Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide]silver(I) trifluoroacetate

Cao-Yuan Niu,* Hai-Yan Zhang, Yu-Li Dang and Chun-Hong Kou

College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niu_cy2000@yahoo.com.cn

Received 15 July 2009; accepted 23 July 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.046; wR factor = 0.137; data-to-parameter ratio = 12.0.

In the title compound, $[Ag(C_{14}H_{10}N_4O)_2]CF_3CO_2$, the Ag^I ion is coordinated by two N atoms of the pyridine rings of two N'-(3-cyanobenzylidene)isonicotinohydrazide ligands in a nearly linear geometry. In the crystal structure, a combination of close contacts formed *via* Ag···N interactions [Ag···N =3.098 (2) and 3.261 (2) Å] from symmetry-related molecules and intermolecular N-H···O hydrogen bonds between CF₃CO₂⁻ anions and the hydrazone groups of two ligands give rise to chains. Furthermore, there are Ag···O interactions with a separation of 2.765 (2) Å between chains. The F atoms of the CF₃CO₂⁻ anion are disordered over two sites with refined occupancies of 0.593 (5) and 0.407 (5).

Related literature

For related silver complexes, see: Dong *et al.* (2004); Niu *et al.* (2008, 2009); Sumby & Hardie (2005); Abu-Youssef *et al.* (2007); Zheng *et al.* (2003).

Experimental

Crysiai aaa	Crystal	data
-------------	---------	------

$[\Lambda_{\alpha}(C, H, N, O)]C = O$	a = 14.008 (3) Å
$[Ag(C_{14}\Pi_{10}\Pi_{4}O)_{2}]C_{2}\Gamma_{3}O_{2}$	c = 14.098 (3) A
$M_r = /21.41$	$\alpha = 86.562(3)^{\circ}$
Triclinic, P1	$\beta = 88.126 \ (3)^{\circ}$
a = 7.5345 (14) A	$\gamma = 83.792 \ (3)^{\circ}$
b = 13.744 (3) Å	V = 1448.2 (5) Å

Z = 2Mo $K\alpha$ radiation $\mu = 0.77 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T_{min} = 0.791, T_{max} = 0.881

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 48 restraints $wR(F^2) = 0.137$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.95$ e Å $^{-3}$ 5306 reflections $\Delta \rho_{min} = -0.83$ e Å $^{-3}$ 443 parameters

Table 1

Selected geometric parameters (Å, °).

Ag1-N5	2.143 (3)	Ag1-N1	2.147 (3)
N5-Ag1-N1	174.20 (11)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} N2 - H40 \cdots O4^{i} \\ N6 - H39 \cdots O3^{ii} \end{array}$	0.88 0.90	1.93 2.13	2.805 (4) 2.936 (4)	172 149
Summer at my and any (i)		- 1. (3)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXL97*.

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2867).

References

- Abu-Youssef, M. A. M., Dey, R., Gohar, Y., Massoud, A. A., Ohrstrom, L. & Langer, V. (2007). *Inorg. Chem.*. 46, 5893–5903.
- Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2002). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Dong, Y.-B., Zhao, X. & Huang, R.-Q. (2004). Inorg. Chem. 43, 5603–5612.
- Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Wan, X.-S., Zhang, H.-Y., Niu, Y.-Y. & Meng, L.-Y. (2009). CrystEngComm, 11, 1373–1382.
- Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307.
- Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395-6399.
- Zheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509–1514.

 $0.32 \times 0.22 \times 0.17 \text{ mm}$

8015 measured reflections 5306 independent reflections

4046 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.025$

Acta Cryst. (2009). E65, m1029 [doi:10.1107/S1600536809029183]

Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide]silver(I) trifluoroacetate

C.-Y. Niu, H.-Y. Zhang, Y.-L. Dang and C.-H. Kou

Comment

Silver coordination complexes with pyridyl organic ligands are of great interests for their utilities in fluorescent materials and antibiotic aspects (Dong *et al.*, 2004; Abu-Youssef, *et al.*, 2007). In the title compound, (I), the central Ag^I ion is coordinated by two nitrogen atoms from two pyridine rings of two different ligands, defining a slightly distorted linear coordination geometry (Fig. 1). Coordinating bond distances and angle around metal center are shown in Table 1. In the crystal structure, there are N—H···O hydrogen bonds between the hydrazone groups of 3-cyanobenzylidene isonicotinohydrazide ligands and $CF_3CO_2^-$ anions (Table 2). In addition, there are weak Ag···N interactions between two neighbouring silver monomers with separations of 3.098 (2) and 3.261 (2) Å and Ag···O interactions between two neighbouring silver monomers with separations of 2.765 (2) Å. Hydrogen bonds and Ag···N interactions link parallel silver monomers together to construct one-dimensional chains (Fig. 2) and Ag···O interactions contribute to the three-dimensional structure.

