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Simple Summary: Chemokines are central players in cancer and can be post-translationally modified
by dipeptidyl peptidase IV (DPPIV)/CD26. This can have different effects on chemokine function,
ranging from reduced, unchanged to enhanced activity. CD26 is differentially expressed in tumors,
which affects the dominant chemokine isoform present in the tumor microenvironment. In this
review, we aim to recapitulate the current knowledge on the interplay between CD26 and chemokine
activity in cancer.

Abstract: Chemokines are a large family of small chemotactic cytokines that fulfill a central function
in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which
they exert in a direct or indirect manner. An important post-translational modification that regulates
chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase
(DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain
degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a
penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific
amino acid residues within the chemokine structure, by oligomerization or by binding to cellular
glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is
altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as
unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most
profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted
into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is
upregulated or downregulated and often results in the preferential generation of the chemokine
isoform most favorable for tumor progression. Considering the tight relationship between chemokine
sequence and chemokine binding specificity, molecules with the appropriate characteristics can be
chemically engineered to provide innovative therapeutic strategies in a cancer setting.

Keywords: CD26; chemokines; truncation; post-translational; modification; tumor

1. Direct and Indirect Effects of Chemokines in Cancer

Tumor development and progression are driven by the acquirement of sequential aber-
rant characteristics within the tumor microenvironment. Malignant and non-malignant
cells in the tumor stroma secrete environmental cues to sculpt the tumor micromilieu
and support tumor growth, progression, and evasion from the host’s immune defense.
First identified in tumor supernatants, the role of chemokines herein has been widely
acknowledged [1,2]. Chemokines are a large family of small chemotactic cytokines whose
main function relies in regulation of the trafficking of leukocytes via G protein-coupled
receptors (GPCRs) expressed on target cells. Aside from acting as leukocyte recruiters,
chemokine function in cancer has broadened extensively. They can influence cancer pro-
gression directly by supporting constitutive growth, survival, invasion, and metastatic
spread or indirectly by stimulating or impeding angiogenesis and defining the immune
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response by specific leukocyte subset recruitment to shape primary and metastatic tumor
sites. Depending on the chemokine involved, they can either promote or impede tumor
progression or even a combination of both depending on the tumor type. Based on the
positioning of the conserved NH2-terminal cysteine residues, chemokines are classified
into four subclasses, namely CXC, CC, CX3C, and C chemokines [3].

1.1. CXC Chemokines

CXC chemokines are characterized by two NH2-terminal cysteine residues (C) sepa-
rated by any amino acid (X). Within this subfamily, a distinction is made between ELR+ and
ELR- CXC chemokines, depending on the presence or absence of a glutamic acid (E)-leucine
(L)-arginine (R) sequence that precedes the cysteine residues NH2-terminally.

1.1.1. Tumor-Promoting (ELR+) CXC Chemokines

ELR+ CXC chemokine ligands (CXCLs) CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,
and CXCL8 all signal through CXC chemokine receptor (CXCR) CXCR1 and/or CXCR2.
CXCR1 is a specific receptor for CXCL6 and CXCL8, but CXCR2 is shared by all ELR+ CXC
chemokines. Whereas the angiogenic effects of ELR+ CXC chemokines are mediated by
CXCR2, neutrophils are activated and recruited via CXCR1 and CXCR2 [4,5]. CXCR2 is
tightly associated with angiogenic signaling, for instance in gastric cancer, as well as with
malignant progression in gastric and triple-negative breast cancer (TNBC) [6–10]. However,
the role of CXCR2 and neutrophils in cancer is not fully elucidated yet and most likely not
congruent in all tumor types. Boissière-Michot et al. reported that increased expression
of CXCR2 coincided with lower risk of relapse and enhanced prognosis in patients with
TNBC via recruitment of cytotoxic CD8+ T cells [11,12]. Tumor-derived CXCR1/2 ligands
instigated neutrophil-mediated NETosis, which shielded tumor cells from cytotoxicity [13].
Blockage of CXCLs/CXCR2 axis reduced myeloid cell influx in pancreatic ductal adenocar-
cinoma and improved prognosis [14]. In contrast, knockdown of CXCR2 in the PyMT breast
cancer model rendered neutrophils with characteristics in favor of tumor progression [15].
The ELR motif in CXC chemokines seems to be indispensable, but not a sole prerequisite
for receptor binding and neutrophil activation [16]. However, a CXCL8 truncated form
missing part of the ELR motif, namely CXCL8(10–77), showed reduced potency to induce
neutrophil elastase release, but a chemotactic activity comparable to CXCL8(1–77) [17,18].

CXCL1–2–3

The chemokines belonging to the growth-related oncogene (GRO) subgroup of CXC
chemokines, GRO-α/CXCL1, GRO-β/CXCL2, GRO-γ/CXCL3, were first identified as
growth factors of melanoma cell lines, before being attributed neutrophil chemotactic
activity [19]. In addition to melanoma, CXCL1 stimulated pancreatic tumor growth [20,21].
CXCL1–3 chemokines instigate angiogenesis, but CXCL1 showed the strongest angiogenic
activity [22]. CXCL1 and CXCL2 were expressed downstream of the transcription factor
snail, a mediator of epithelial to mesenchymal transition (EMT) and attracted myeloid-
derived suppressor cells (MDSCs) to the tumor microenvironment in experimental ovarian
cancer [23]. A coordinated interplay between transforming growth factor-β (TGF-β) and
CXCR2 ligands CXCL1/2/3 also induced neutrophil influx in TNBC [24]. In this breast
cancer subtype, cancer stem cells (CSCs) expressed increased amounts of CXCL1, which
sustained CSC proliferation and self-renewal. Its expression strongly correlated with
pro-angiogenic and tumor-promoting factors [25]. In gastric cancer patients, high CXCL1
expression correlated with invasion and lymph node metastasis [9]. Both in ovarian and
gastric cancer patients, CXCL1 expression is associated with poorer prognosis compared to
CXCL1-negativity [9,23].

CXCL5

Epithelial-derived neutrophil-activating peptide-78 (ENA-78)/CXCL5 was first puri-
fied from epithelial cells in response to interleukin-1β (IL-1β) or tumor necrosis factor-α
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(TNF-α) [26]. Increased levels of CXCL5 were found in patients with non-small cell lung
cancer (NSCLC) concurring with enhanced vascularity [27]. In addition, a direct association
between CXCL5 expression and tumor growth was found in a mouse model of NSCLC.
Administration of CXCL5-neutralizing antibodies attenuated tumor growth, blood vessel
outgrowth and metastasis, without affecting tumor cell proliferation. In patients with renal
cell carcinoma (RCC), CXCL5 levels were positively correlated with neutrophil numbers
and immature MDSC counts [28]. CXCL5 was also reported as a neutrophil attractant
in hepatocellular carcinoma (HCC), associated with poor prognosis [29]. However, in a
mouse xenograft model wherein metastatic RCC cells were injected in the lungs, elevated
levels of CXCL5 and CXCL8 corresponded to an influx of anti-tumoral neutrophils and
decrease of metastatic activity [30].

CXCL6

Granulocyte chemotactic protein-2 (GCP-2)/CXCL6 was originally purified from os-
teosarcoma cells and identified as a neutrophil attractant [31]. Although it can activate
both CXCR1 and CXCR2, its affinity for CXCR1 is lower than for CXCR2 [32]. CXCL6 is a
weak proliferative inducer of endothelial cells, but acts as an endothelial chemoattractant
and as such positively contributes to angiogenesis, as evidenced in the rat corneal mi-
cropocket model [33]. Human microvascular endothelial cells (HMVECs) stimulated with
inflammatory mediators produced CXCL6, CXCL8, and CC chemokine ligand 2 (CCL2)
and in synergy with the latter, CXCL6 was a potent chemoattractant for neutrophils [34].
Additionally, in gastro-intestinal tumors, endothelial CXCL6 production was evidenced
and coincided with leukocyte infiltration and matrix metalloproteinase-9 (MMP-9) expres-
sion. Recombinant overexpression of the potent truncated murine CXCL6(9–78) in a mouse
model of melanoma concurred with the recruitment and stimulation of tumor-associated
neutrophils (TANs). This led to an increase in MMP-9 production and favored tumor
growth through associated angiogenesis, without directly affecting the tumor cells [35].
Treatment with an anti-murine CXCL6 antibody reduced tumor volume and associated
lymph node metastases [36].

CXCL7

Neutrophil-activating peptide-2 (NAP-2) is a typical platelet product and is gener-
ated by the cleavage of its precursors connective tissue-activating peptide III and beta-
thromboglobulin by cathepsin G [37]. Intratumoral IL-1β-induced expression of NAP-
2/CXCL7 directly affected in vitro and in vivo tumor growth of clear cell renal cell carci-
noma (ccRCC) [38]. Administration of a dual CXCR1/2 pharmacological inhibitor atten-
uated endothelial cell proliferation and ccRCC growth. CXCL7 expression is increased
in several solid tumors, such as colorectal, renal and lung cancer and could therefore
have biomarker potential in their diagnosis [39–41]. CXCR2 and CXCL7 overexpression in
liver metastases of colorectal cancer was associated with a shorter overall and disease-free
survival [42]. In gastric cancer, increased CXCL7 expression correlated with lymph node
metastasis [9].

CXCL8

Interleukin-8 (IL-8)/CXCL8 is physiologically produced by endothelial cells, fibrob-
lasts, leukocytes, and various epithelial cells [43–46]. A direct tumor-promoting role has
been ascribed to CXCL8 by promoting in vivo melanoma and in vitro pancreatic tumor
growth via CXCR2 [21,47]. CXCL8 is also angiogenic as it induced neovascularization in a
rabbit corneal pocket model [48]. Furthermore, serial activation of angiogenic molecules
is common to maintain the angiogenic profile. For example, it was shown that vascu-
lar endothelial growth factor (VEGF) stimulation upregulated CXCL8, which at its turn
induced endothelial chemotaxis, proliferation, and phosphorylation of extracellular signal-
regulated kinase 1/2 (ERK1/2) through CXCR2 [49]. In human gastric carcinoma, CXCL8
levels correlated with tumor vascularization [50]. In concordance with its primary role as a
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neutrophil attractant in inflammation, in a zebrafish model of glioma, CXCL8 was found
to recruit neutrophils via CXCR1 to the tumor in the very early stages of development.
Inhibition of CXCR1 decreased neutrophil attraction, proliferation, and formation of a
tumor mass [51]. High levels of CXCL1 and CXCL8 were thought to be responsible for
CXCR2+ neutrophil influx in colorectal cancer [52]. Serum concentrations of CXCL8 were
higher in patients and corresponded to a shorter overall and relapse-free survival. CXCL8
is also upregulated in breast cancer and associated with poor prognosis [53]. Its expres-
sion increased CSC self-renewal of which the presence was correlated with development,
progression, and recurrence. The CXCL8/CXCR2 axis was also found to associate with
metastasis of melanoma. Other studies reported upregulation of CXCL8 during EMT,
with one study specifically reporting CXCR1-mediated chemotaxis of colon carcinoma
cells [54,55].

