
ORIGINAL RESEARCH ARTICLE
published: 13 February 2015

doi: 10.3389/fphys.2015.00042

Acceleration of discrete stochastic biochemical simulation
using GPGPU
Kei Sumiyoshi , Kazuki Hirata , Noriko Hiroi and Akira Funahashi*

Systems Biology Laboratory, Department of Biosciences and Informatics, Keio University, Yokohama, Japan

Edited by:

Tetsuya J. Kobayashi, The Univeristy
of Tokyo, Japan

Reviewed by:

Miguel Gonzalez, University of
Extremadura, Spain
Yuichi Togashi, Hiroshima University,
Japan

*Correspondence:

Akira Funahashi, Systems Biology
Laboratory, Department of
Biosciences and Informatics, Keio
University, 3-14-1 Hiyoshi
Kouhoku-ku, Yokohama 223-8522,
Kanagawa, Japan
e-mail: funa@bio.keio.ac.jp

For systems made up of a small number of molecules, such as a biochemical network in a
single cell, a simulation requires a stochastic approach, instead of a deterministic approach.
The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially
homogeneous system. Since stochastic approaches produce different results each time
they are used, multiple runs are required in order to obtain statistical results; this results
in a large computational cost. We have implemented a parallel method for using SSA to
simulate a stochastic model; the method uses a graphics processing unit (GPU), which
enables multiple realizations at the same time, and thus reduces the computational time
and cost. During the simulation, for the purpose of analysis, each time course is recorded
at each time step. A straightforward implementation of this method on a GPU is about
16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of
the multiple simulations is run simultaneously, and the computational tasks within each
simulation are parallelized. We also implemented an improvement to the memory access
and reduced the memory footprint, in order to optimize the computations on the GPU. We
also implemented an asynchronous data transfer scheme to accelerate the time course
recording function. To analyze the acceleration of our implementation on various sizes
of model, we performed SSA simulations on different model sizes and compared these
computation times to those for sequential simulations with a CPU. When used with the
improved time course recording function, our method was shown to accelerate the SSA
simulation by a factor of up to 130.

Keywords: GPGPU, stochastic simulation algorithm, direct method, parallel processing, CUDA, SBML

1. INTRODUCTION
Understanding biological phenomena as systems is one of
the most crucial objectives in systems biology (Kitano, 2002).
Mathematical modeling of biological systems and the simula-
tion of such models will play an important role in helping us
to understand unknown phenomena as systems. In systems biol-
ogy, a deterministic approach, such as using ordinary differential
equations (ODEs), is often used to understand the behavior of
biochemical systems. A deterministic approach describes the sys-
tem using molecular concentrations, and the results are the same
for every realization. However, when we want to understand a
system that contains a small number of molecules, such as a bio-
chemical network in a single cell, a simulation must be executed
using a stochastic approach, instead of a deterministic approach
(McAdams and Arkin, 1997; Arkin et al., 1998).

The stochastic simulation algorithm (SSA) simulates the
stochastic behavior of a spatially homogeneous system (Gillespie,
1977). Since stochastic approaches produce different results each
time they are used, multiple runs are required in order to obtain
statistical results, thus causing a large computational cost.

To reduce this large computational cost, we have focused on
accelerating the SSA by using general-purpose computations on
a graphics processing unit (GPGPU; Owens et al., 2007; Nvidia,
2014). GPGPU is a technology that uses a graphics processing

unit (GPU) to perform numerical calculations other than those
for computer graphics, its original design purpose. GPUs contain
a large number of arithmetic units in order to parallelize an enor-
mous number of simple calculations. By efficiently parallelizing a
problem and simultaneously performing the calculations on these
arithmetic units, we can obtain significant improvement in the
performance. GPUs are now widespread; they are included in per-
sonal computers (and even in laptop computers). Because of this,
the ability to harness the computing power of GPUs has rapidly
developed.