Experimental

A solution of $AgCF_3CO_2$ (0.022 g, 0.1 mmol) in CH₃OH (10 ml) was carefully layered on a CH₃OH/CHCl₃ solution (5 ml/10 ml) of 3-Cyanobenzylidene isonicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained (yield about 43%).

Refinement

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$]. The N-bound H atoms were first introduced in calculated positions and refined freely with $U_{iso}(H)$ = $1.2U_{eq}(carrier N)$. Three F atoms (F1—F3) of the trifluoroacetate anion are disordered over two positions, with maximum and minimum occupancies of 0.593 (5) and 0.407 (5), respectively. All C—F bond lengths were restrained to 1.26 (2) Å. Restraints of displacement parameters for three F or disordered F atoms were also performed. The final difference Fourier map had a highest peak at 0.96 Å from atom Ag1 and a deepest hole at 0.96 Å from atom Ag1, but were otherwise featureless.

Figures

Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. In the anion, the dashed lines indicate the minor component of disorder.

Fig. 2. Part of the one-dimensional chain formed *via* intermolecular hydrogen bonds indicated by green dashed lines and Ag^{...}N interactions indicated by pink dashed lines.

Bis[N'-(3-cyanobenzylidene)isonicotinohydrazide]silver(I) trifluoroacetate

Crystal data

$[Ag(C_{14}H_{10}N_4O_1)_2]C_2F_3O_2$	Z = 2
$M_r = 721.41$	$F_{000} = 724$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.654 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.5345 (14) Å	Cell parameters from 2885 reflections
b = 13.744(3) Å	$\theta = 2.1 - 25.5^{\circ}$
c = 14.098 (3) Å	$\mu = 0.77 \text{ mm}^{-1}$
$\alpha = 86.562 \ (3)^{\circ}$	T = 173 K
$\beta = 88.126 \ (3)^{\circ}$	Needle, yellow
$\gamma = 83.792 \ (3)^{\circ}$	$0.32\times0.22\times0.17~mm$
$V = 1448.2 (5) \text{ Å}^3$	

Data collection

Bruker APEXII CCD detector diffractometer	5306 independent reflections
Radiation source: fine-focus sealed tube	4046 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
<i>T</i> = 173 K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.791, \ T_{\max} = 0.881$	$k = -16 \rightarrow 16$
8015 measured reflections	$l = -8 \rightarrow 17$