CXCL12

Although stromal cell-derived factor-1 (SDF-1)/CXCL12 is an ELR− CXC chemokine,
it possesses angiogenic and pro-tumoral characteristics. CXCR4 has been proposed as the
main chemokine receptor on the endothelium and its ligands CXCL12-α and CXCL12-β
as the major endothelial chemoattractants, amongst the CXC chemokines [56]. CXCL12 is,
apart from leukocytes, rather ubiquitously expressed. Its receptor CXCR4 is overexpressed
in many tumor types and the associated consequences vary widely [57]. As such, the
notion that CXCL12 could be post-translationally modified by, e.g., proteases affecting its
activity, has an important impact on tumor biology (vide infra). CXCR4 expression in hu-
man glioblastoma tumors and cell lines was linked to CXCL12-α-induced proliferation via
ERK1/2 and protein kinase B (Akt) signaling [58]. In invasive breast carcinomas, CXCL12-
secreting carcinoma-associated fibroblasts (CAFs) directly influenced tumor growth [59].
CXCL12 expression was also increased in ovarian cancer cells compared to normal ovarian
epithelial cells, which was thought to stimulate proliferation, migration, and invasion of
the tumor cells [60]. As evidenced by gene knock-out mice, the CXCL12/CXCR4 axis
plays a non-redundant role in vasculogenesis [61]. CXCL12-α can act in series with other
angiogenic molecules as it was shown that VEGF and basic fibroblast growth factor (bFGF)
stimulation of endothelial cells induced expression of CXCR4. Furthermore, injection of
CXCL12-α induced angiogenesis in vivo [62]. Neutralization of CXCR4 with anti-CXCR4
antibodies reduced in vivo tumor growth and vascularization of CXCR4-overexpressing
prostate tumors [63]. Apart from tumor growth and angiogenesis, the CXCL12/CXCR4
axis is widely known for its role in predisposing the metastatic niche. Breast carcinoma
and melanoma metastases both have a high incidence of CXCR4 expression [64]. In breast
cancer cells, CXCR4 signaling induced cell migration and invasion. Suppression of the
CXCL12/CXCR4 axis inhibited metastasis to the regional lymph nodes and lungs. CXCL12
signaling through CXCR4 also increased prostate cancer cell adhesion to the endothe-
lium, possibly through the upregulation of αvβ3 integrins and CD164, and contributed
to metastatic spread to the bone [65,66]. CXCL12/CXCR4 signaling can also enhance
tumor progression by attracting pro-tumoral immunosuppressive immune cells. In ovarian
cancer, CXCL12/CXCR4 signaling stimulated tumor angiogenesis, development of cancer-
initiating cells and metastasis to the peritoneum via recruitment of immunosuppressive
cells, such as regulatory T (Treg) cells [67]. In high grade serous ovarian carcinoma, invari-
ably associated with poor prognosis, a specific accumulation of CXCL12-β in a subset of
CAFs was essential for the recruitment of intratumoral immunotolerant Tregs [68]. In a
murine model of pancreatic cancer, CAFs expressing CXCL12 attracted CXCR4-bearing
immunosuppressive cells that rendered the tumor unresponsive to the commonly used T
cell checkpoint inhibitors anti-programmed cell death-ligand 1 (PD-L1) and anti-cytotoxic
T lymphocyte-associated antigen-4 (CTLA-4). Administration of AMD3100, a CXCR4
receptor inhibitor, induced T cell accumulation and cooperated with anti-PD-L1 to reduce
tumor burden [69].
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1.1.2. Tumor-Obstructing (ELR−) CXC Chemokines

CXC chemokines lacking the ELR motif and binding to CXCR3 are lymphocyte attrac-
tants and exert angiostatic activity.

CXCL4 and CXCL4L1

Platelet factor-4 (PF-4)/CXCL4 is the oldest member of the chemokine family, its
sequence having been published already in 1977. It is secreted from the α-granules of
platelets and was discovered by Maione et al. to have potent angiostatic activity [70]. This
heparin-binding chemokine inhibited endothelial proliferation and migration in vitro and
angiogenesis in vivo [71]. Tumor growth was inhibited by CXCL4 via inhibition of angio-
genesis in several animal models of cancer, including models of glioma, melanoma, and
colon carcinoma [71,72]. Furthermore, CXCL4 complexed with bFGF, which interfered with
endogenous and heparin-induced bFGF dimerization, FGF receptor binding and activa-
tion [73]. Additionally, direct association between CXCL4 and VEGF165 was reported and
CXCL4 inhibited VEGF165- and VEGF121-induced proliferation [74]. However, CXCL4
expression in MC38 colon cancer in mice was shown to coincide with the suppression of
a CD8+ T cell influx and promotion of Treg responses via CXCR3, and accelerated tumor
growth [75]. A natural non-allelic variant, platelet factor-4 variant (PF-4var)/CXCL4L1,
only differing in three COOH-terminal amino acids, namely Pro58Leu, Lys66Glu, and
Leu67His, is characterized by a lower affinity for heparin and chondroitin sulfate and
a more outspoken angiostatic activity in vitro and in vivo compared to CXCL4 [76–78].
CXCL4L1 was isolated from thrombin-stimulated platelets, but can also be produced by
osteosarcoma cells [79]. CXCL4L1 inhibited growth and metastasis in several cancer models
including B16 melanoma, A549 adenocarcinoma, and Lewis lung carcinoma (LLC) via
the inhibition of angiogenesis [80]. It was more potent than CXCL10 in the adenocarci-
noma model, but showed equal potency compared to CXCL9 in the LLC model. Both
CXCL4 and CXCL4L1 attracted activated T cells, natural killer (NK) cells and immature
dendritic cells (DCs) via CXCR3A [78,81]. The chemokine receptor CXCR3 exists in two
isoforms, CXCR3A and CXCR3B, differing in the NH2-terminal region. Whereas CXCR3A
is mediating leukocyte chemoattractant activity, CXCR3B-mediated signaling seems re-
sponsible for the angiostatic activity of the ELR− CXC chemokines, including CXCL4 and
CXCL4L1 [81,82].

CXCL9, CXCL10, and CXCL11

Interferon-γ (IFN-γ) is the major inducer of three CXCR3 ligands, monokine in-
duced by IFN-γ (MIG)/CXCL9, 10 kDa IFN-γ-induced protein (IP-10)/CXCL10 and IFN-
inducible T cell α chemoattractant (I-TAC)/CXCL11 in mainly endothelial cells, monocytes,
fibroblasts, and cancer cells. CXCL10 is induced by both type I (α/β) and type II (γ)
IFN. All three CXCR3 ligands are inhibitors of angiogenesis [83]. CXCL10 attenuated
CXCL8- and bFGF-induced neovascularization in the rat cornea micropocket and Matrigel
plug assay [83,84]. Mice with A549 adenocarcinoma or NSCLC treated intratumorally
with CXCL10 showed a reduction in tumor size, angiogenesis, and metastasis [80,85].
CXCL9 also reduced tumor size and attenuated angiogenesis in the LLC model. CXCL9,
CXCL10, and CXCL11 recruit CXCR3+ immunoreactive leukocytes to boost the host’s anti-
tumoral response, such as cytotoxic CD8+ and CD4+ T helper 1 (Th1), DCs, NK, and NKT
cells [86]. CXCL10 also promotes T cell adhesion to the endothelium. In patient-derived
RCC samples, increased expression of CXCR3 and CC chemokine receptor 5 (CCR5) on
tumor-infiltrating T lymphocytes was found. The expression of Th1-associated genes,
such as CXCL9/10/11, corresponded with increased infiltration of Th1 lymphocytes and
favorable prognosis [87]. CXCL9 and CXCL10 expression was associated with CD8+ T cell-
infiltrated melanoma metastases [88]. CXCR3 positivity of CD8+ T cells corresponded with
enhanced survival [89]. In patients with less recurrence of colorectal tumors, a higher infil-
tration of memory T cells was observed, which was mediated by CXCL9 and CXCL10 [90].
On the contrary, enhanced metastasis of CXCR3+ tumor cells to metastatic sites expressing
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high concentrations of CXCR3 ligands (e.g., brain, lungs, lymph nodes) has been reported
as well for melanoma, breast, and colon cancer [91–94]. As such, CXCL9/10/11 ligands can
create a more angiostatic, immunosuppressive environment, but on the other hand they
can also contribute to tumor aggressiveness [86]. Given the pivotal function of the CXCR3
ligands in the anti-tumor response, the effects of the processing of these chemokines by
CD26 is of great interest (vide infra).

CXCL13 and CXCL16

B cell-attracting chemokine-1 (BCA-1)/CXCL13 attracts B lymphocytes via Burkitt
lymphoma receptor-1 (BLR-1)/CXCR5 and was therefore prompted a function in devel-
opment of B cell areas in secondary lymphoid tissues [95]. In breast cancer, expression
of CXCL13 by follicular T helper (Tfh) cells is linked to the adaptive anti-tumor humoral
immune response [96]. Also in colorectal cancer, CXCL13 expression mediates the infil-
tration of B, Tfh, Th1, and memory T cells, whereas the loss of CXCL13 expression due to
chromosomal instability is associated with relapse [97]. Another CXC chemokine family
member, small-inducible cytokine B16/CXCL16 has recently emerged in the regulation of
the anti-tumor response. For example, in liver cancer, sinusoidal endothelial cells were
reported as primary producers of CXCL16 that recruited CXCR6+ anti-tumor NKT cells [98].
CXCL16 is also angiogenic, but its role in cancer remains controversial, as both pro- and
anti-tumoral activities are reported [99].

1.2. CC Chemokines

CC chemokines are characterized by two adjacent NH2-terminal cysteine residues and
represent the largest subgroup of chemokines. They seem to be biased towards monocytes,
macrophages, lymphocytes, basophils, and eosinophils.

1.2.1. CCL2

Monocyte chemotactic protein-1 (MCP-1)/CCL2, initially purified from monocytes
and osteosarcoma cells, has both direct and indirect actions in cancer [100]. The chemokine
has been shown to directly affect prostate cancer cell proliferation, survival, chemotaxis,
invasion, and metastasis [101,102]. CCL2 induced chemotaxis of CCR2+ endothelial cells
in vitro and neovessel formation in vivo in chorioallantoic membrane (CAM) and Matrigel
experiments [103]. The angiogenic effect was accompanied by an infiltration of inflamma-
tory cells, but did not depend on it. Nonetheless, the CCL2/CCR2 axis is the main determi-
nant of pro-tumoral MDSC, monocyte and macrophage recruitment in tumors [104–106].
In several cancers, such as ovarian, breast, glioblastoma, squamous cell carcinoma (SCC),
and NSCLC, CCL2 expression positively correlated with increased infiltration of tumor-
associated macrophages (TAMs) [105]. CCL2 production also recruited TAMs and Tregs to
the pre-metastatic niche. Treating immunodeficient mice bearing human breast carcinoma
with a CCL2-neutralizing antibody increased survival and inhibited lung micrometastases.
Bone marrow endothelial cells were shown to secrete considerably higher levels of CCL2
compared to aortic and dermal endothelial cells, leading to preferential recruitment of
prostate cancer cells to the bone and local support of their proliferation [107]. Contrar-
ily, CCL2 also activates neutrophils, arriving in the lung pre-metastatic niche through
granulocyte-colony-stimulating factor (G-CSF) activity, to produce reactive oxygen species
and thereby limiting lung metastasis of the primary breast tumor [108]. Similarly, in a colon
and prostate cancer model, CCL2 recruited cytotoxic T cells to the tumor microenvironment,
which was prevented through natural nitration of intratumoral CCL2 [109].

1.2.2. CCL17 and CCL22

Thymus and activation-regulated chemokine (TARC)/CCL17 and macrophage-derived
chemokine (MDC)/CCL22 are CCR4 ligands. CCR4 is mainly expressed on Th2 and Treg
cells, but also in several T cell malignancies [110–112]. Treatment with mogalizumab
(KW-0761), a defucosylated humanized anti-CCR4 antibody, showed promising efficacy
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and safety in patients with relapsed peripheral T cell lymphoma (PTCL), cutaneous T
cell lymphoma (CTCL), and relapsed adult T cell leukemia or lymphoma (ATL) [113,114].
CCL17 and CCL22 both contribute to an immunotolerant tumoral environment by primar-
ily attracting CCR4+ Tregs [115]. Treg infiltration is most often associated with aggressive
cancer phenotypes and can function as a gateway towards metastasis [116–119]. High
intratumoral concentrations of CCL22 have been reported [120,121]; the source of CCL22
within the tumor stroma is, however, an area of debate, with both tumor and DCs being
reported. In ovarian cancer, tumor cell- and TAM-derived CCL22 contributed to tumor
growth via stimulation of Treg tumor infiltration, which was associated with reduced
survival through suppression of tumor-specific T cell immunity [122]. Elevated expression
of CCL17 and CCL22 and consequent infiltration of CCR4+ Tregs has also been reported
in Hodgkin lymphomas and gastric cancer [123,124]. Treg depletion enhanced vaccine-
mediated anti-tumor immunity in patients with metastatic RCC and dual CTLA-4 blockade
and CD25+ Treg depletion maximized tumor rejection [125,126]. In addition to Tregs,
CCL22 production also recruits TAMs to the pre-metastatic niche. The prognostic value of
CCL17 and CCL22 expression also depends on the tumor type. In breast cancer patients,
increased CCL17 expression was associated with poorer survival, while in melanoma
patients increased CCL17 levels corresponded to improved survival [127,128]. In human
lung cancer and breast cancer, higher CCL22 expression correlated with longer disease-free
survival, whereas in SCC this related to poor prognosis [127,129,130].