We have implemented a parallel method for using SSA to
simulate a stochastic model; the method efficiently utilizes a
GPU, and this enables multiple realizations on the same time
sequence. Thus, multiple results are obtained simultaneously, and
this reduces the computational time and cost. During the simu-
lation, for the purpose of analysis, each time course is recorded
at each time step. There are some existing studies of methods
used to accelerate the SSA using the GPGPU; these include (Li
and Petzold, 2010) on the direct method and (Komarov and
D’Souza, 2012) on the optimized direct method. These proposed
methods do not provide a functionality for storing the time
course data, which is essential for understanding the dynam-
ics of a model; our implementation achieves this, and thus aids
analysis.

www.frontiersin.org February 2015 | Volume 6 | Article 42 | 1

http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/journal/10.3389/fphys.2015.00042/abstract
http://community.frontiersin.org/people/u/210292
http://community.frontiersin.org/people/u/30491
http://community.frontiersin.org/people/u/28277
mailto:funa@bio.keio.ac.jp
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

2. MATERIALS AND METHODS
2.1. THE SSA
The SSA was developed by Gillespie (1977), and it is an efficient
and widely used algorithm for simulating the dynamics of chemi-
cally reacting systems including stochastic processes. The SSA has
the following features:

• Each simulation step fires one reaction:
During the simulation, multiple reactions do not proceed
simultaneously. A single reaction is selected from the model,
considering the type of reaction and its required time, and each
selected reaction is executed individually.

• The reactions are selected at random:
A reaction is selected by its propensity function. The propen-
sity function represents its tendency to be selected; that is,
a larger propensity function indicates a higher probability of
being selected.

• The time required for each reaction is defined at random:
Each reaction time τ is defined at random, but the calculated
value of τ depends on the sum of the propensity function.

• Each simulation step increases or decreases the number of
molecules:
As a result of each reaction, changes are based on the num-
ber of molecules, not on their concentrations. A stoichiometry
matrix is used to determine how many molecules are added or
removed.

The original implementation of SSA is called the direct method.
There are several additional implementations of the SSA
(Gillespie, 1976; Gibson and Bruck, 2000; Cao et al., 2004;
McCollum et al., 2006) that use various methods to speed up
the computation time. In our implementation, we use the direct
method, which is summarized as follows:

1. Initialization:
Initialize and define the number of molecules, the reactions,
and the rate constants. The reactions are specified by a stoi-
chiometry matrix.

2. Generate uniformly distributed random numbers: r1, r2, from
(0 − 1].
These numbers determine which reaction is fired in the next
step τ .

3. Calculate the propensity function ai[i = 0 · · · (n − 1)] for each
reaction, where n is the number of reactions:
The propensity function for each reaction will change,
depending on the order of the reaction and the number of
reactants. The order of each reaction should be in the range of
0th order to 2nd order; if the order of a reaction is greater than
2nd order, it should be rewritten as a combination of reactions
of lower (0th–2nd) order.

4. Calculate the sum of the propensity function:

atotal =
n − 1∑

i = 0

ai

5. Calculate the reaction time: τ = (1/atotal) log (1/r1).

6. Select the reaction: Select a reaction that satisfies

m − 1∑

i = 0

ai < r2 · atotal ≤
m∑

i = 0

ai.

7. Fire the selected (mth) reaction: Update the number of
molecules, and add τ to the cumulative simulation time.

8. Termination: If the cumulative time is less than a predeter-
mined time, return to step 2.

2.2. RANDOM NUMBER GENERATION
SSA is an algorithm that uses random numbers to represent
stochastic process in a model. As shown in the previous section,
the direct method uses two random numbers (r1 and r2) for each
step of a simulation: one to determine which reaction is to be
fired and one to determine the reaction time. The generation of
these random numbers is one of the most crucial steps in SSA;
it is a time-consuming task and thus impacts the total simula-
tion time. Another concern regarding the generation of random
numbers is their distribution. In SSA, a great many random num-
bers are generated during each simulation, so it is essential to
choose a generator that can produce uniformly distributed ran-
dom numbers with high dimensionality and long periodicity.
In our implementation, we used the Mersenne Twister (MT), a
widely used pseudorandom number generator (Matsumoto and
Nishimura, 1998). We implemented a parallelized MT algorithm
on a GPU; it was based on the GPGPU implementation of MT
included in CUDA SDK, NVIDIA’s software development kit
for their parallel computing platform (Podlozhnyuk, 2007). In
this implementation, the generated random numbers are stored
directly in the GPU memory; this requires less communication
between the host computer and the GPU.

