due to the AP50 being more important than other indices, we show the PR curve
under IoU50. Following the PR curve, the two-stage network, Faster R-CNN, outperforms
the one-stage network, FoveaBox. Our TD-Det models (either PV or RV) outperform other
detectors. The advantage of our TD-Det models is that they reflect more accuracy in the
region of high-value recall, which means that our TD-Det can provide more accurate results,
ruling out missing detection.

Performance comparison of each epoch. We compare the performance of each epoch
as shown in Figure 5. The mAP50 curve of our methods shows the three-level performance
improvement caused by the enhanced resolution and reduced learning rate. In addition,
our method obtains start-of-the-art (SOTA) performance without reducing the learning
rate at epoch 11 and epoch 12. Our methods (TD-Det (PV) with T-FPN and MTM) could
effectively improve the detection performance of tiny-sized dense aphids.

Figure 4. PR curve with IoU = 0.5. (a) PR curve of Macrosiphum avenae. (b) PR curve of Rhopalosi-
phum padi.

Figure 5. Performance comparison of AP50.

3.7. Qualitative Results

To visually observe the performance, we visualized the detection results of Faster
R-CNN, FCOS, CRA-Net, and TD-Det (ours), as shown in Figure 6. We choose the images
with various difficulty degrees, in which the first two columns exhibit the dense aphid
images and the last two columns display the complex background images. In all scenarios,
FCOS and CRA-Net can inadequately detect aphids, as shown in the second and third
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lines of Figure 6. Due to the manual super-parametric setting being inadequate for aphid
detection, the Faster R-CNN has impertinent performance (one predicts bounding box with
multiple aphids, and chaotic predicts the results), as shown in the first line of Figure 6.
Our methods (TD-Det) acquire the best performance, as shown in the last line of Figure 6.
In addition, in the first column of Figure 6, other methods misidentified other pests. For
tiny-sized fuzzy aphid detection, the performances of other methods are inferior to that of
TD-Det, as shown in the last columns of Figure 6.

Figure 6. Comparison and visualization of detection results with other methods.

4. Conclusions

Integrated pest management (IPM) requires specialized agricultural technicians, re-
sulting in high labor costs. Meanwhile, the control of pests depends on pesticides, while the
situation of excessive pesticides and the misuse of pesticides brings environmental pollution
and food safety problems. Therefore, this study combines computer vision with IPM to pro-
vide an accurate and efficient pest detection tools to replace manual work. Specifically, this
paper aims to solve the problem of tiny size, dense distribution and multi-viewpoint aphid
detection. We propose a tiny-sized dense aphid detection network (TD-Det) that includes
two core designs: a Transformer feature pyramid network (T-FPN) and a multi-resolution
training method (MTM). The T-FPN focuses on improving the recognition accuracy of
tiny-sized dense distribution aphids by a feature-wise Transformer module (FTM) and a
channel-wise feature recalibration module (CFRM). Due to the tiny-sized aphids bringing
difficulties in image capturing, we propose a multi-resolution training method (MTM) to
improve the detection performance without extra time consumption. Furthermore, the
MTM can improve training efficiency by using images with coarse-to-fine resolutions to
train networks. Abundant experiments are performed on the APHID-4K dataset, and our
method obtains 74.2% AP under the efficiency of 0.100 s per image. Ablation experiments
demonstrate that our T-FPN and MTM can improve the performance of other detectors sim-
ply in a plug-and-play manner. In the future, we will focus on the research of real-time pest
detection on mobile terminals to provide reasonable pest control suggestions to ordinary
crop producers.



Insects 2022, 13, 501 13 of 14

Author Contributions: Conceptualization, Y.T., R.W. and D.J.; methodology, Y.T. and Z.H.; vali-
dation, Y.T., J.D. and Q.Z.; formal analysis, Y.T. and Z.H.; writing—original draft preparation, Y.T.;
writing—review and editing, Y.T., L.J. and Z.H.; visualization, Y.T. and Q.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This study is supported in part by the National Natural Science Foundation of China (no.
31671586) and the Natural Science Foundation of Anhui Higher Education Institutions of China (no.
KJ2021A0025).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The original contributions presented in the study are included in the
article/supplementary materials, further inquiries can be directed to the corresponding author/s.