1.2.3. CCL4 and CCL5

Macrophage inflammatory protein-1β (MIP-1β)/CCL4 fulfills pro- and anti-tumoral
roles in tumorigenesis. Via stimulation of VEGF-A, CCL4 promoted endometrial carcinoma
progression and via upregulation of VEGF-C it contributed to lymphangiogenesis, which
correlated with metastasis of oral squamous cell carcinoma (OSCC) [131,132]. CCL4 pro-
duction by B cells and antigen presenting cells (APCs) or MDSCs has also been associated
with Treg recruitment [133,134]. In melanoma, B cells expressing CCL4, CCL3, and CCL5
attracted T cells to sustain a pro-inflammatory environment [135]. CCL4 and CCL5 also
mediated CD8+ and γδ T cell responses, which enhanced anti-tumor immunity [136,137].
Regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5 is a
chemoattractant for lymphocytes, monocytes, DCs, eosinophils, basophils, NK, and Treg
cells. In pancreatic adenocarcinoma, tumor cells were shown to express increased levels of
CCR5 ligands, which recruit CCR5+ Treg cells to the tumor and promote immune tolerance
and progression [138]. In breast cancer, CCL5-producing Treg cells promoted metastatic
progression via CCR5-expressing breast cancer cells [139]. In addition, the CCL5/CCR5
axis also correlated with a more aggressive phenotype [140]. For example, CCL5 was
associated with breast cancer grade and metastasis. The chemokine was considered to
contribute to breast cancer progression through infiltration of macrophages and MMP-2
and MMP-9 production by both cancer cells and infiltrating monocytes [141]. Also in
melanoma, increasing concentrations of CCR5 ligands were found in the tumor, such as
CCL3/4/5, which could also lead to the infiltration of CCR5+ MDSCs [142].

1.2.4. CCL19, CCL20, and CCL21

Liver and activation-regulated chemokine (LARC)/CCL20 is the only known chemokine
ligand for CCR6 [143]. Recently, a pro-angiogenic role for CCL20 in hepatitis C virus (HCV)-
specific angiogenesis has been described [144]. CCR6 is mainly expressed on immune cells
such as immature DCs, NK cells, Th17, Treg, and B cells [145]. Therefore, the main function
of CCL20 relies on the recruitment of pro-tumoral Treg and Th17 lymphocytes to the tumor
microenvironment [146–148]. However, in breast carcinoma patients, a higher expression of
CCL20 was associated with an increased infiltration of immature CCR6+ DCs that activate
CD8+ T cells [149]. Similar findings, i.e., reduced tumor growth, were reported in different
murine cancer models [150]. Together with CXCR4, CCR7 is one of the main regulators
of metastasis. Macrophage inflammatory protein-3β (MIP-3β)/CCL19 and secondary
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lymphoid-tissue chemokine (SLC)/CCL21 are specific CCR7 ligands. Whereas different
organs can attract CXCR4-expressing tumor cells, CCR7 expression is mainly a prerequisite
for dissemination to secondary lymphoid organs. As such, increased CCR7 expression in
certain tumor types has been associated with invasiveness and poor survival. Signaling
by CCL21 through CCR7 is the principal driver for secondary lymph node metastasis of
several cancers, such as breast, gastric, colorectal cancer, and murine B16 melanoma [151].
For example, increased expression of CCL19 and CCL21 by lymphatic endothelium in
squamous cell carcinoma of the head and neck (SCCHN) promoted dissemination of CCR7+

tumor cells to secondary lymphoid tissues [152].

1.2.5. CCL18 and CCL28

Pulmonary and activation-regulated chemokine (PARC)/CCL18 exerts rather pro-
tumoral functions in tumor progression. The receptor(s) for CCL18 are not yet unequivo-
cally identified, but both CCR8 and PITPNM3 have been suggested to be activated by this
chemokine. TAMs are the main producers of CCL18, which was shown to promote breast
cancer cell invasiveness and metastasis through stimulation of integrin clustering and
by promoting adhesiveness to the extracellular matrix [153]. CCL18 expression in blood
or tumor stroma was also associated with metastasis and reduced survival. In addition,
CCL18-producing TAMs also promoted in vitro human umbilical vein endothelial cell (HU-
VEC) migration and tube formation, tumor angiogenesis, and EMT of breast cancer cells
via its receptor PITPNM3 [154]. Mucosa-associated epithelial chemokine (MEC)/CCL28 is
a specific CCR10 ligand, whose main action also relies on the induction of angiogenesis
and the infiltration of Tregs. In ovarian cancer, CCL28 expression correlated with a poor
prognosis [155]. CCL28 was mainly produced by tumor cells and promoted the recruitment
of CCR10+ Treg cells, which supported immune tolerance by suppression of cytotoxic CD8+

T cells. Tumor hypoxia switches on CCL28 expression and promotes immune tolerance
and angiogenesis to support tumor growth [155,156].

1.2.6. CCL3L1

CCL3L1/MIP-1α/LD78β is a highly related non-allelic variant of CCL3/MIP-1α/LD78α [157].
Although CCL3L1 only differs in three amino acids from CCL3, CCL3L1 has enhanced
CCR5 and atypical chemokine receptor 2 (ACKR2)/D6 receptor binding affinities [158,159].
CCL3L1 is also the most potent natural CCR5 binder and therefore also displays remarkably
higher anti-HIV activity than other CCL3 isoforms and equal if not higher HIV-suppressive
activity compared to CCL5. This enhancement was reportedly due to a proline at posi-
tion 2. CCL3L1 was also a more efficient human lymphocyte and monocyte attractant than
CCL3 [159]. Consequently, CCL3L1 forms an intriguing substrate for CD26 (vide infra).
High levels of the LD78 gene transcripts were found in acute non-lymphocytic as well
as lymphocytic leukemic cells, which raises the idea that LD78 could be involved in the
neoplastic transformation of hematopoietic cells [160].

1.3. CX3C Chemokines

Within the CX3C chemokines, three amino acids separate the two conserved NH2-
terminal cysteine residues. Remarkably, fractalkine/neurotactin/CX3CL1 is a transmem-
brane chemokine comprising a chemokine domain atop a mucin stalk that, given its unique
structure, is highly capable to interact with CX3CR1-bearing leukocytes. As such, CX3CL1
is able to efficiently capture circulating leukocytes alone or in conjunction with other ad-
hesion molecules and then by interacting with its CX3CR1 receptor tether them firmly
to the endothelium [161]. This process has been reported for resting monocytes, resting
and activated CD8+ T lymphocytes, and resting and activated NK cells. Soluble CX3CL1
can be released from the surface (due to a dibasic cleavage region probably similar to
syndecans) and was shown to be chemotactic for monocytes, T cells, and NK cells [162].
NK cell-mediated trafficking towards tumor cell-infiltrated lungs in mice was shown to be
dependent on the CX3CL1/CX3CR1 axis [163]. A study in mice showed that local tumoral



Cancers 2021, 13, 4247 9 of 36

production of CX3CL1 promoted the anti-tumor response by recruitment of NK cells [164].
NK cells have been shown to express a number of chemokine receptors in resting and
activated state such as CXCR1, CXCR4, and CX3CR1 [165]. In activated state, expression of
CCR1/2/4/8 may also be upregulated [166]. Lastly, a role for the CX3CL1/CX3CR1 axis in
the bone tropism of prostate cancer cells was described [167].

2. The Interplay between Dipeptidyl Peptidase IV/CD26 and Chemokines in Cancer

Enzymatic cleavage is an important post-translational modification that regulates
chemokine function. This cleavage can be mediated by different proteases, such as MMPs,
plasmin, thrombin, aminopeptidase N (CD13), and dipeptidyl peptidases. This review will
focus on a specific type of dipeptidyl peptidase, whereas the impact of other proteases on
chemokines are described in more detail in [168,169].

2.1. CD26 Biology

Dipeptidyl peptidase IV (DPPIV)/CD26 is type II membrane glycoprotein of approxi-
mately 110 kDa. It consists of a short intracellular domain of 6 amino acids, a transmem-
brane region, and a large extracellular domain spanning from amino acid 7 to 28 and 29 to
766, respectively. The extracellular domain comprises intrinsic dipeptidyl peptidase activ-
ity to cover its enzymatic action. CD26 has three functions: adenosine deaminase (ADA)
binding, extracellular matrix binding, and peptidase activity. More specifically, CD26 is a
serine-type prolyl oligopeptidase that specifically clips dipeptides at the NH2-terminus of
the peptide chain if the penultimate amino acid is a proline or alanine [170]. This reflects
the unique properties of CD26, as the peptide bond before or after a proline, structurally a
unique amino acid, is in general quite resistant to protease cleavage [171]. CD26 exists in
two forms: membrane-bound and soluble (after cleavage by metalloproteinases). The pres-
ence of the membrane-bound form of CD26 has been described on epithelia, melanocytes,
T cells, activated NK, and B cells. On human T cells, CD26 expression is preferentially
restricted to CD4+ T cells and its upregulation, together with CXCR3, can be linked to
cell activation and acquirement of immunological memory. This is in line with the ob-
servation that the cytoplasmic domain of CD26 interacts with CD45 in T cells [172]. As
such, CD26 aids in CD45 colocalization with T cell receptor signaling molecules, thereby
enhancing tyrosine phosphorylation of several signaling molecules and IL-2 production.
In addition, CD26 activity can regulate the immunological response by adjusting the tar-
get cell specificity and migratory cell subset. As a soluble form, CD26 (sCD26) exists in
serum, plasma and seminal fluid. The soluble form in the serum starts at amino acid 39
and lacks the cytoplasmic and transmembrane region [173]. The COOH-terminal loop is
vital for its catalytic activity and dimerization, as only CD26 homodimers are considered
enzymatically active. When comparing different species, the CD26 protein displays high
sequence conservation [174]. The translation of observations in different species will there-
fore depend on the sequence similarity of CD26 substrates across different species. CD26
has a range of biologically important substrates including neuropeptides (substance P,
neuropeptide Y), vasoactive intestinal peptide, glucagon-like peptides (glucagon, GLP-1/2,
GIP), cytokines (CSFs), and chemokines. For a more thorough overview of CD26 substrates
we refer to [170,175–177]. Some chemokines are as susceptible to CD26 cleavage as the
incretins. This is most likely due to their flexible NH2-terminus that can easily fit within
the enzymatic pocket of CD26. Cleavage by CD26 can have differential effects, ranging
from enhancing or reducing protein activity or leaving the activity unchanged.