Refinement

sup-2

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0.0871P)^2 + 0.05P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
5306 reflections	$\Delta \rho_{max} = 0.95 \text{ e} \text{ Å}^{-3}$
443 parameters	$\Delta \rho_{min} = -0.83 \text{ e } \text{\AA}^{-3}$
48 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ag1	0.07174 (4)	0.80139 (2)	0.31966 (2)	0.07153 (17)	
N1	0.1905 (4)	0.8820 (2)	0.4222 (2)	0.0511 (7)	
N2	0.4458 (4)	1.0110 (2)	0.71224 (19)	0.0467 (6)	
H40	0.4975	0.9505	0.7165	0.056*	
N3	0.4965 (4)	1.0684 (2)	0.78081 (19)	0.0499 (7)	
N4	0.9740 (5)	0.9994 (3)	1.2069 (2)	0.0771 (10)	
N5	-0.0205 (4)	0.7130 (2)	0.2151 (2)	0.0542 (7)	
N6	-0.3086 (4)	0.5740 (2)	-0.06091 (19)	0.0499 (7)	
H39	-0.3230	0.6397	-0.0717	0.060*	
N7	-0.3701 (4)	0.5149 (2)	-0.12433 (19)	0.0473 (6)	
N8	-0.8578 (6)	0.5997 (3)	-0.5468 (3)	0.0829 (11)	
01	0.2840 (4)	1.14121 (17)	0.63867 (18)	0.0630 (7)	
O2	-0.2138 (4)	0.44400 (17)	0.03838 (17)	0.0601 (6)	
O3	0.2518 (5)	0.2337 (2)	0.1519 (2)	0.0957 (11)	
O4	0.3698 (5)	0.1775 (2)	0.2890 (2)	0.0950 (11)	
C1	0.2540 (6)	0.8390 (3)	0.5037 (3)	0.0623 (10)	
H28	0.2629	0.7695	0.5111	0.075*	
C2	0.3069 (5)	0.8889 (3)	0.5766 (3)	0.0577 (9)	
H29	0.3509	0.8547	0.6331	0.069*	
C3	0.2955 (4)	0.9898 (2)	0.5673 (2)	0.0413 (7)	
C4	0.2324 (4)	1.0347 (2)	0.4829 (2)	0.0480 (8)	
H30	0.2240	1.1040	0.4733	0.058*	
C5	0.1822 (4)	0.9791 (3)	0.4135 (2)	0.0492 (8)	
H31	0.1392	1.0115	0.3560	0.059*	
C6	0.3404 (4)	1.0549 (2)	0.6427 (2)	0.0470 (8)	
C7	0.5898 (4)	1.0245 (3)	0.8475 (2)	0.0488 (8)	
H32	0.6173	0.9553	0.8495	0.059*	
C8	0.6539 (4)	1.0815 (2)	0.9204 (2)	0.0461 (7)	
C9	0.6270 (5)	1.1842 (3)	0.9143 (3)	0.0606 (10)	
H33	0.5639	1.2171	0.8623	0.073*	
C10	0.6902 (6)	1.2380 (3)	0.9820 (3)	0.0748 (12)	
H34	0.6709	1.3075	0.9768	0.090*	
C11	0.7812 (6)	1.1916 (3)	1.0576 (3)	0.0672 (11)	

H35	0.8269	1.2289	1.1040	0.081*	
C12	0.8062 (5)	1.0904 (3)	1.0659 (3)	0.0545 (9)	
C13	0.7428 (5)	1.0354 (3)	0.9974 (2)	0.0481 (8)	
H36	0.7606	0.9658	1.0037	0.058*	
C14	0.9005 (5)	1.0402 (3)	1.1449 (3)	0.0603 (9)	
C15	-0.1106 (6)	0.7536 (3)	0.1400 (3)	0.0700 (11)	