2.3. PARALLELIZATION OF THE DIRECT METHOD
To accelerate the execution of the direct method, we applied both
coarse-grained and fine-grained parallelization. Coarse-grained
parallelization of a stochastic simulation is straightforward. In
principle, a stochastic simulation requires multiple simulations
using the same model and the same set of parameters, because
each result shows only one possibility. To understand the dynam-
ics and characteristics of a model, it is necessary to obtain a
results from multiple simulations. Coarse-grained parallelization
executes multiple simulations simultaneously. The paralleliza-
tion algorithm is quite simple, in that the model is located on
the global memory of a GPU, and multiple arithmetic units are
engaged to execute simulations with different sets of random
numbers. The acceleration of the SSA by Li and Petzold (2010)
was based on coarse-grained parallelization.

Fine-grained parallelization also parallelizes each component
of each simulation. For example, in the direct method, the cal-
culations of the propensities (step 3, Section 2.1) of the various
reactions are parallelized. Similarly, updating the numbers of each
molecular species (step 7, Section 2.1) is parallelized. The cal-
culation time of step 3 is thus reduced by a factor equal to the
number of reactions, and the time for step 7 is reduced by a factor
equal to the number of molecular species affected. An overview

Frontiers in Physiology | Systems Biology February 2015 | Volume 6 | Article 42 | 2

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

of fine-grained parallelization of the direct method is shown in
Figure 1; the arrows indicate the execution times of each step. The
blue arrow in the figure indicates calculation of the reaction time
τ and the selection of a reaction, and these cannot be parallelized.
The orange and green arrows indicate calculation of the propen-
sity and updating the number of molecules, respectively; these are
independent processes and thus can be parallelized. As shown in
Figure 1, the total execution time is reduced.

When implementing fine-grained parallelization with the
CUDA programming language, we assigned a thread to the cal-
culation of the propensity of each reaction. When updating the
number of molecules, we assigned a thread to each molecular
species.

2.4. MEMORY ACCESS OPTIMIZATION ON A GPU
In the CUDA programming model, when a program is launched,
data (e.g., matrices) are loaded from the host computer to the
GPU’s memory. The CPU on the host computer then sends a
message to begin execution of the operation. Once the GPU has
received this message, the arithmetic units begin to process in par-
allel as threads. Once all threads have been completed, the GPU
returns the results to the host computer. Because multiple threads
are executed simultaneously on a GPU, it is necessary to carefully
design the access pattern of the threads in order to avoid collisions
when they attempt to access the GPU memory to perform read or
write operations.

There are various types of memory available in CUDA, includ-
ing global, constant, texture, and shared; these differ in capacity
and speed of access. Global memory has the largest capacity but
requires the longest access time. To avoid the high latency of
global memory, access to global memory should be coalesced
(Nvidia, 2014). This means that all threads should follow a
specific access pattern.

On the other hand, shared memory has a short access time,
but its capacity is very limited. A benefit of using shared mem-
ory is that it has low latency. Shared memory has small capacity,

FIGURE 1 | Fine-grained parallelization of the direct method. The blue
arrow shows the calculation of the reaction time τ and the selection of a
reaction; these cannot be parallelized. On the other hand, the orange arrow
(calculation of propensity) and green arrow (updating the number of
molecules) are independent processes that can be parallelized.

so calculations must be partitioned (e.g., matrices and variables)
and at any time, only the part being used is loaded to the shared
memory. It is also important that access to shared memory be
controlled in order to prevent collisions between threads. If there
are 16 groups of physical addresses (banks), then the shared
memory can give simultaneous access to 16 different threads. If
multiple threads attempt to access the same bank, a “bank con-
flict” (Nvidia, 2014), this will result in sequential access, and thus
result in high latency.

In our implementation, we stored the time course in the global
memory and stored the number of molecules and propensities in
shared memory. In this way, writing to the global memory was
coalesced, and bank conflicts are avoided.

Figure 2 shows storing of the time course, with both unco-
alesced and coalesced access to global memory. Each thread is
indicated by a stick figure. In this figure, it is assumed that there
are four simulations executed simultaneously and that each one
has its own thread for storing the results. Even though they
are all simulating the same model, the execution time of each
simulation will differ depending on one of the random num-
bers. In Figure 2A, threads 1 and 4 have already finished storing
their results for the first step and are attempting to store their
results for the second step, while threads 2 and 3 are attempting
to store their results from the first step. This results in uncoa-
lesced access. To avoid this problem, we temporarily store the
results in shared memory, and then transfer the results from

FIGURE 2 | Uncoalesced and coalesced access to global memory. Stick
figures indicate the threads that access global memory for the storage of the
simulation results. In (A), threads 1 and 4 have already finished storing their
results for the first step and are attempting to store the results for the
second step; threads 2 and 3 are attempting to store their results for the first
step. This is an example of uncoalesced access. In (B), shared memory is
used to temporarily store the simulation results, which are later transferred
together to global memory. This is an example of coalesced access.

www.frontiersin.org February 2015 | Volume 6 | Article 42 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

all threads to global memory at the same time, as shown in
Figure 2B.