2.2. CD26 in Cancer

While CD26 expression in normal tissues is rather ubiquitous, in neoplasms, CD26
is aberrantly expressed, such that CD26 was even considered as a biomarker. Depending
on the tumor type, expression patterns vary from down- to upregulation, attributing both
tumor-promoting and -suppressive roles to CD26 (Figure 1). The absence or presence of
CD26 expression in cancer can often be correlated with prognosis and is described in more
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detail in [178]. Enhanced levels of CD26 were detected in multiple cancers such as thyroid
and ovarian cancer, SCC, malignant mesothelioma, metastatic colon carcinoma, lung and
esophageal adenocarcinoma, and several types of T cell malignancies [179–185]. Overex-
pression of CD26 also correlated with metastasis in esophageal and colorectal cancer and
resistance to chemotherapy [182,186,187]. In such cases, treatment with a CD26 inhibitor,
such as sitagliptin, an oral hypoglycemic drug primarily used in diabetes patients, could
attenuate cancer progression and improve survival. For example, CD26 inhibition miti-
gated malignant properties of thyroid carcinoma cells in vitro and xenograft tumor growth
in vivo [188]. In a xenograft mouse model of mesothelioma, treatment with a humanized
anti-CD26 monoclonal antibody reduced tumor growth and enhanced survival [184]. The
combined use of CD26 inhibitors and metformin improved overall survival in diabetic
patients with colorectal or lung cancer [189]. On the other hand, loss or alteration of
membrane CD26 expression has been described in melanoma, NSCLC, prostate and en-
dometrial adenocarcinoma, and ovarian and breast carcinoma [185,190–197]. In several
of these tumors, CD26 was designated as a tumor suppressor, as re-expression of the
enzyme in malignant cells would inhibit tumor cell proliferation, migration, invasion, and
tumorigenicity in mice [190–192,195]. This has been elegantly shown in melanoma, where
loss of CD26 expression on melanocytes coincided with progression to a malignant phe-
notype [198]. This progression was characterized by a rise in growth factor independence
and chromosomal abnormalities. Reintroduction of CD26 expression resulted in a loss
of tumorigenicity, loss of anchorage-independent growth and dependence on exogenous
growth factors for survival. The protease activity of CD26 was apparently responsible for
the suppression of tumorigenicity, but not for regulating the dependence on exogenous
growth factors.
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Figure 1. Differential expression (up- or downregulation) of CD26 in tumors. CD26 is rather ubiquitously expressed in
normal tissue. On some malignant cells CD26 expression is absent or suppressed (right side), which might coincide with
tumor progression, e.g., in melanoma. On the contrary, enhanced CD26 levels have also been detected (left side) and
correlated with metastasis and resistance to chemotherapy in e.g., esophageal AC and colon cancer. Adenocarcinoma (AC);
Cutaneous T cell lymphoma (CTCL); Non-small cell lung cancer (NSCLC); Squamous cell carcinoma (SCC).

2.3. Evidence for Post-Translational Modification of Chemokines in Tumors

Many chemokines were originally identified through purification from conditioned
medium, derived from tumor cells or leukocytes, based on chemotactic activity. Often
the abundance of truncated chemokines was higher in the conditioned medium from
leukocytes, as those are major producers of chemokine-processing enzymes. For instance,
in a study comparing purified chemokine isoforms from peripheral blood mononuclear
cells and tumor cells, NH2-terminally truncated forms of CXCL5 [CXCL5(8,9-78)], CXCL1
[CXCL1(4,5,6–78)], and CXCL3 [CXCL3(5–73)] were predominantly purified from leuko-
cytes, whereas tumor cells mainly produced the intact chemokine isoforms [199]. The
truncated chemokine isoforms showed increased potency to activate neutrophils. This
implicates that in a leukocyte-rich tumor stroma ELR+ CXC chemokines are further po-
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tentiated to attract neutrophils, which often exert rather pro-tumoral activities. On the
contrary, leukocyte-derived proteases turn the monocyte-attracting chemokines from the
MCP subfamily into antagonists. Natural NH2-terminally truncated CCL2, CCL2(5–76),
and MCP-2/CCL8, CCL8(6–76), were purified from mononuclear cells, and though lacking
monocyte chemotactic activity, CCL8(6–76) was able to completely block the chemotactic
effect of CCL2, CCL5, MCP-3/CCL7, and CCL8 [200,201]. The conversion of CCL8 into an
antagonist by specific proteases in the tumor stroma hampered the therapeutic effect that
was envisaged by treatment of tumors with CCL8-expressing oncolytic parvoviruses [202].
In the following paragraphs, we summarize the knowledge on the effect of chemokine
processing by CD26 in cancer.

2.4. Effect of CD26-Mediated Cleavage on Chemokine Activity in Cancer Biology and Evidence
in Tumors
2.4.1. Processing by CD26 Leaves Chemokine Activity Unaffected

Human CCL3 is encoded by two highly related non-allelic genes: CCL3 (LD78α)
and CCL3L1 (LD78β), which differ only in three amino acids. Compared to CCL3L1,
human CCL3 is not a CD26 substrate, because the proline at position 2 is interchanged for
a serine. Although a penultimate NH2-terminal proline residue is present, the MCPs CCL2,
CCL7, and CCL8 remain intact upon incubation with CD26 and are protected by the cyclic
NH2-terminal pyroglutamic acid [203]. A link between CCL2 and CD26 has been reported
in high-fat diet-induced liver carcinogenesis [204]. It was argued that increased CD26
activity in this HCC model promoted angiogenesis and dissemination via upregulation of
CCL2 in serum. Although the mechanisms were poorly understood, increased CCL2 and
CD26 levels were also observed in HCC patients, of which the latter correlated with poor
prognosis [204]. Murine CXCL1 (KC) and human CXCL2 (GRO-β) both have a proline at
position 2 and an alanine at position 4. Although CD26 removes two NH2-terminal amino
acids from GRO-β, it is not known whether KC is also a substrate of CD26 [205]. Although,
a 2 amino acid truncated form of KC was found in the supernatant of stromal cells that were
stimulated with the hematoregulatory peptide SK&F 107647. This truncated isoform lacked
synergistic growth activity for the colony forming unit for granulocytes and macrophages
(CFU-GM), the earliest recognized precursor of osteoclasts [206]. Additionally, isoforms of
KC and GRO-β missing up to 4 amino acids were purified from SK&F 107647-stimulated
cell lines that were more potent compared to their parental counterparts [207]. It was not
clear whether the production of these isoforms was mediated by CD26. However, this
could be plausible considering the presence of a penultimate alanine in the 2 amino acid
truncated chemokines. CXCL6 is converted by CD26 into CXCL6(3–77) through cleavage
after its penultimate proline residue. However, the intact and truncated isoform showed
equal activity on neutrophils [203]. The detection of truncated CXCL6 isoforms is not yet
reported in tumors, but downregulation of CD26 and increased levels of CXCL6 coincided
in endometriosis, which is often accompanied by abnormal angiogenesis [208].

2.4.2. Depending on the Receptor Involved, Processing by CD26 Renders CCL3 and CCL4
with Pro- or Anti-Tumoral Activity

When human peripheral blood lymphocytes were stimulated by cytokines IL-2 and
IL-12, NH2-terminally truncated forms of CCL4, such as CCL4(3–69), were produced [209].
CCL4 is a ligand for CCR5, chemotactic for T cells and macrophages, and can inhibit HIV
interactions with the CCR5 co-receptor. The two amino acid truncated form retained its
ability to downmodulate cell surface expression of CCR5 and inhibited CCR5-mediated
HIV entry [210]. CCL4(3–69) retained its CCR5 signaling capacities, but gained CCR1 and
CCR2b calcium signaling, which is thought to install MDSC, immature DC, monocyte,
and lymphocyte chemotactic properties [168]. Murine CCL3 and CCL4 also enhance CSF-
stimulated hematopoietic progenitor cell (HPC) colony formation in vitro and proliferation
in vivo. CD26-mediated truncation of these two murine MIPs resulted in chemokine prod-
ucts that lost their enhancing effect and even blocked the boosting effect of their full-length
chemokine forms [211]. It must be noted that murine CCL3 resembles more to human
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CCL3L1 than to human CCL3 [212]. The activity of CD26 on the hematopoietic system
was evidenced by showing that CD26 inhibition accelerated hematopoietic recovery after
an episode of stress, such as after radiotherapy or chemotherapeutic drug treatment [213].
Treatment with sitagliptin in a small cohort of patients with hematological malignancies
seemed to enhance engraftment of umbilical cord blood transplants, an established source
of hematopoietic stem cells (HSCs) [214].

2.4.3. Truncation by CD26 Sustains Chemokine Tumor-Promoting Activity
CCL5

Native CCL5 is also a substrate of CD26, which generates CCL5(3–68). This truncation
induces a change in receptor specificity, with reduced affinity for CCR1 and CCR3, but
similar affinity for CCR5 [215]. Whereas the chemotactic activity for T cells and M-CSF-
stimulated monocyte-derived macrophages was unchanged, the chemotactic response of
monocytes and eosinophils towards truncated CCL5 was abolished [203]. Even an enhance-
ment of T cell migration upon addition of sCD26 to both CCL5 forms was observed [216].
In vitro, CCL5(3–68) inhibited monocyte chemotaxis towards intact CCL5, CCL3, CCL4,
and CCL7, but not CCL2 and CCL8 [217]. Interestingly, CCL5(3–68) was the predominant
isoform purified from whole blood and sarcoma cells and was also found in vivo, where
it was further processed to CCL5(4–68) [218]. Although experimental evidence of CD26-
truncated CCL5 isoforms in tumors is lacking, truncation most likely will not induce any
major changes as lymphocytes and macrophages are equally activated by CCL5(3–68). Al-
though the truncated isoform is less able to attract eosinophils and monocytes, it could not
antagonize CCL2 in monocyte chemotaxis, which is a major monocyte attractant in cancer.
Since the role of eosinophils in tumors is also limited, intact CCL5 or CD26-processed CCL5
isoforms would most likely instigate a similar effect on tumor progression.

CCL3L1

CD26 cleaves CCL3L1/LD78β at the penultimate proline into CCL3L1(3–70). This
subverts intact CCL3L1(1–70), a strong CCR5 binder and inhibitor of HIV infection, into
CCL3L1(3–70), an even more potent monocyte and lymphocyte chemoattractant. Moreover,
CCL3L1(3–70) was considered the most potent chemokine in blocking HIV-1 infection in
mononuclear cells. Receptor affinity for CCR5 and CCR1 were also moderately and highly
increased, respectively [219]. Truncated CCL3L1 even superseded CCL3 as the most potent
CCR1 ligand. On the contrary, CCR3 affinity decreased compared to intact CCL3L1, which
underlines the importance of the penultimate proline for CCR3 binding [220]. Information
on the involvement of intact CCL3L1 in cancer is still scarce, but the role of the truncated
chemokine will be similar to the intact form because the chemoattractant activity for
inflammatory monocytes and lymphocytes via CCR1/CCR5 is rather increased.

2.4.4. Truncation by CD26 Abrogates Chemokine Anti-Tumoral Activity
CXCR3 Ligands

All IFN-inducible CXCR3 ligands are NH2-terminally cleaved by CD26, albeit at
different rates, e.g., within 2 min 50% of CXCL11 was cleaved, whereas this was 3- and
10-fold slower for CXCL10 and CXCL9, respectively [221]. In general, CD26-mediated
truncation generates isoforms with reduced affinity for the CXCR3A receptor and primarily
affects the chemotactic capacities of the IFN-inducible CXCR3 ligands. CXCL10(3–77)
and CXCL11(3–73) bound to CXCR3A with lower affinity and lost their calcium signaling
capacities [222]. CXCL9(3–103) retained some of its weak activity to mobilize calcium and
showed only minor reduction in receptor binding capacity. However, all three truncated
IFN-inducible CXCR3 ligands lost their ability to chemoattract CXCR3+ T lymphocytes.
CXCL10(3–77) and CXCL11(3–73) could partially desensitize CXCR3A in response to
their parental counterpart in calcium signaling assays. In chemotaxis assays, truncated
CXCL10 was a potent antagonist for intact CXCL10, but not intact CXCL11, which is a
strong CXCR3A binder. Truncated CXCL11 inhibited the migratory response of CXCR3A-
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transfected and CXCR3+ T cells towards CXCL11(1–73) [222,223]. In contrast to lymphocyte
trafficking, the angiostatic properties of the IFN-inducible CXCR3 ligands are not affected
by CD26 clipping. Truncated CXCL9 and CXCL10 retained their ability to counteract
CXCL8-induced angiogenesis in the rabbit cornea micropocket assay [222]. This indicates
that the angiostatic activity of those CXCR3 ligands is not mediated through CXCR3A sig-
naling or that intact and truncated CXCL9/10 activate separate CXCR3-mediated signaling
cascades. Of note, it would be interesting to study the interaction of the CD26-truncated
CXCR3 ligands with CXCR3B. Recently, CXCL10 has been identified as a ligand for ACKR2,
which serves as a scavenger for mainly CC chemokines [224]. It was shown that upon
truncation by CD26, CXCL10 had reduced activity towards ACKR2, which could have
implications on the concentration of truncated CXCL10 in the extracellular space.