H22	-0.1284	0.8231	0.1327	0.084*	
C16	-0.1786 (5)	0.7013 (3)	0.0732 (3)	0.0590 (9)	
H21	-0.2389	0.7340	0.0203	0.071*	
C17	-0.1585 (4)	0.6002 (2)	0.0834 (2)	0.0417 (7)	
C18	-0.0668 (5)	0.5584 (2)	0.1616 (2)	0.0499 (8)	
H20	-0.0499	0.4890	0.1715	0.060*	
C19	-0.0005 (5)	0.6156 (3)	0.2244 (2)	0.0530 (8)	
H19	0.0627	0.5847	0.2772	0.064*	
C20	-0.2274 (4)	0.5316 (2)	0.0187 (2)	0.0442 (7)	
C21	-0.4550 (5)	0.5585 (3)	-0.1937 (2)	0.0508 (8)	
H23	-0.4746	0.6280	-0.1976	0.061*	
C22	-0.5228 (4)	0.5035 (2)	-0.2675 (2)	0.0461 (7)	
C23	-0.4960 (5)	0.4015 (3)	-0.2652 (3)	0.0542 (9)	
H24	-0.4279	0.3667	-0.2161	0.065*	
C24	-0.5667 (6)	0.3510 (3)	-0.3331 (3)	0.0628 (10)	
H25	-0.5495	0.2813	-0.3297	0.075*	
C25	-0.6625 (5)	0.3998 (3)	-0.4062 (3)	0.0591 (9)	
H26	-0.7109	0.3643	-0.4532	0.071*	
C26	-0.6874 (5)	0.5011 (3)	-0.4105 (2)	0.0533 (8)	
C27	-0.6184 (5)	0.5528 (3)	-0.3409 (2)	0.0510 (8)	
H27	-0.6372	0.6224	-0.3438	0.061*	
C28	-0.7845 (5)	0.5554 (3)	-0.4867 (3)	0.0626 (10)	
C29	0.2595 (5)	0.2239 (3)	0.2380 (3)	0.0611 (10)	
C30	0.1058 (7)	0.2780 (3)	0.2934 (4)	0.0814 (13)	
F1	0.1449 (15)	0.3562 (8)	0.3268 (9)	0.132 (5)	0.593 (15)
F2	0.0334 (14)	0.2268 (7)	0.3564 (11)	0.156 (6)	0.593 (15)
F3	-0.0247 (13)	0.3127 (8)	0.2334 (8)	0.144 (5)	0.593 (15)
F1'	0.141 (3)	0.2689 (11)	0.3907 (7)	0.145 (6)	0.407 (15)
F2'	-0.0425 (19)	0.2452 (15)	0.2912 (13)	0.153 (7)	0.407 (15)
F3'	0.093 (2)	0.3702 (7)	0.2843 (13)	0.132 (7)	0.407 (15)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0812 (3)	0.0767 (3)	0.0630 (2)	-0.01527 (17)	-0.01994 (17)	-0.03412 (17)
N1	0.0622 (17)	0.0518 (17)	0.0435 (16)	-0.0139 (13)	-0.0157 (13)	-0.0136 (12)
N2	0.0567 (15)	0.0441 (15)	0.0412 (15)	-0.0050 (12)	-0.0149 (12)	-0.0128 (11)
N3	0.0594 (16)	0.0477 (16)	0.0452 (16)	-0.0078 (13)	-0.0152 (13)	-0.0137 (12)
N4	0.079 (2)	0.103 (3)	0.050 (2)	-0.011 (2)	-0.0193 (18)	-0.0021 (19)
N5	0.0699 (18)	0.0492 (18)	0.0460 (16)	-0.0064 (14)	-0.0174 (14)	-0.0158 (13)
N6	0.0672 (17)	0.0418 (15)	0.0435 (15)	-0.0091 (13)	-0.0175 (13)	-0.0097 (12)
N7	0.0606 (16)	0.0450 (15)	0.0390 (15)	-0.0093 (12)	-0.0137 (13)	-0.0115 (12)