To eliminate the risk of a bank conflict, we optimized the loca-
tion of the data on the shared memory. In our implementation,
the shared memory is used to store the number of molecules
and the propensity functions. Figure 3 shows examples of access
to shared memory with and without a bank conflict. In both
Figures 3A,B, the upper arrays store the numbers of molecules
in each species, and the lower arrays store the reaction type to be
fired in the current simulation step. The number in each element
of the array represents the simulation number (id). In this exam-
ple, there are 16 simulations running simultaneously, and each
simulation consists of four different molecular species. When it is
time to update the number of molecules (step 7, Section 2.1), if
the data are located as shown in Figure 3A, multiple threads will
attempt to access the same bank (an element in the lower array),
which will cause a bank conflict. To avoid this bank conflict, we
have located the data as shown in Figure 3B. With this optimiza-
tion, each element of the array is accessed by only a single thread,
and thus bank conflicts are avoided.

2.5. REDUCTION OF THE TIME TO TRANSFER DATA BETWEEN THE GPU
AND THE HOST COMPUTER

As described in Section 2.4, prior to executing a simulation, it is
necessary to transfer data from the host computer to the GPU.
Usually, the time required to do this is not negligible, and it adds
to the total execution time. To estimate this overhead quantita-
tively, we have implemented a prototype of SSA on a GPU, and
we profiled its execution time, as shown in Table 1. The most
time-consuming task was found to be memory allocation, and
this occupied almost 40% of the total execution time. The rea-
son for this is that we store all of the time course results, which
requires a large amount of memory. Data transfer is also time con-
suming, and it occupies 25% of the total execution time. When

FIGURE 3 | Optimizing the location of data on the shared memory in

order to avoid bank conflicts. If the number of molecular species and
reaction types are allocated as shown in (A), multiple threads will have
access to the same bank, and this will result in cause bank conflicts.
Allocating the data as shown in (B) avoids bank conflicts.

the time course results occupy a large amount of the GPU mem-
ory, the data transfer time from the GPU to the host computer
will also increase. To overcome this problem, we implemented an
asynchronous transfer scheme for moving data from the GPU to
the host computer.

The idea of our asynchronous transfer scheme is to split the
simulation into multiple streams and then execute these streams
in parallel. Each stream contains random number generation
(RNG), a stochastic simulation (SSA), and transfer of the data
to the host computer (memcpy), as shown in Figure 4. If each
stream runs independently, one thread can continue its compu-
tation on the GPU (kernel execution) while another stream is
transferring the result to the host computer.

To implement this asynchronous data transfer scheme, we split
the simulation tasks into two parts: kernel execution and data
transfer. A schematic diagram of asynchronous transfer with two
streams is shown in Figure 4B. While one stream (stream 1) is

Table 1 | Execution time profile.

Procedure % of total execution time

Memory allocation (page lock) 38.0

Data transfer 25.0

Execution of kernel 23.3

Random number generation 13.3

Other 0.4

FIGURE 4 | Two-way and four-way overlap streaming of data transfer. In
an asynchronous transfer scheme, the data is split into multiple streams
which are executed in parallel. (A) Shows an example of sequential execution,
which has no overlap. (B) Shows an example of two-way overlap, which
executes two streams: stream 2 is able to begin its computations while
stream 1 is still transferring its results. In four-way overlap, the simulation task
is split into four parts (C). This results in an increase to three overlaps,
compared to only one overlap in two-way overlap.

Frontiers in Physiology | Systems Biology February 2015 | Volume 6 | Article 42 | 4

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

transferring its results to the host computer (memcpy), another
(stream 2) begins to execute its kernel. This transfer scheme
is called a two-way overlap. Note that in two-way overlapped
data transfer, the data transfer time of stream 1 is suppressed by
the kernel execution time of stream 2. Under ideal conditions,
the data transfer time will be cut in half. In our implementa-
tion, we applied four-way overlapped data transfer. The difference
between two-way and four-way overlap is the number of parts
into which the stream is split. In four-way overlapped data trans-
fer, the simulation is split into four parts, as shown in Figure 4C;
this results in three areas of overlap, compared to only one for
two-way overlap. Under ideal conditions, the data transfer time
will be cut by a factor of four.