Although CXCL11 preserves its ability to suppress angiogenesis after CD26 trun-
cation, in vivo, CXCL11 is further NH2-terminally processed. When tissue fibroblasts
and peripheral blood-derived mononuclear leukocytes were stimulated with IFN-γ and
Toll-like receptor ligands, truncated forms of CXCL11 missing up to 6 amino acids were
purified [225]. The consecutive cleavage of CXCL11 by CD26 and CD13, another protease
implicated in the regulation of angiogenesis, resulted in CXCL11 forms without lympho-
tactic properties, such as CXCL11(3–73), CXCL11(5–73), and CXCL11(7–73). The shortest
isoform, CXCL11(7–73), had inferior potential to inhibit the migration of HUVECs and as
such lost part of its angiostatic properties. In addition, progressive CXCL11 NH2-terminal
truncation reduced its affinity for ACKR3 (previously named CXCR7), a receptor that
promotes cell adhesion, growth, and survival. As such, extensive CXCL11 truncation
most likely impairs biological effects mediated by ACKR3. Interestingly, pharmacological
inhibition of ACKR3 reduced growth of several tumors in vivo such as A549 lung carci-
noma and mouse LLC, and prolonged survival in mice engrafted with human lymphoma
IM9 cells [226]. Altogether, the tumor microenvironment created by NH2-terminal pro-
cessed IFN-inducible CXCR3 ligands would be more immunotolerant and angiogenic, and
therefore in favor of tumor progression.

CD26 truncation of IFN-inducible CXCR3 ligands in both preclinical cancer models
and patients primarily affects anti-tumoral leukocyte and mainly lymphocyte infiltration
(Figure 2). One report mentions the infiltration of pre-cDC1 cells, a specific subset of bone
marrow-derived conventional DC progenitors, important in the anti-cancer response, that
home to B16F10 melanoma tumors using CXCR3 [227]. Preservation of intact CXCR3
ligands via sitagliptin treatment improved cDC1 presence in tumors. In this model, CD26
was expressed on B and T cells, macrophages and DCs, but minimally on neutrophils and
non-immune cells. CD26 inhibition in an immune-competent model of HCC also impaired
tumor growth due to increased infiltration of CXCR3+ NK an T cells [228]. The observation
that CD26 is upregulated on activated T cells could be a regulatory feedback mechanism to
limit CXCR3+ lymphocyte infiltration, which is favorable in an inflammatory setting where
the pro-inflammatory response has to be dampened, but unfavorable in a tumor setting
where the host’s immune defense has to be sustained [168,229].

Among the CXCR3 ligands, malignant progression is mostly reported to be favored
by truncated CXCL10 isoforms, and therefore could be counteracted by CD26 inhibition. In
several murine cancer models, inhibition of CD26 enhanced natural anti-tumoral lympho-
cyte response and efficacy of concomitant immunotherapy. In syngeneic CT26 colorectal
cancer and B16F10 melanoma mouse models, sitagliptin treatment enhanced CD4+ and
CD8+ T cell infiltration and reduced tumor growth and metastases due to preservation of
the active CXCL10 form [230]. No major differences in tumor-infiltrating myeloid cells,
NK cells, CD25+ Tregs, and B cells were observed. The combined use of sitagliptin, a
programmed cell death protein-1 (PD-1) inhibitor and a CTLA-4 inhibitor enhanced the
immunotherapy response. Recent studies identified different Th cell subsets depending on
the intensity of CD26 expression. The authors reported CD26high T cells (Th1/Th17), rather
than CD26int (naive) and CD26neg T cells (Th2, Treg) to persist via enhanced stemness and
to induce tumor regression of multiple solid tumors through increased infiltration and
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cytotoxicity [231]. Two clinical trials were conducted to test the efficacy of sitagliptin in
healthy volunteers and chronic HCV patients, in which CD26 levels are elevated. These
underlined the in vivo relevance of CXCL10 processing by CD26 and supported the use
of sitagliptin in different disease settings [232]. As a result of increased CD26 expression
in HCV patients, both intact and truncated CXCL10(3–77) were detected in serum [233].
The authors hypothesized that the antagonistic properties of the CXCL10(3–77) isoform
possibly correlated with treatment failure. In patients with serous epithelial ovarian tumors,
the occurrence of cleaved CXCL10 was partially responsible for reduced recruitment of
anti-tumoral leukocytes, and contributed to worse prognosis [234]. In non-muscle invasive
bladder cancer, intravesical Bacille Calmette-Guérin (BCG) treatment is usually associated
with an increase in pro-inflammatory cytokines and chemokines, such as CXCL10. Due to
high levels of CD26 in urine, increased amounts of NH2-terminally cleaved CXCL10(3–77)
were detected therein [233]. The processing might also limit recruitment of CXCR3+ T and
NK cells to the bladder, which might protect the bladder mucosa, but would hamper thera-
peutic efficacy. As such, the use of CD26 inhibitors in patients receiving BCG treatment
could enhance the anti-tumor response and/or shorten the treatment.
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Figure 2. Overview of the pro-tumoral environment created by fine-tuning CD26 expression in relation to some of its
chemokine substrates. Only chemokine substrates for which a clear effect of the interaction between CD26 and the chemokine
on malignancy has been demonstrated are included. Depending on the tumor type, CD26 is either up- or downregulated,
which influences the dominant chemokine isoform present in the tumor stroma. CD26-expressing tumors generate truncated
IFN-inducible CXCR3 ligands CXCL9/10/11, which impacts anti-tumoral immune responses [lymphocyte and conventional
type 1 dendritic cell progenitor (pre-cDC1)]. Truncated CXCL12 is associated with impaired hematopoietic stem cell (HSC)
homing to the bone marrow. Tumors expressing low amounts of CD26 generate intact CXCL12 isoforms, which further steer
the tumor towards progression via increased growth factor expression, induction of angiogenesis, epithelial to mesenchymal
transition (EMT), metastasis, retention in or homing to the bone marrow and in case of T cell malignancies, accumulation of
neoplastic T cells in the skin. Black arrows involve cell migration, blue arrows are used for other tumor-promoting processes.
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CCL11

CCL11 is a chemoattractant for eosinophils, acting via CCR3, and vulnerable to
CD26 cleavage. Truncated CCL11 is characterized by a lower affinity for and impaired
signaling through CCR3, reduced eosinophil chemotactic potency and CCR3 internaliza-
tion [235]. CCL11(3–74) also acted as an antagonist for calcium signaling and chemotaxis
in response to intact CCL11. These findings were further corroborated in vivo: CD26
deficiency or pharmacological inhibition of CD26 significantly enhanced CCL11-mediated
eosinophil recruitment. Although unusual, eosinophilia in cancer has been associated
with a more favorable prognosis in several human solid cancers, such as colon carcinoma
and OSCC [236,237]. Eosinophils can directly affect tumor growth through cytotoxicity
or indirectly by secretion of chemokines that promote T cell recruitment and macrophage
polarization [238]. Administration of the CD26 inhibitor sitagliptin increased intratumoral
(breast and liver) concentrations of IL-33 and CCL11 and the influx of eosinophils, sup-
posedly by enhancing CCL11 gradients [239]. The CCL11/CCR3 axis has been associated
with several hematological malignancies as well. Isolated fibroblasts from patients with
Hodgkin lymphoma expressed high levels of CCL11, while the tumor cells expressed
CCR3. In patients with CTCL [either mycosis fungoides (MF) or Sézary syndrome (SS)],
serum concentrations of CCL11 and CCL17 were increased and correlated with disease
activity [240].

2.4.5. A CD26-Negative Tumor Milieu Preserves Chemokine Pro-Tumoral Activity
CCL22

Different from other chemokine substrates, CD26 consecutively cleaves the Gly1-
Pro2 and Tyr3-Gly4 dipeptides from CCL22 giving rise to CCL22(3–69) and CCL22(5–69),
respectively. CCL22(3–69) was not chemotactic for T cells due to reduced affinity for and
signaling through CCR4, but retained its ability to attract monocytes [241]. CCL22(5–69)
showed reduced chemotactic activity on lymphocytes and monocyte-derived DCs, and
impaired calcium mobilization through CCR4. However, both cleaved forms of CCL22
had similar chemotactic effects as intact CCL22 on monocytes [242]. Both CCL22 isoforms
also lost their ability to interact with scavenging receptor ACKR2, which could affect
trafficking of CCR4+ immune cells [243]. Although no direct evidence has been found yet
in tumors, CD26-mediated cleavage of CCL22 could affect its primary function as CCR4+

Treg recruiter and as such contribute to a tumor unfriendly environment. However, it is
very plausible that a tumor microenvironment is created that promotes the presence of the
intact form. In Sézary patients, leukemic CD4+CD26- lymphocytes were characterized by a
selective high expression of CCR4 [244,245]. In accordance, chemokine levels of CCL17,
CCL22, and CXCL10 in serum were concomitantly increased. Although evidence that
CD26 downregulation preserved the intact CCL22 isoform was not provided, preservation
of intact CCL22 in this setting could contribute to CCR4+ SS tumor cell accumulation in the
skin [244–246].

CXCL12

By differential splicing from a single gene, CXCL12 exists in several isoforms, in-
cluding CXCL12-α and CXCL12-β, which contains four additional amino acids at the
COOH-terminus compared to CXCL12-α. Because of an NH2-terminal penultimate proline,
both CXCL12 isoforms are direct substrates of CD26. Of note, the half-life of CXCL12-α
in the presence of CD26 was less than 1 min [247]. NH2-terminal processing gives rise to
two isoforms, CXCL12-α(3–68) and CXCL12-β(3–72) with abrogated antiviral and T lym-
photactic properties [247]. CXCL12-α(3–68) lost in addition to chemotactic, also its CXCR4
signaling properties, but had the ability to desensitize for intact CXCL12-α-mediated
CXCR4 signaling [248,249]. NH2-terminal residues (1–8) of CXCL12-α have been identified
as critical for CXCR4 binding and activation. However, the NH2-terminus alone was not
sufficient for binding and activation, and additional residues (12–17) were found necessary
for CXCR4 docking. This could explain why the CXCL12-α(3–68) isoform still possessed
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some, albeit lower, affinity for CXCR4. Later studies confirmed that CXCL12-α(3–68) could
no longer instigate inositol triphosphate (IP3), Akt, ERK, and β-arrestin signaling through
G proteins [250]. Beta-arrestin recruitment via the decoy receptor ACKR3 was reduced but
remained. When endothelial cells were studied as target cells, CXCL12-α(3–68) was not
able to induce migration or activate ERK and Akt signal transduction pathways. In vivo
administration of intact and truncated CXCL12-α did not induce lymphocyte recruitment,
but treatment with sitagliptin preserved the lymphotactic ability of the intact chemokine.
Additionally, when exposed to CD26-expressing T cells, NH2-terminally processed forms
of both CXCL12-α and CXCL12-β were detected, which supported the idea that chemo-
tactic activity on T lymphocytes in vivo might also be modulated by CD26. Moreover, in
the presence of CXCL12-α, CXCR4 is internalized together with CD26 in human T and B
lymphocytes [251]. Since also soluble CD26 is able to inactivate CXCL12-α, membrane-
bound CD26 could regulate CXCL12 activity locally, whereas soluble CD26 could modulate
chemokine activity in circulation [248].