Acknowledgments: Thanks to all the authors cited in this article and the referee for their helpful
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, Y.; Du, G.; Xie, S.; Long, X.; Sun, G.; Zhu, S.; He, X.; Liu, Y.; Zhu, Y.; Chen, B. The Insecticidal Efficacy and Physiological Action

Mechanism of a Novel Agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae). Insects 2022, 13, 433. [CrossRef]
2. Rabelo, M.M.; Santos, I.B.; Paula-Moraes, S.V. Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) Fitness and Resistance

Stability to Diamide and Pyrethroid Insecticides in the United States. Insects 2022, 13, 365. [CrossRef] [PubMed]
3. Bernardo, E.N. Adoption of the integrated pest management (IPM) approach in crop protection: A researcher’s view. Philipp.

Entomol. 1993, 9, 175–185.
4. Solis-Sánchez, L.O.; Castañeda-Miranda, R.; García-Escalante, J.J.; Torres-Pacheco, I.; Guevara-González, R.G.; Castañeda-

Miranda, C.L.; Alaniz-Lumbreras, P.D. Scale invariant feature approach for insect monitoring. Comput. Electron. Agric. 2011,
75, 92–99. [CrossRef]

5. Xia, C.; Lee, J.M.; Li, Y.; Chung, B.K.; Chon, T.S. In situ detection of small-size insect pests sampled on traps using multifractal
analysis. Opt. Eng. 2012, 51, 027001. [CrossRef]

6. Ebrahimi, M.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method.
Comput. Electron. Agric. 2017, 137, 52–58. [CrossRef]

7. Deng, L.; Wang, Y.; Han, Z.; Yu, R. Research on insect pest image detection and recognition based on bio-inspired methods.
Biosyst. Eng. 2018, 169, 139–148. [CrossRef]

8. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

9. Rustia, D.J.A.; Chao, J.J.; Chiu, L.Y.; Wu, Y.F.; Chung, J.Y.; Hsu, J.C.; Lin, T.T. Automatic greenhouse insect pest detection and
recognition based on a cascaded deep learning classification method. J. Appl. Entomol. 2021, 145, 206–222. [CrossRef]

10. Liu, L.; Xie, C.; Wang, R.; Yang, P.; Sudirman, S.; Zhang, J.; Li, R.; Wang, F. Deep learning based automatic multi-class wild pest
monitoring approach using hybrid global and local activated features. IEEE Trans. Ind. Inform. 2020, 17, 7589–7598. [CrossRef]

11. Jiao, L.; Dong, S.; Zhang, S.; Xie, C.; Wang, H. AF-RCNN: An anchor-free convolutional neural network for multi-categories
agricultural pest detection. Comput. Electron. Agric. 2020, 174, 105522. [CrossRef]

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

13. Wang, R.; Jiao, L.; Xie, C.; Chen, P.; Du, J.; Li, R. S-RPN: Sampling-balanced region proposal network for small crop pest detection.
Comput. Electron. Agric. 2021, 187, 106290. [CrossRef]

14. Dong, S.; Wang, R.; Liu, K.; Jiao, L.; Li, R.; Du, J.; Teng, Y.; Wang, F. CRA-Net: A channel recalibration feature pyramid network
for detecting small pests. Comput. Electron. Agric. 2021, 191, 106518. [CrossRef]

15. Wu, X.; Zhan, C.; Lai, Y.K.; Cheng, M.M.; Yang, J. Ip102: A large-scale benchmark dataset for insect pest recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 8787–8796.

16. Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer learning-based framework for classification of pest in tomato plants. Appl.
Artif. Intell. 2020, 34, 981–993. [CrossRef]

17. Ayan, E.; Erbay, H.; Varçın, F. Crop pest classification with a genetic algorithm-based weighted ensemble of deep convolutional
neural networks. Comput. Electron. Agric. 2020, 179, 105809. [CrossRef]

18. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

19. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
20. Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput.