2.6. DATA COMPRESSION
Since CUDA requires that all of the data be loaded onto the
GPU memory, the capacity of the GPU memory is a bottleneck.
Unfortunately, it is impossible to extend the size of the memory
of a GPU, although extending the memory is straightforward and
cost effective on general-purpose computers. Moreover, the mem-
ory of a GPU is usually less than that of a personal computer.
For example, the NVIDIA Tesla C1060, which we used for this
study, has 4 GB of memory, while most desktop computers used
for scientific calculations have more than 8 GB of memory, and,
as mentioned, it is easy to increase the memory. Acceleration of
processes on a GPU always encounters this problem; thus, effec-
tively reducing the memory footprint is another important issue
for such implementations.

In our implementation, we used the global memory to store
the time course results and the constant memory to store the reac-
tion rate constants and the stoichiometry matrix. The constant
memory has low latency and small capacity (64 KB), compared
with the global memory, and it is read-only access. Because the
stoichiometry matrix and reaction rate constants do not change
during the simulation, we located them in the constant memory.
The structure that consumes the most memory is the stoichiome-
try matrix used in the SSA; however, this matrix is usually sparse,
and so we implemented compressed row storage (CRS) to reduce
its footprint.

Figure 5 shows an example of a model, its stoichiometry
matrix, and the compressed matrix. Figure 5A shows an example
of a biochemical system (decay dimerization model). It consists
of three molecular species (S1–S3) and four reactions (r1–r4). This
biochemical system can be represented by a stoichiometry matrix,
as shown in Figure 5B. Each row of the stoichiometry matrix rep-
resents a molecular species that is synthesized or degraded by
one of the reactions. If the value is zero, then the corresponding
molecular species is not included in the reaction for that col-
umn (in other words, the simulator does not have to consider this
molecular species for this reaction). Most biochemical reaction
networks are loosely coupled, and so the stoichiometry matrix is
sparse Li and Petzold (2010). To compress this sparse matrix, we
extracted the non-zero values and generated a new matrix that
contains only these non-zero values and their original row and
column indices, as shown in Figure 5C. This new matrix still has
some redundant information, in that the row indices are repeated
(e.g., 1, 1, 2, 2, 3, 3). We used CRS to avoid this redundancy

FIGURE 5 | Compressing the stoichiometry matrix using compressed

row storage. (A,B) Show a decay dimerization model and its stoichiometry
matrix, respectively. Each row of the stoichiometry matrix represents a
molecular species that will be synthesized or destroyed by one of the
reactions. (C) Shows a matrix that only stores the non-zero entries in the
stoichiometry matrix, along with the original row and column indices. (D) Is
a compressed matrix of (C), obtained by eliminating duplicates of the same
index in the second row.

and to store only the column indices in each compressed row, as
shown in Figure 5D. By using CRS to convert the stoichiometry
matrix, we succeeded in storing a decay dimerization model that
had approximately 1400 reactions; for the same amount of mem-
ory, an unconverted matrix could only store approximately 120
reactions.

2.7. IMPORTING THE MODEL
Although not all studies of simulations on GPUs have men-
tioned or satisfied this requirement, it is crucial to separate the
model from the implementation in order to provide a convenient
software tool. If the model is hard-coded in the simulator, the
program must be rewritten whenever the model is modified; the
entire code must then be recompiled. This causes a problem for
those end users who are not familiar with the necessary develop-
ment tools. In particular, this can cause a high barrier for GPGPU,
since most end users are not proficient in GPU programming.

To avoid this problem, we designed our simulator so that the
model is imported; thus, our software package can be distributed
in binary and does not need to be compiled by the end user.
Our system uses the Systems Biology Markup Language (SBML),
which is a tool-neutral computer-readable format for represent-
ing models of biochemical reaction networks; it is applicable to
metabolic networks, cell signaling pathways, gene regulatory net-
works, and other modeling problems in systems biology (Hucka
et al., 2003, 2004). To import SBML, we use LibSBML (Bornstein

www.frontiersin.org February 2015 | Volume 6 | Article 42 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

et al., 2008) to easily access the SBML elements from the C
programming language. The host computer converts the SBML
elements (such as reactions, molecular species, and rate con-
stants) to matrices, and then loads them into the GPU memory.
Once the matrices have been successfully loaded, the simulator
launches a kernel to start the simulation. All of the sample mod-
els that were used for evaluation of this procedure were described
using SBML.