N8	0.103 (3)	0.089 (3)	0.061 (2)	-0.019 (2)	-0.037 (2)	0.003 (2)
01	0.0821 (17)	0.0408 (14)	0.0686 (17)	-0.0027 (12)	-0.0307 (13)	-0.0155 (11)
02	0.0886 (18)	0.0389 (14)	0.0550 (15)	-0.0067 (12)	-0.0241 (13)	-0.0092 (10)
03	0.162 (3)	0.074 (2)	0.0531 (18)	-0.024 (2)	-0.0202 (19)	0.0046 (15)
04	0.110 (2)	0.078 (2)	0.093 (2)	0.0287 (18)	-0.046 (2)	-0.0184 (17)
C1	0.085 (3)	0.042 (2)	0.064 (2)	-0.0097 (18)	-0.029 (2)	-0.0104 (17)
C2	0.084 (2)	0.0413 (19)	0.051 (2)	-0.0106 (17)	-0.0296 (18)	-0.0026 (15)
C3	0.0457 (16)	0.0413 (17)	0.0390 (16)	-0.0081 (13)	-0.0106 (13)	-0.0088 (13)
C4	0.0597 (19)	0.0429 (18)	0.0431 (18)	-0.0100 (15)	-0.0137 (15)	-0.0017 (14)
C5	0.0581 (19)	0.054 (2)	0.0377 (17)	-0.0124 (16)	-0.0144 (15)	-0.0001 (14)
C6	0.0553 (18)	0.0424 (19)	0.0459 (19)	-0.0102 (15)	-0.0130 (15)	-0.0101 (14)
C7	0.0591 (19)	0.0445 (19)	0.0445 (18)	-0.0062 (15)	-0.0095 (15)	-0.0106 (14)
C8	0.0538 (18)	0.0478 (19)	0.0389 (17)	-0.0095 (14)	-0.0117 (14)	-0.0084 (14)
С9	0.081 (3)	0.045 (2)	0.057 (2)	-0.0056 (17)	-0.0252 (19)	-0.0060 (16)
C10	0.099 (3)	0.047 (2)	0.082 (3)	-0.012 (2)	-0.032 (2)	-0.0144 (19)
C11	0.081 (3)	0.061 (3)	0.065 (3)	-0.016 (2)	-0.023 (2)	-0.0222 (19)
C12	0.058 (2)	0.066 (2)	0.0423 (19)	-0.0110 (17)	-0.0096 (16)	-0.0090 (16)
C13	0.0570 (19)	0.0456 (19)	0.0430 (18)	-0.0064 (15)	-0.0093 (15)	-0.0058 (14)
C14	0.062 (2)	0.076 (3)	0.046 (2)	-0.0118 (19)	-0.0089 (18)	-0.0125 (18)
C15	0.106 (3)	0.041 (2)	0.066 (2)	-0.008 (2)	-0.035 (2)	-0.0093 (17)
C16	0.087 (3)	0.0405 (19)	0.051 (2)	-0.0024 (17)	-0.0313 (19)	-0.0053 (15)
C17	0.0482 (17)	0.0408 (17)	0.0362 (16)	-0.0028 (13)	-0.0035 (13)	-0.0059 (13)
C18	0.068 (2)	0.0406 (18)	0.0413 (18)	0.0011 (15)	-0.0147 (15)	-0.0067 (14)
C19	0.062 (2)	0.056 (2)	0.0422 (18)	-0.0019 (16)	-0.0168 (15)	-0.0095 (15)
C20	0.0528 (18)	0.0416 (19)	0.0394 (17)	-0.0034 (14)	-0.0096 (14)	-0.0105 (13)
C21	0.064 (2)	0.0436 (19)	0.047 (2)	-0.0095 (15)	-0.0115 (16)	-0.0071 (15)
C22	0.0551 (18)	0.0457 (19)	0.0403 (17)	-0.0137 (15)	-0.0080 (14)	-0.0072 (14)
C23	0.065 (2)	0.046 (2)	0.054 (2)	-0.0105 (16)	-0.0137 (17)	-0.0035 (15)
C24	0.077 (2)	0.047 (2)	0.068 (3)	-0.0150 (18)	-0.013 (2)	-0.0151 (17)
C25	0.071 (2)	0.057 (2)	0.054 (2)	-0.0169 (18)	-0.0123 (18)	-0.0179 (17)
C26	0.059 (2)	0.061 (2)	0.0434 (19)	-0.0170 (17)	-0.0117 (15)	-0.0073 (16)
C27	0.064 (2)	0.0462 (19)	0.0454 (19)	-0.0128 (16)	-0.0148 (16)	-0.0039 (14)
C28	0.077 (2)	0.064 (2)	0.052 (2)	-0.019 (2)	-0.0222 (19)	-0.0061 (18)
C29	0.086 (3)	0.0379 (19)	0.061 (2)	-0.0105 (18)	-0.021 (2)	0.0021 (16)
C30	0.094 (3)	0.052 (3)	0.095 (4)	-0.002 (2)	-0.009 (3)	0.010 (3)
F1	0.149 (7)	0.122 (9)	0.135 (8)	-0.021 (6)	0.023 (6)	-0.076 (7)
F2	0.131 (7)	0.126 (7)	0.189 (11)	0.019 (5)	0.075 (7)	0.075 (8)
F3	0.124 (6)	0.121 (7)	0.180 (8)	0.056 (5)	-0.066 (6)	-0.036 (6)
F1'	0.234 (14)	0.121 (10)	0.067 (5)	0.047 (9)	-0.009 (7)	-0.023 (6)
F2'	0.114 (8)	0.184 (15)	0.171 (13)	-0.061 (9)	0.031 (8)	-0.029 (11)
F3'	0.171 (12)	0.037 (5)	0.168 (13)	0.038 (6)	0.048 (9)	0.032 (7)
Geometric _P	oarameters (Å, °)					