In addition to its role as a lymphocyte recruiter, CXCL12-α functions as retention/migration
signal for CD34+ HSCs and HPCs to the bone marrow [252] Notably, the bone marrow
stroma was the first cellular source reported for CXCL12-α [253]. After truncation, CXCL12
failed to induce migration of CD34+ cord blood cells and acted as an antagonist of intact
CXCL12. This has implications for HSC transplantation. Inhibition of the endogenous activ-
ity of CD26, present on a subpopulation of CD34+ HSCs, enhanced the migratory response
of those cells to CXCL12 [254]. High levels of CD26 were also found in peripheral blood
samples from breast cancer patients that were scheduled for autologous transplantation
after mobilization with granulocyte-macrophage-colony-stimulating factor (GM-CSF) [255].
Some mobilized CD34+ cells showed CD26 expression and peptidase activity. For these
patients, inhibition of CD26 could be a therapeutic approach to enhance stem cell homing
during bone marrow transplantation.

Other reports on the involvement and consequences of CD26-mediated processing
of CXCL12 in a tumor setting are rather scarce. However, although not surprising, they
usually involve downregulation of CD26 and therefore preservation of intact CXCL12. This
sustains and prolongs the pro-tumoral activity of CXCL12 on leukocytes, but mainly on
stromal and tumor cells, which considerably favors tumor progression. Many of these
reports are in accordance with the observed downregulation of CD26 in the types of cancer
mentioned earlier (Figures 1 and 2). In prostate cancer, malignant progression of benign
prostate hyperplasia to metastatic cancer is linked to an increased production of bFGF [256].
CD26 was shown to inhibit the malignant phenotype by suppressing the bFGF signaling
pathway [194]. Differential CD26 expression in cancer was further evidenced in a 4T1
breast cancer model where tumor growth and metastasis were accelerated, rather than
attenuated by pharmacological inhibition of CD26 [257]. When CD26 activity was reduced,
CXCL12/CXCR4 signaling was enhanced and promoted EMT. Similarly, CD26 inhibition
by diprotin A treatment facilitated invasion and metastasis of prostate cancer cells to the
bone marrow in vivo [258]. A study in human breast carcinoma patients showed that
increased TGF-β and CXCL12 autocrine signaling of myofibroblastic CAFs attenuated
CD26 expression and was associated with poor prognosis [196]. CXCL12/CXCR4 signaling
has also been implicated in endometrial lesions that are characterized by a downmodu-
lation of CD26 activity [208]. Moreover, both CD26 and CXCL12-α are downregulated in
more advanced endometrial adenocarcinoma [259]. Modulation of CXCL12 by CD26 is
additionally important in neuroblastoma. The enzyme is downmodulated on malignant
neuroblastoma cells and reintroduction promoted cell differentiation and apoptosis [260].
Moreover, decreased CD26 expression preserved the CXCL12/CXCR4 expression and the
activity of downstream pro-tumoral effectors Akt and MMP-9. The relevance of these
in vitro findings was further demonstrated in vivo. CD26 suppressed tumor growth via
induction of apoptosis and diminished angiogenesis in a xenotransplantation mouse model
of neuroblastoma.
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Altered CD26 expression is observed in several forms of blood cancer, such as MF
and SS, two rare forms of CTCL [261]. In SS patients, the impaired expression of CD26 on
tumor cells was responsible for uncontrolled accumulation of CXCR4+ T cells in the skin
where CXCL12 is abundantly expressed [262]. Primary myelofibrosis (PMF) is a chronic
myeloproliferative neoplasm characterized by a continuous abnormal trafficking of HSCs
and HPCs into the blood, which results in extramedullary hematopoiesis. This persistent
mobilization is likely to result from a defect in CXCR4/CXCL12 signaling that normally
retains HSCs/HPCs in the bone marrow [263]. In addition to downregulation of CXCR4
expression on CD34+ PMF cells, increased levels of several CXCL12 isoforms were found
in the plasma and marrow of PMF patients compared to healthy individuals [264]. Degra-
dation of CXCL12 was attributed to the sequential actions of CD26, neutrophil elastase
(NE), MMP-2, and MMP-9. One study mentions the favorable increase in CD26 expression
in a colorectal cancer metastasis model. Treatment of orthotopic HT-29 xenografts with
conventional chemotherapeutic agents resulted in a decrease in CXCR4 and increase in
CD26 tumor expression, which abrogated chemotaxis towards CXCL12 [265]. Thus, in
parallel with exerting cytotoxicity, chemotherapy may also abrogate CXCL12/CXCR4
signaling. An overview of known chemokine substrates of CD26, their function and the
effect upon CD26 processing in cancer is displayed in Table 1.

Table 1. Overview of chemokine function and processing by CD26 in cancer.

Chemokine Receptor(s) Primary Role in
Cancer CD26 Processing

Effect of CD26
Cleavage on

Receptor Affinity

Effect of CD26
Cleavage on
Chemokine

Activity

Interplay between Chemokine
and CD26 Expression in a
Tumor Setting [Reference]

CXC chemokine

GRO-
β/CXCL2 CXCR2

Angiogenesis (P),
tumor growth,

MDSC and
neutrophil
attractant

CXCL2(3–73) unknown unknown

GCP-2/CXCL6 CXCR1/2

Angiogenesis (P),
MDSC and
neutrophil
attractant

CXCL6(3–77) No effect No effect
CD26 (D)

Coincided with upregulation of
CXCL6 in endometriosis [208]

MIG/CXCL9 CXCR3A/B

Angiogenesis (I);
NK, pre-cDC1, and

T lymphocyte
attractant

CXCL9(3–103) ↓ CXCR3A (minor) Loss of lymphocyte
chemotaxis

CD26 (U)
Abrogated anti-tumoral

pre-cDC1 and lymphocyte
infiltration [227,228]

IP-10/CXCL10 CXCR3A/B
ACKR2

Angiogenesis (I);
NK, pre-cDC1, and

T lymphocyte
attractant

CXCL10(3–77) ↓ CXCR3A
↓ ACKR2

Loss of lymphocyte
chemotaxis

Antagonistic

CD26 (U)
Abrogated anti-tumoral

pre-cDC1 and lymphocyte
infiltration [227,228]:

↑ Tumor growth and metastasis
in mouse models [230]

Poor prognosis in ovarian
cancer patients [234]

Limiting therapeutic BCG
treatment in bladder cancer

[233]

I-
TAC/CXCL11

CXCR3A/B
ACKR3

Angiogenesis (I);
NK and T

lymphocyte
attractant

CXCL11(3–73) ↓ CXCR3A
Loss of lymphocyte

chemotaxis
Antagonistic

CD26 (U)
Abrogated anti-tumoral

lymphocyte infiltration [228]

SDF-
1/CXCL12

CXCR4
ACKR3

Angiogenesis (P),
tumor growth,

metastasis

CXCL12-α(3–68)
CXCL12-β(3–72) ↓ CXCR4

Loss of lymphocyte
chemotaxis

Antagonistic

CD26 (U)
Reduced HSC homing to bone

marrow [254,255]
Extramedullary hematopoiesis

in PMF patients [263,264]
Reduced metastatic spread in

colon cancer model [265]
CD26 (D)

Favored malignant progression
in neuroblastoma [260]

Favored metastasis in breast
and prostate cancer [257,258]
Accumulation of CXCR4+ T

cells in skin of SS patients [262]
CC chemokine

LD78β/CCL3L1 CCR1/3/5
ACKR2

Pro-tumoral
leukocyte

(monocyte, Treg)
attractant;

anti-tumoral Th1
lymphocyte

attractant

CCL3L1(3–70)
↑ CCR1
↑ CCR5
↓ CCR3

Increased monocyte
and lymphocyte

chemotaxis
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Table 1. Cont.

Chemokine Receptor(s) Primary Role in
Cancer CD26 Processing

Effect of CD26
Cleavage on

Receptor Affinity

Effect of CD26
Cleavage on
Chemokine

Activity

Interplay between Chemokine
and CD26 Expression in a
Tumor Setting [Reference]

MIP-1β/CCL4 CCR1/5
ACKR2

Pro-tumoral
leukocyte

(monocyte, Treg)
attractant;

anti-tumoral Th1
lymphocyte

attractant

CCL4(3–69) ↑ CCR1
↑ CCR2b

Additional
chemotactic

functions (TAMs,
MDSCs)

Antagonistic
(hematopoietic

system)

CD26-mediated truncation
induced loss of enhancing effect

on hematopoietic growth
[211,212]

RANTES/CCL5 CCR1/3/5

Pro-tumoral
leukocyte

(monocyte, Treg)
attractant;

anti-tumoral Th1
lymphocyte

attractant

CCL5(3–68)
↑ CCR5
↓ CCR1
↓ CCR3

Loss of monocyte
and eosinophil

chemotaxis
Antagonist of

monocyte
chemotaxis

Eotaxin/CCL11 CCR3 Eosinophil
attractant CCL11(3–74) ↓ CCR3

Loss of eosinophil
chemotaxis

Antagonistic

CD26 (U)
Abrogated intratumoral

eosinophil influx: reduced
anti-tumor response in breast
and liver cancer mouse model

[239]
CD26 (D)

High CCL11 levels in SS
patients [240]

MDC/CCL22 CCR4
ACKR2 Treg attractant CCL22(3–69)

CCL22(5–69)
↓ CCR4
↓ ACKR2

Loss of lymphocyte
chemotaxis

CD26 (D)
High CCL22 levels in SS

patients [244,245]

↓, decreased; ↑, enhanced; ACKR, atypical chemokine receptor; BCG, Bacille Calmette-Guérin; CXCL and CCL, CXC and CC chemokine
ligand; CXCR and CCR, CXC and CC chemokine receptor; D, downregulation; HSC, hematopoietic stem cell; I, inhibiting; MDSC, myeloid-
derived suppressor cell; NK, natural killer cell; pre-cDC1, conventional type 1 dendritic cell progenitor; PMF, primary myelofibrosis; P,
promoting; SS, Sézary syndrome; TAM, tumor-associated macrophage; Th, T helper; Treg, regulatory T cell; U, upregulation.