Electron. Agric. 2019, 164, 104906. [CrossRef]

http://doi.org/10.3390/insects13050433
http://dx.doi.org/10.3390/insects13040365
http://www.ncbi.nlm.nih.gov/pubmed/35447807
http://dx.doi.org/10.1016/j.compag.2010.10.001
http://dx.doi.org/10.1117/1.OE.51.2.027001
http://dx.doi.org/10.1016/j.compag.2017.03.016
http://dx.doi.org/10.1016/j.biosystemseng.2018.02.008
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1111/jen.12834
http://dx.doi.org/10.1109/TII.2020.2995208
http://dx.doi.org/10.1016/j.compag.2020.105522
http://dx.doi.org/10.1016/j.compag.2021.106290
http://dx.doi.org/10.1016/j.compag.2021.106518
http://dx.doi.org/10.1080/08839514.2020.1792034
http://dx.doi.org/10.1016/j.compag.2020.105809
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.compag.2019.104906


Insects 2022, 13, 501 14 of 14

21. Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, T.; Chen, H. Multi-level learning features for automatic classification
of field crop pests. Comput. Electron. Agric. 2018, 152, 233–241. [CrossRef]

22. Wang, F.; Wang, R.; Xie, C.; Yang, P.; Liu, L. Fusing multi-scale context-aware information representation for automatic in-field
pest detection and recognition. Comput. Electron. Agric. 2020, 169, 105222. [CrossRef]

23. Li, R.; Wang, R.; Xie, C.; Liu, L.; Zhang, J.; Wang, F.; Liu, W. A coarse-to-fine network for aphid recognition and detection in the
field. Biosyst. Eng. 2019, 187, 39–52. [CrossRef]

24. Li, R.; Wang, R.; Zhang, J.; Xie, C.; Liu, L.; Wang, F.; Chen, H.; Chen, T.; Hu, H.; Jia, X.; et al. An effective data augmentation
strategy for CNN-based pest localization and recognition in the field. IEEE Access 2019, 7, 160274–160283. [CrossRef]

25. Du, J.; Liu, L.; Li, R.; Jiao, L.; Xie, C.; Wang, R. Towards Densely Clustered Tiny Pest Detection in the Wild Environment.
Neurocomputing 2022, 490, 400–412. [CrossRef]

26. Teng, Y.; Zhang, J.; Dong, S.; Zheng, S.; Liu, L. MSR-RCNN: A Multi-Class Crop Pest Detection Network Based on a Multi-Scale
Super-Resolution Feature Enhancement Module. Front. Plant Sci. 2022, 13, 810546. [CrossRef]

27. Qing, Y.; Xian, D.X.; Liu, Q.J.; Yang, B.J.; Diao, G.Q.; Jian, T. Automated counting of rice planthoppers in paddy fields based on
image processing. J. Integr. Agric. 2014, 13, 1736–1745.

28. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

29. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 9627–9636.

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.

31. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

32. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

33. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 11–17 August 2021;
pp. 10012–10022.

34. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
35. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
36. Yu, X.; Gong, Y.; Jiang, N.; Ye, Q.; Han, Z. Scale match for tiny person detection. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1257–1265.
37. Chen, X.; Fang, H.; Lin, T.Y.; Vedantam, R.; Gupta, S.; Dollár, P.; Zitnick, C.L. Microsoft coco captions: Data collection and

evaluation server. arXiv 2015, arXiv:1504.00325.
38. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
39. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM

International Conference on Multimedia, Virtual Event, China, 20–24 October 2016; pp. 516–520.
40. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten

zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
41. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open mmlab detection

toolbox and benchmark. arXiv 2019, arXiv:1906.07155.
42. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
43. Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 821–830.

44. Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training
sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 9759–9768.

45. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

46. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process.
2020, 29, 7389–7398. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2018.07.014
http://dx.doi.org/10.1016/j.compag.2020.105222
http://dx.doi.org/10.1016/j.biosystemseng.2019.08.013
http://dx.doi.org/10.1109/ACCESS.2019.2949852
http://dx.doi.org/10.1016/j.neucom.2021.12.012
http://dx.doi.org/10.3389/fpls.2022.810546
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TIP.2020.3002345

	Introduction
	Materials and MethodsMaterials
	Dataset
	Methodologies
	Transformer Feature Pyramid Network (T-FPN)
	Feature-Wise Transformer Module (FTM)
	Channel-Wise Feature Recalibration Module (CFRM)
	Two Versions of TD-Det
	Multi-Resolution Training Method (MTM)

	Loss Function of TD-Det

	Experiments and DiscussionsExperiment results
	Experiment Settings
	Evaluation Metrics
	Contrastive Methods Involved in Experiments
	Performance on the APHID-4K Dataset
	Ablation Experiments
	Analysis and Discussion
	Qualitative Results

	Conclusions
	References