3. RESULTS
In this section, we will evaluate our implementation. For compar-
ison, we implemented the direct method in the C programming
language for sequential execution on a CPU. We compared the
execution time of a stochastic simulation of the same model per-
formed on both a CPU and a GPU. The GPU we used was an
NVIDIA Tesla C1060, mounted on a host computer that had
Core i7 2.80 GHz with 12 GB of memory. The CPU version of
our simulator was executed on the host computer. The model
we chose for the benchmark was a decay dimerization model,
which consisted of four reactions and three molecular species, as
follows:

S1
c1→ 0 (1)

S1 + S1
c3�
c2

S2 (2)

S2
c4→ S3 (3)

This model is quite simple, but it is known to cause stochastic
fluctuations, and a similar reaction system appears in previous
research by McAdams and Arkin (1997). The decay dimerization
model was also used as a benchmark model by Li and Petzold
(2010), and we applied the same simulation conditions as used in
that study; these conditions are shown in Table 2.

3.1. HYBRID PARALLELIZATION
We evaluated the effect on SSA of hybrid parallelization, which is
a combination of fine-grained and coarse-grained parallelization.
Hybrid parallelization simultaneously executes multiple stochas-
tic simulations as coarse-grained parallelization, and simultane-
ously calculates the propensity functions and updates the number
of molecules for each stochastic simulation as a fine-grained
parallelization. The execution time of the direct method with dif-
ferent numbers of realizations is shown in Table 3, and the ratio

Table 2 | Simulation conditions for the decay dimerization model.

REACTION RATE CONSTANTS

c1 1.0

c2 0.002

c3 0.5

c4 0.04

INITIAL CONDITIONS

S1 10,000

S2 0

S3 0

Simulation steps 11,000

of the execution time on a CPU to that on a GPU is shown in
Figure 6. From Table 3 and Figure 6, we can see that there is no
performance gain on a GPU when the number of realizations is
small (<100), but if the number of realizations is large (>1000),
the effect is apparent. We found that hybrid parallelization was up
to 16 times faster than implementation on a CPU.

3.2. MEMORY ACCESS OPTIMIZATION
Next, we evaluated the effect of optimizing the memory access.
The ratios of execution times on a CPU and that on a GPU
are shown in Figure 7; the blue line indicates the acceleration
obtained by optimizing the memory access and using hybrid par-
allelization. Optimizing the memory access resulted in improving
the time by a factor of 3.1; the overall result was 50 times faster
than that on a CPU. In Figure 6, we see that there is less improve-
ment when the number of realizations is small, because the
parallelization has a smaller effect. On the other hand, optimiz-
ing the memory access on a GPU greatly improved performance

Table 3 | Execution times with different numbers of realizations.

Number of Execution time (s) CPU/GPU

realizations
CPU GPU

1 0.001 0.079 0.01

10 0.015 0.086 0.17

100 0.17 0.160 1.06

1000 1.91 0.276 6.92

5000 14.01 1.096 12.78

10,000 35.05 2.235 15.68

15,000 52.57 3.275 16.05

20,000 70.10 4.344 16.14

25,000 87.82 5.490 16.00

30,000 105.15 6.495 16.19

FIGURE 6 | Performance analysis of hybrid parallelization w.r.t. the

number of realizations. This figure shows a plot of the ratios of the
execution times for the decay dimerization model (Table 2) on a CPU(Core
i7 2.80 GHz with 12 GB of memory) and on a GPU (NVIDIA Tesla C1060) as
the vertical axis, and the number of realizations as the horizontal axis. With
hybrid parallelization and for greater than 1000 realizations, the process is
up to 16 times faster than on a CPU.