2.5. Protection against CD26-Mediated Cleavage

Aside from CD26, NH2-terminal and COOH-terminal processing of chemokines by
other proteases is far from uncommon. A mechanism by which chemokines are protected
against proteolytic cleavage is through other post-translational modifications. For example,
MCP chemokines CCL2, CCL7, and CCL8 are protected from CD26 truncation due to
cyclization of the NH2-terminal glutamine into pyroglutamate. A CCL8 variant with an
NH2-terminal lysine instead of pyroglutamate was readily truncated by CD26 and showed
reduced chemotactic ability after cleavage. As such, the NH2-terminal pyroglutamate
is necessary for CCL8 chemotactic activity and protects against CD26-mediated degra-
dation [266]. Some chemokines have the tendency to oligomerize, which also confers
some degree of protection. CXC chemokines often dimerize into structures resembling the
CXCL8 dimer by interactions between residues in the first β-strand, while CC chemokines
(e.g., CCL2) often dimerize into elongated structures [267]. Certain chemokines are also
able to form higher order oligomers. For example, CXCL4 forms a tetramer and CCL3,
CCL4, and CCL5 form large oligomers in solution. Moreover, glycosaminoglycan (GAG)-
induced oligomerization of CCL5 is necessary for its in vivo function [268]. The stability
of the monomers, dimers or oligomers largely depends on the environmental conditions
and the presence of stabilizing agents (ion, GAGs, etc.). CCL3/4/5 oligomers are very
stable as large oligomers, but CXCL12 and CCL2 shift more readily between monomer
and dimer when the solution conditions are changed [269–271]. Higher order oligomers
are formed by chemokines themselves or upon binding to GAGs. The importance of
GAGs in chemokine stability was underlined in a study where upon intraperitoneal (i.p.)
administration, [44AANA47]-CCL5, a CCL5 isoform with abrogated GAG-binding proper-
ties, was rapidly released in the bloodstream and NH2-terminally truncated with a peak
concentration in serum 30 min post-i.p. injection [218]. Chemokine-GAG interactions
protect several chemokines against CD26 cleavage, as has been shown for CXCL12 and the
IFN-inducible CXCR3 ligands CXCL9/10/11 [272,273]. The kinetics of chemokine half-life
in the presence of CD26 (in a physiological salt buffer in the absence of GAGs) from slow to
rapid truncation are as follows: CCL3L1 > CCL5 > CCL11 > CXCL9 > CXCL10 > CXCL11 >
CCL22 > CXCL12 [221,274].
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2.6. Effect on the Interaction between Cleaved Chemokine Products and GAGs

In order to properly exert their function in vivo, chemokines need to interact with
both their respective GPCR and with GAGs. GAGs are long, linear, negatively charged
polysaccharides (due to sulfate and carboxylate groups) that primarily electrostatically
interact with basic residues in protein structures. In terms of chemokine function, GAGs
enable the formation of a chemokine gradient along and through the endothelium that
allows the directional recruitment of leukocytes. Two GAG-binding motifs have been
described in chemokines, namely BBXB and BBBXXBBX with B a basic amino acid and X
any non-basic amino acid. While the chemokine receptor-binding region of chemokines is
known to reside in the N-loop and NH2-terminal residues, for some chemokines, residues
in the COOH-terminal domain mediate GAG binding [275]. However, a significant overlap
between the receptor and GAG-binding domain has been reported for CCL2, CCL3, CCL5,
CXCL1, CXCL5, and CXCL10 [276–281]. The CXC chemokines CXCL8 and CXCL12 have
GAG-binding sites in the 20s loop, which was long thought to be only part of the receptor-
binding domain, while for the CC chemokines CCL3/4 the 40s loop and for CCL5 the BBXB
motif in the 40s loop participates in GAG binding [278]. A cluster of basic residues Lys24-
His25-Lys27 and Arg41 in CXCL12 was reported to provide surface charge to complement
the negatively charged COOH-terminal tail and contribute to heparan sulfate binding [282].
Furthermore, the CCL5 isoform [44AANA47]-CCL5 lost its ability to chemoattract CCR1+

monocytes due to the absence of CCR1 binding and additionally showed abrogated heparin
binding. Moreover, naturally occurring deimination of arginine at position 5 in CXCL10
into citrulline reduced (T cell) chemoattracting, CXCR3 signaling capacities, and GAG-
binding properties [283]. Citrulinated CXCL11 showed similar characteristics, albeit to
a lesser extent. As lysines, arginines, and histidines confer the chemokine with positive
charges, deimination leads to the loss of 1 positive charge in the NH2-terminus. In addition,
some studies have reported that the XCL1 chemokine exists in two forms: the classical
chemokine-like fold which only binds its XCR1 receptor and a β-sheet fold, which only
binds to GAGs [284]. Altogether, these findings further underline the overlap in these
two function-defining regions of chemokines. This led to a recent reconceptualization of
the chemokine-receptor-GAG interaction that stipulates that the chemokine-receptor and
chemokine-GAG interactions cannot take place simultaneously.

CD26- and CD13-mediated cleavage of CXCL11 to CXCL11(5–73) results in a CXCR3
antagonist with increased affinity for heparin [285]. Moreover, this form is also character-
ized by a loss of angiostatic activity. Further MMP-mediated COOH-terminal truncation to
amino acid 58 abolishes CXCR3 antagonistic function and heparin binding. CD26-mediated
production of CXCL12-α(3–68) resulted in reduced affinity for heparin and dermatan sul-
fate, but similar affinity for heparan sulfate [250]. As such, CD26 cleavage of CXCL12-α
does affect GAG binding. Exposure of CXCL12-α(1–68) to the serum generates products
CXCL12-α(1–67) and CXCL12-α(3–67) through COOH- and CD26 NH2-terminal process-
ing, respectively. CXCL12-β(1–72) is only processed at the NH2-terminus to generate
CXCL12-β(3–72). The absence of the COOH-terminal lysine in CXCL12-α(1–67) leads to
decreased affinity for heparin and a 2-fold reduction in potency compared to CXCL12-
β [286]. Consecutive NH2-terminal cleavage to CXCL12-α(3–67) is further associated with
markedly reduced heparin binding affinity [287].

3. Strategies Based on Specific Chemokine Sequences in Cancer Therapy

Proteolytically modified chemokines can in theory either be beneficial or detrimental
for cancer evolution. In practice, however, the tumor microenvironment will promote
the presence of those chemokine isoforms that will be the most favorable for the tumor
mass to sustain and progress. This is reflected in CD26 down- or upregulation depending
on the tumor type and on the primordial chemokine axis involved. Similar to CD26-
mediated processing that often generates chemokine antagonists, efforts have been made
to identify inhibitory chemokine-derived peptides based on specific regions within the
chemokine structure. This sequence-based approach has led to the development of several
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peptides derived from chemokine sequences or chemokine-related sequences to be used in
a therapeutic setting. Several of such strategies will be discussed below.

3.1. CXCL4- and CXCL4L1-Derived Peptides

When the inhibitory actions of peptides corresponding to different CXCL4 domains
were studied, it was revealed that a peptide containing heparin-binding lysine-rich motifs
and comprising amino acids 47 to 70 of CXCL4 inhibited VEGF and bFGF activity [288].
CXCL4- and CXCL4L1-derived COOH-terminal peptides CXCL447−70 and CXCL4L147−70

were shown to lack in vitro monocyte and lymphocyte chemotactic properties, but retained
their angiostatic activity [289]. CXCL447–70 associated with greater affinity to heparin
than CXCL4L147−70, but neither peptides interacted with the CXCR3 receptor [70]. In
concordance to the effects of the parental molecules, CXCL4L147−70 was a more potent
in vitro and in vivo angiostatic than CXCL447−70. The CXCL4L1-derived peptide attenu-
ated tumor growth in a B16 melanoma model via apoptosis and inhibition of angiogenesis.
CXCL447−70 and CXCL4L147−70 also attenuated proliferation of MDA-MB-231 tumor cells
and lymphatic and vascular endothelial cells [290]. Only the COOH-terminal fragment of
CXCL4 decreased MDA-MB-231 tumor growth, not through inhibition of angiogenesis but
rather by eliciting an anti-tumoral immune response and by inhibiting tumor cell prolifera-
tion. CXCL447−70 treatment also delayed glioma recurrence in mice after surgical resection
and improved survival [291]. Lastly, an NH2-terminally extended isoform of CXCL4L1
with 4 additional amino acids, namely CXCL4L1(−4–70), was isolated from thrombin-
stimulated platelets [292]. Although NH2-terminal modifications can result in drastic
changes in chemokine activity, this CXCL4L1 isoform retained its angiostatic activity.

3.2. CXCL12-Derived Peptides

The importance of the CXCL12/CXCR4 axis in cancer has been extensively shown,
which translates in a number of approaches to target this axis. A 17 amino acid pep-
tide dimer derived from the CXCL12 NH2-terminus, CTCE-9908 (KGVSLSYR-K-NH2-
KGVSLSYR), that antagonizes CXCR4, was developed, and its efficacy was exhibited in
several studies. The CXCL12 peptide dimer was shown to inhibit migration, and upon
increasing concentrations, induced cell death by mitotic catastrophe of CXCR4-expressing
ovarian cancer cells [293]. In two mouse models of breast cancer, both primary tumor
burden and distant metastasis were reduced upon CTCE-9908 treatment [294]. Combined
CTCE-9908 and docetaxel or anti-VEGFR2 monoclonal antibody treatment in the PyMT
breast cancer model also enhanced the anti-tumor and anti-metastatic effect compared
to single treatment with anti-VEGFR2 or docetaxel [295]. Angiogenesis, infiltration of
MDSCs, and metastasis to liver and spleen was also reduced in a prostate cancer mouse
model [296,297]. CTCE-9908 already received FDA approval for the treatment of osteogenic
sarcoma. A phase I/II clinical trial in patients with advanced solid tumors such as breast,
ovarian, lung, and skin tumors showed that the anti-cancer agent was well tolerated and
showed preliminary signs of efficacy, especially in ovarian cancer patients [298].

Chemokine-derived peptides can also be used for targeted gene delivery. In a
study comparing several peptides, a long CXCL12-derived peptide, ranging from the
CXCL12 NH2-terminal domain to the RFFESH domain important in receptor binding
(KPVSLSYRSPSRFFESH-K9-biotin) was a more likely candidate for targeting CXCR4-
expressing cells compared to a short CXCL12-derived peptide comprising only the NH2-
terminal domain (KPVSLSYR-K9-biotin) [299]. It was discovered later that the presence of
the K9 spacer compromised gene delivery due to instability in physiological conditions.
Therefore, modifications were installed, creating the peptide KPVSLSYRSPSRFFESH-Ahx-
Ahx-CHRRRRRRHC as a modular peptide for siRNA delivery [300]. CHRRRRRRHC was
synthesized as an unmodified control peptide. Via template polymerization, a modular
carrier was created, comprising 50% of the ligand-modified and 50% of the control peptide.
Anti-VEGF-A siRNA delivery via this carrier peptide decreased VEGF-A expression in
endothelial and glioblastoma cells and inhibited endothelial cell migration.
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3.3. CCL5-Derived Peptide

The NH2-terminus of CCL5 can be modified either by (1) recombinant expression of
CCL5 in E. Coli, which results in a product where the initiating NH2-terminal methionine
is retained (Met-CCL5) or by (2) the chemical coupling of a pentacarbon alkyl chain
(AOP-CCL5). This gives rise to two CCL5-derived isoforms with in vitro antagonistic
properties in the nanomolar range [301,302]. AOP-CCL5 was the most potent inhibitor of
HIV infection mediated by CCR5, but was less effective on CCR1 and CCR3. Met-CCL5
elicited a weak calcium response via CCR1/3/5, but was shown to significantly reduce
inflammatory symptoms in several models of inflammation [303]. Met-CCL5 also had a
higher affinity for heparan sulfate [304]. Transplantation of 410.4 breast cancer carcinoma
cells in BALB/c expressing high levels of CCL5 resulted in the attraction of CCR1- and
CCR5-expressing CD8+ T cells, macrophages, and neutrophils [305]. Treatment with Met-
CCL5 decelerated tumor growth and macrophage infiltration. Met-CCL5 also reduced the
invasion of 4T1 breast cancer cells in response to CCL5-containing conditioned media of
D1 mesenchymal stem cells [306].

3.4. CXCL1-Derived Peptide

A bioinformatic analysis to identify endogenous angiostatic peptides, identified
six short peptides derived from the COOH-terminus of ELR+ angiogenic chemokines
(CXCL1/3/5/6/7/8) [307]. These peptides showed sequence similarities to CXCL4 and all
inhibited HUVEC proliferation and VEGF-induced migration. Three angiostatic peptides,
identified through the same methodology and derived from either type IV collagen, CXCL1,
or a thrombospondin domain-containing protein were tested in an in vivo MDA-MB-231
breast cancer model [308]. Chemokinostatin-1, the CXCL1-derived peptide, was previously
shown to inhibit endothelial activity, but did not inhibit breast tumor cell or fibroblast
proliferation. In vivo administration reduced the number of CD31+ vessels and attenuated
tumor growth until day 13, after which tumor resistance to the peptide-based treatment
occurred. Later studies showed that chemokinostatin-1 reduced HUVEC tube formation
and tumor volume in a U87 human glioma xenograft model [309].