Ag1—N5	2.143 (3)	C9—C10	1.369 (5)
Ag1—N1	2.147 (3)	С9—Н33	0.9500
N1—C5	1.327 (4)	C10—C11	1.372 (6)
N1—C1	1.338 (5)	С10—Н34	0.9500
N2—C6	1.353 (4)	C11—C12	1.381 (6)

N2—N3	1.372 (4)	С11—Н35	0.9500
N2—H40	0.8793	C12—C13	1.388 (5)
N3—C7	1.275 (4)	C12—C14	1.440 (6)
N4—C14	1.136 (5)	С13—Н36	0.9500
N5—C19	1.330 (5)	C15—C16	1.363 (5)
N5—C15	1.338 (5)	C15—H22	0.9500
N6—C20	1.364 (4)	C16—C17	1.381 (5)
N6—N7	1.367 (4)	C16—H21	0.9500
N6—H39	0.9025	C17—C18	1.383 (4)
N7—C21	1.270 (4)	C17—C20	1.493 (4)
N8—C28	1.135 (5)	C18—C19	1.360 (5)
O1—C6	1.215 (4)	C18—H20	0.9500
O2—C20	1.214 (4)	С19—Н19	0.9500
O3—C29	1.216 (4)	C21—C22	1.458 (5)
O4—C29	1.218 (4)	С21—Н23	0.9500
C1—C2	1.363 (5)	C22—C27	1.381 (5)
C1—H28	0.9500	C22—C23	1.393 (5)
C2—C3	1.378 (5)	C23—C24	1.369 (5)
С2—Н29	0.9500	C23—H24	0.9500
C3—C4	1.381 (4)	C24—C25	1.376 (5)
C3—C6	1.500 (4)	C24—H25	0.9500
C4—C5	1.365 (5)	C25—C26	1.382 (5)
С4—Н30	0.9500	С25—Н26	0.9500
С5—Н31	0.9500	C26—C27	1.391 (5)
С7—С8	1.454 (4)	C26—C28	1.443 (5)
С7—Н32	0.9500	С27—Н27	0.9500
C8—C13	1.380 (5)	C29—C30	1.526 (7)
C8—C9	1.402 (5)		
N5—Ag1—N1	174.20 (11)	C11—C12—C14	120.6 (3)
C5—N1—C1	116.6 (3)	C13—C12—C14	118.9 (3)
C5—N1—Ag1	121.0 (2)	C8—C13—C12	120.1 (3)
C1—N1—Ag1	121.8 (2)	С8—С13—Н36	119.9
C6—N2—N3	117.8 (3)	С12—С13—Н36	119.9
C6—N2—H40	128.2	N4—C14—C12	179.0 (5)
N3—N2—H40	113.6	N5-C15-C16	123.9 (3)
C7—N3—N2	116.5 (3)	N5—C15—H22	118.0
C19—N5—C15	116.7 (3)	C16—C15—H22	118.0
C19—N5—Ag1	121.9 (2)	C15—C16—C17	119.2 (3)
C15—N5—Ag1	121.2 (2)	C15-C16-H21	120.4
C20—N6—N7	118.7 (3)	C17—C16—H21	120.4
C20—N6—H39	121.2	C16—C17—C18	116.8 (3)
N7—N6—H39	120.1	C16—C17—C20	126.4 (3)
C21—N7—N6	115.9 (3)	C18—C17—C20	116.8 (3)
N1—C1—C2	123.9 (3)	C19—C18—C17	120.6 (3)
N1—C1—H28	118.0	C19—C18—H20	119.7
C2—C1—H28	118.0	С17—С18—Н20	119.7
C1—C2—C3	119.0 (3)	N5—C19—C18	122.8 (3)
С1—С2—Н29	120.5	N5—C19—H19	118.6
С3—С2—Н29	120.5	C18—C19—H19	118.6