3.5. Chimeric CXCL10/CXCL11 Chemokine

To improve the anti-tumor effects of two individual chemokines, i.e., CXCL10 and
CXCL11, their individual functional moieties were merged into a chimeric chemokine,
termed ITIP [310]. ITIP consists of the NH2-terminal and NH2-loop region of CXCL11 and
the COOH-terminal region of CXCL10. CXCL10 is a more potent inhibitor of neovessel
formation, but CXCL11 supersedes it in the attraction of anti-tumoral T lymphocytes.
The chimeric molecule had superior anti-tumorigenic activity compared to its parental
chemokines separately or combined due to the dual action of the individual functional
CXCL10 and CXCL11 residues. ITIP induced tumor regression and prolonged survival
in CT26 colon and 4T1 mammary carcinoma mouse models causing reduced microvessel
density and increased T lymphocyte infiltration.

3.6. Pepducins

Cell-penetrating pepducins are lipidated peptides that act intracellularly and block
signaling between the GPCRs and their G protein effectors. Pepducins based on the first
(i1) or third (i3) intracellular loop of CXCR1 and CXCR2 receptors are potent antagonists
of both receptors [311]. The x1/2pal-i3 pepducin based on the third intracellular loop of
CXCR1 and CXCR2 was first shown to inhibit endothelial activation (proliferation and tube
formation) by CXCL8 and CXCL1. These chemokines are known to be released by ovarian
carcinoma cells to stimulate angiogenesis [312]. The in vitro findings were confirmed
in vivo: the x1/2pal-i3 pepducin also inhibited tumor growth and angiogenesis in a mouse
model of ovarian cancer.
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3.7. Spiegelmers

Spiegelmers are selective and high affinity target-binding structures of non-natural
L-nucleotides [313]. The mirror image configuration confers these structures with plasma
stability and immunological passivity. Several spiegelmers have been developed so far,
such as a CXCL12-targeting spiegelmer conjugated with polyethyleneglycol (PEG), named
olaptesed pegol or NOX-A12. NOX-A12 was developed to interfere with CXCL12 in the
tumor microenvironment and in cell mobilization. CXCL12 is an essential retention and
homing signal for highly CXCR4-expressing chronic lymphocytic leukemia (CLL) cells in
tissues such as the bone marrow. Therein, stromal cells constitutively produce CXCL12,
which is presented via surface-bound GAGs. This attracts CLL cells and confers protection
from cytotoxic drugs, which might be responsible for residual disease after conventional
therapy. Studies using NOX-A12 found that the spiegelmer could compete with CXCL12 for
GAG binding, which resulted in the release and subsequent neutralization of CXCL12 [314].
As such, CXCL12-induced CLL retention in the bone marrow was inhibited and sensitivity
to chemotherapy enhanced. NOX-A12-mediated CXCL12 neutralization also delays or
prevents multiple myeloma (MM) dissemination to the bone marrow, which is one of the
main causes of death associated with MM [315]. NOX-A12 was deemed safe in healthy
volunteers and went into Phase IIa clinical studies in patients with refractory CLL or MM
in combination with conventional therapy [313,316]. Patients with glioblastoma often
deal with resistance to anti-angiogenic therapy due to hypoxia and CXCL12-mediated
recruitment of TAMs. When rats bearing glioblastoma multiforme were treated with a
combination of anti-VEGF antibodies and NOX-A12, CXCL12 blockade enhanced the effect
of anti-VEGF therapy by inhibiting TAM recruitment and further reducing the tumor
microvasculature [317]. Additionally, in a mouse model of colorectal cancer, NOX-A12
treatment could abrogate CXCL12-mediated immune suppression and enhance T and NK
cell infiltration which improved anti-PD-1 therapy [318].

4. Conclusions

NH2-terminal clipping of chemokines by CD26 entails an important post-translational
modification that affects and regulates chemokine activity. Chemokines are broadly in-
volved in tumor progression, but CD26 has a certain degree of selectivity in terms of
chemokine substrate. Some chemokines are protected from CD26-mediated cleavage by the
presence of specific amino acid residues. Others can escape clipping through oligomeriza-
tion or binding to cellular GAGs. In addition to impacting GPCR receptor activation, CD26-
mediated processing can also affect chemokine-GAG interactions, and thereby chemokine
stability in circulation and thus in vivo half-life. In cancer, CD26 most likely has the most
profound effect on the functional properties of CXCL12 and IFN-inducible CXCR3 lig-
ands, who are converted into receptor antagonists upon truncation. Antagonistic actions
are favorable for pro-tumoral CXCL12, but unfavorable for anti-tumoral CXCL9/10/11.
However, the tumor microenvironment is often cunning through differential CD26 expres-
sion depending on the cancer type. This can accommodate preferential generation of the
chemokine product whose action is most favorable for tumor progression. Studying the
effect of chemokine processing uncovered chemokine structure/activity relationships and
revealed that different chemokine properties reside in different regions of the chemokine
structure. This knowledge can be exploited to chemically engineer molecules with proper
characteristics to target cancer-related processes and can therefore possibly be used in a
therapeutic setting.
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CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int. J. Mol. Sci. 2021, 22, 3490. [CrossRef]

100. Decock, B.; Conings, R.; Lenaerts, J.-P.; Billiau, A.; Van Damme, J. Identification of the monocyte chemotactic protein from human
osteosarcoma cells and monocytes: Detection of a novel N-terminally processed form. Biochem. Biophys. Res. Commun. 1990, 167,
904–909. [CrossRef]

101. Lu, Y.; Cai, Z.; Galson, D.L.; Xiao, G.; Liu, Y.; George, D.E.; Melhem, M.F.; Yao, Z.; Zhang, J. Monocyte chemotactic protein-
1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate 2006, 66, 1311–1318.
[CrossRef] [PubMed]

102. Zhang, J.; Patel, L.; Pienta, K.J. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine
Growth Factor Rev. 2010, 21, 41–48. [CrossRef] [PubMed]

103. Salcedo, R.; Ponce, M.L.; Young, H.A.; Wasserman, K.; Ward, J.M.; Kleinman, H.K.; Oppenheim, J.J.; Murphy, W.J. Human
endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood 2000,
96, 34–40. [CrossRef] [PubMed]

104. Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of tumor-associated macrophages in tumor progression and
invasion. Cancer Metastasis Rev. 2006, 25, 315–322. [CrossRef]

105. Lee, H.W.; Choi, H.J.; Ha, S.J.; Lee, K.T.; Kwon, Y.G. Recruitment of monocytes/macrophages in different tumor microenviron-
ments. Biochim. Biophys. Acta. 2013, 1835, 170–179. [CrossRef] [PubMed]

106. Huang, B.; Lei, Z.; Zhao, J.; Gong, W.; Liu, J.; Chen, Z.; Liu, Y.; Li, D.; Yuan, Y.; Zhang, G.-M.; et al. CCL2/CCR2 pathway mediates
recruitment of myeloid suppressor cells to cancers. Cancer Lett. 2007, 252, 86–92. [CrossRef] [PubMed]

107. Loberg, R.D.; Day, L.L.; Harwood, J.; Ying, C.; John, L.N.S.; Giles, R.; Neeley, C.K.; Pienta, K. CCL2 is a Potent Regulator of
Prostate Cancer Cell Migration and Proliferation. Neoplasia 2006, 8, 578–586. [CrossRef] [PubMed]

108. Granot, Z.; Henke, E.; Comen, E.A.; King, T.A.; Norton, L.; Benezra, R. Tumor entrained neutrophils inhibit seeding in the
premetastatic lung. Cancer Cell 2011, 20, 300–314. [CrossRef]

109. Molon, B.; Ugel, S.; Del Pozzo, F.; Soldani, C.; Zilio, S.; Avella, D.; De Palma, A.; Mauri, P.; Monegal, A.; Rescigno, M.; et al. Chemokine
nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 2011, 208, 1949–1962. [CrossRef] [PubMed]

110. Imai, T.; Nagira, M.; Takagi, S.; Kakizaki, M.; Nishimura, M.; Wang, J.; Gray, P.W.; Matsushima, K.; Yoshie, O. Selective recruitment
of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine
and macrophage-derived chemokine. Int. Immunol. 1999, 11, 81–88. [CrossRef]

111. Ferenczi, K.; Fuhlbrigge, R.C.; Kupper, T.S.; Pinkus, J.L.; Pinkus, G.S. Increased CCR4 Expression in Cutaneous T Cell Lymphoma.
J. Investig. Dermatol. 2002, 119, 1405–1410. [CrossRef]

112. Ishida, T.; Utsunomiya, A.; Iida, S.; Inagaki, H.; Takatsuka, Y.; Kusumoto, S.; Takeuchi, G.; Shimizu, S.; Ito, M.; Komatsu, H.; et al.
Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: Its close association with skin involvement and
unfavorable outcome. Clin. Cancer Res. 2003, 9, 3625–3634.

113. Ogura, M.; Ishida, T.; Hatake, K.; Taniwaki, M.; Ando, K.; Tobinai, K.; Fujimoto, K.; Yamamoto, K.; Miyamoto, T.; Uike, N.; et al.
Multicenter Phase II Study of Mogamulizumab (KW-0761), a Defucosylated Anti-CC Chemokine Receptor 4 Antibody, in Patients
With Relapsed Peripheral T-Cell Lymphoma and Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2014, 32, 1157–1163. [CrossRef]

http://doi.org/10.1158/0008-5472.CAN-06-0709
http://www.ncbi.nlm.nih.gov/pubmed/16885372
http://doi.org/10.1038/sj.onc.1210267
http://www.ncbi.nlm.nih.gov/pubmed/17297455
http://doi.org/10.1038/sj.bjc.6605078
http://www.ncbi.nlm.nih.gov/pubmed/19436305
http://doi.org/10.1016/j.celrep.2019.07.033
http://www.ncbi.nlm.nih.gov/pubmed/31412247
http://doi.org/10.1084/jem.187.4.655
http://doi.org/10.1172/jci.insight.91487
http://www.ncbi.nlm.nih.gov/pubmed/28570278
http://doi.org/10.1016/j.immuni.2013.10.003
http://doi.org/10.1126/science.aan5931
http://doi.org/10.3390/ijms22073490
http://doi.org/10.1016/0006-291X(90)90609-Q
http://doi.org/10.1002/pros.20464
http://www.ncbi.nlm.nih.gov/pubmed/16705739
http://doi.org/10.1016/j.cytogfr.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/20005149
http://doi.org/10.1182/blood.V96.1.34
http://www.ncbi.nlm.nih.gov/pubmed/10891427
http://doi.org/10.1007/s10555-006-9001-7
http://doi.org/10.1016/j.bbcan.2012.12.007
http://www.ncbi.nlm.nih.gov/pubmed/23287570
http://doi.org/10.1016/j.canlet.2006.12.012
http://www.ncbi.nlm.nih.gov/pubmed/17257744
http://doi.org/10.1593/neo.06280
http://www.ncbi.nlm.nih.gov/pubmed/16867220
http://doi.org/10.1016/j.ccr.2011.08.012
http://doi.org/10.1084/jem.20101956
http://www.ncbi.nlm.nih.gov/pubmed/21930770
http://doi.org/10.1093/intimm/11.1.81
http://doi.org/10.1046/j.1523-1747.2002.19610.x
http://doi.org/10.1200/JCO.2013.52.0924


Cancers 2021, 13, 4247 28 of 36

114. Ishida, T.; Joh, T.; Uike, N.; Yamamoto, K.; Utsunomiya, A.; Yoshida, S.; Saburi, Y.; Miyamoto, T.; Takemoto, S.; Suzushima, H.; et al.
Defucosylated Anti-CCR4 Monoclonal Antibody (KW-0761) for Relapsed Adult T-Cell Leukemia-Lymphoma: A Multicenter
Phase II Study. J. Clin. Oncol. 2012, 30, 837–842. [CrossRef]
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