C2—C3—C4	117.5 (3)	O2—C20—N6	123.2 (3)
C2—C3—C6	125.2 (3)	O2—C20—C17	120.8 (3)
C4—C3—C6	117.3 (3)	N6—C20—C17	115.9 (3)
C5—C4—C3	119.7 (3)	N7—C21—C22	121.1 (3)
C5—C4—H30	120.1	N7—C21—H23	119.5
C3—C4—H30	120.1	С22—С21—Н23	119.5
N1—C5—C4	123.3 (3)	C27—C22—C23	118.7 (3)
N1—C5—H31	118.4	C27—C22—C21	119.8 (3)
C4—C5—H31	118.4	C23—C22—C21	121.5 (3)
O1—C6—N2	124.1 (3)	C24—C23—C22	120.7 (3)
O1—C6—C3	120.2 (3)	C24—C23—H24	119.6
N2—C6—C3	115.6 (3)	C22—C23—H24	119.6
N3—C7—C8	119.3 (3)	C23—C24—C25	120.8 (3)
N3—C7—H32	120.4	C23—C24—H25	119.6
С8—С7—Н32	120.4	C25—C24—H25	119.6
C13—C8—C9	118.5 (3)	C24—C25—C26	119.3 (3)
C13—C8—C7	120.5 (3)	С24—С25—Н26	120.4
C9—C8—C7	121.0 (3)	С26—С25—Н26	120.4
С10—С9—С8	121.0 (3)	C25—C26—C27	120.2 (3)
С10—С9—Н33	119.5	C25—C26—C28	121.2 (3)
С8—С9—Н33	119.5	C27—C26—C28	118.6 (3)
C9—C10—C11	120.1 (4)	C22—C27—C26	120.3 (3)
С9—С10—Н34	119.9	С22—С27—Н27	119.8
С11—С10—Н34	119.9	С26—С27—Н27	119.8
C10-C11-C12	119.8 (3)	N8—C28—C26	178.3 (4)
С10—С11—Н35	120.1	O3—C29—O4	131.0 (4)
С12—С11—Н35	120.1	O3—C29—C30	115.8 (4)
C11—C12—C13	120.5 (3)	O4—C29—C30	113.3 (4)
N5—Ag1—N1—C5	122.8 (10)	C14—C12—C13—C8	-179.2 (3)
N5—Ag1—N1—C1	-66.4 (11)	C11—C12—C14—N4	166 (27)
C6—N2—N3—C7	177.3 (3)	C13-C12-C14-N4	-15 (28)
N1—Ag1—N5—C19	56.5 (11)	C19—N5—C15—C16	-1.2 (7)
N1—Ag1—N5—C15	-127.5 (10)	Ag1-N5-C15-C16	-177.4 (4)
C20—N6—N7—C21	175.5 (3)	N5-C15-C16-C17	1.6 (7)
C5—N1—C1—C2	1.0 (6)	C15-C16-C17-C18	-0.9 (6)
Ag1—N1—C1—C2	-170.2 (3)	C15—C16—C17—C20	178.6 (4)
N1—C1—C2—C3	-0.1 (7)	C16—C17—C18—C19	-0.1 (5)
C1—C2—C3—C4	-0.8 (6)	C20-C17-C18-C19	-179.6 (3)
C1—C2—C3—C6	177.1 (4)	C15—N5—C19—C18	0.1 (5)
C2—C3—C4—C5	0.9 (5)	Ag1-N5-C19-C18	176.3 (3)
C6—C3—C4—C5	-177.2 (3)	C17—C18—C19—N5	0.5 (6)
C1—N1—C5—C4	-0.9 (5)	N7—N6—C20—O2	-3.4 (5)
Ag1—N1—C5—C4	170.4 (3)	N7—N6—C20—C17	178.2 (3)
C3—C4—C5—N1	0.0 (5)	C16—C17—C20—O2	-174.3 (4)
N3—N2—C6—O1	-2.0 (5)	C18—C17—C20—O2	5.1 (5)
N3—N2—C6—C3	177.5 (3)	C16—C17—C20—N6	4.1 (5)
C2—C3—C6—O1	-160.7 (4)	C18—C17—C20—N6	-176.4 (3)
C4—C3—C6—O1	17.1 (5)	N6—N7—C21—C22	178.3 (3)
C2—C3—C6—N2	19.7 (5)	N7—C21—C22—C27	178.4 (3)

C4—C3—C6—N2	-162.4 (3)	N7—C21—C22—C23	-0.6 (5)
N2—N3—C7—C8	177.6 (3)	C27—C22—C23—C24	-1.6 (5)
N3—C7—C8—C13	174.7 (3)	C21—C22—C23—C24	177.4 (3)
N3—C7—C8—C9	-5.2 (5)	C22—C23—C24—C25	1.5 (6)
C13—C8—C9—C10	1.2 (6)	C23—C24—C25—C26	-0.2 (6)
C7—C8—C9—C10	-178.8 (4)	C24—C25—C26—C27	-0.9 (6)
C8—C9—C10—C11	-0.1 (7)	C24—C25—C26—C28	179.1 (4)
C9-C10-C11-C12	-1.1 (7)	C23—C22—C27—C26	0.5 (5)
C10-C11-C12-C13	1.2 (6)	C21—C22—C27—C26	-178.6 (3)
C10-C11-C12-C14	-179.6 (4)	C25—C26—C27—C22	0.8 (5)
C9—C8—C13—C12	-1.1 (5)	C28—C26—C27—C22	-179.2 (3)
C7—C8—C13—C12	178.9 (3)	C25—C26—C28—N8	-134 (17)
C11—C12—C13—C8	-0.1 (6)	C27—C26—C28—N8	46 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
N2—H40···O4 ⁱ	0.88	1.93	2.805 (4)	172
N6—H39····O3 ⁱⁱ	0.90	2.13	2.936 (4)	149
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x$, $-y+1$,	<i>-z</i> .			

Fig. 1