Frontiers in Physiology | Systems Biology February 2015 | Volume 6 | Article 42 | 6

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

FIGURE 7 | Performance analysis of memory access optimization w.r.t.

the number of realizations. This figure shows a plot of the ratios of the
execution times for the decay dimerization model (Table 2) on a CPU (Core
i7 2.80 GHz with 12 GB of memory) and on a GPU (NVIDIA Tesla C1060) as
the vertical axis, and the number of realizations as the horizontal axis. The
blue and green lines represent the acceleration obtained by memory access
optimization with hybrid and coarse-grained parallelization, respectively.
Applying memory access optimization improved performance by a factor of
3.1; this was 50 times faster than on a CPU. Memory access optimization
with coarse-grained parallelization achieved an even greater improvement
than that of hybrid parallelization (it was 60 times faster than on a CPU).

when there was a large number of realizations. This result sug-
gests that the memory access on a GPU is a bottleneck; thus, it is
essential to profile the access pattern of the code and optimize the
data location and structure.

The green line in Figure 7 indicates the acceleration obtained
by optimizing the memory access and using coarse-grained par-
allelization. Interestingly, optimizing the memory access had a
greater impact when using coarse-grained parallelization than
when using hybrid parallelization; its execution was 60 times
faster than on a CPU. This may be because coarse-grained par-
allelization requires less synchronization between the threads
than does hybrid parallelization, and thus the threads may be
executed more efficiently. We also note that coarse-grained par-
allelization requires relatively simple memory access compared to
that required by hybrid parallelization, and this is advantageous.
Although hybrid parallelization may have the greatest advan-
tage for huge models with very large numbers of reactions, we
decided to implement other acceleration methods for use with
coarse-grained parallelization.

3.3. REDUCTION OF DATA TRANSFER TIME
In addition to parallelization and memory access optimization,
we evaluated the improvement in performance achieved by the
reduction of the time to transfer data. The execution times of
10,240 realizations with different methods of optimizing the data
transfer (n-way overlap) is shown in Table 4, and Figure 8 shows
the ratio of the execution times on a CPU and a GPU, with
four-way overlapped data transfer. Note that the total execu-
tion time when there was no overlap (0.67 s; Table 4) is about
one third that for 10,000 realizations (2.235 s; Table 3). This
is due to the optimization of memory access, as described in
Section 3.2.

Table 4 | Execution times for 10,240 realizations with different

methods of optimizing data transfer.

Kernel (s) Data transfer (s) Total execution

time (s)

No overlap 0.22 0.15 0.67

Two-way overlap 0.22 0.08 0.59

Four-way overlap 0.22 0.04 0.45

FIGURE 8 | Analysis of the reduction of the data transfer time achieved

by four-way overlap w.r.t. number of realizations. This figure shows a
plot of the ratios of the execution times for the decay dimerization model
(Table 2) on a CPU (Core i7 2.80 GHz with 12 GB of memory) and on a GPU
(NVIDIA Tesla C1060) as the vertical axis, and the number of realizations as
the horizontal axis. Applying the asynchronous data transfer scheme
resulted in a further improvement by a factor of 1.5; the result was about 90
times faster than on a CPU.

From Figure 8, we see that this implementation has a further
improvement by a factor of 1.5 (this is about 90 times faster
than on a CPU). The reduction in the data transfer time was
motivated by noting that this consumed 25% of the execution
time in our prototype implementation, as shown in Table 1. By
implementing an asynchronous data transfer scheme, we reduced
the data transfer time, to 50% and 25% of the original time
for two-way and four-way overlap, respectively (see Table 4);
this resulted in an improvement in performance by a factor
of 1.5.

3.4. DATA COMPRESSION
As described in Section 2.6, using CRS to compress the stoi-
chiometry matrix markedly reduced the memory footprint of the
GPU implementation. To analyze the effect of this on the exe-
cution time, we created some sample models of various sizes.
Each sample model consisted of several units of a single-gene
production-reduction submodel. As an example, such a sub-
model consisting of two molecular species and two reactions is
as follows:

G
c5→ G + P (4)

P
c6→ 0 (5)

www.frontiersin.org February 2015 | Volume 6 | Article 42 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

For example, if a model consists of four independent single-gene
production-reduction submodels, the model will contain eight
molecular species and eight reactions. Because only one or two
molecular species are involved in each reaction in each submodel,
the stoichiometry matrix of the combined model will be sparse.
Thus, we can expect that the use of CRS will have a notable effect.
We created six models with different numbers of reactions (in the
range of 8–256).

The execution times of 10,240 realizations with the different
sizes of model are shown in Table 5, and the ratios of the exe-
cution times on a CPU and a GPU are shown in Figure 9. As
a result of compressing the stoichiometry matrix, the stochastic
simulation for a model with eight reactions is about 130 times
faster on a GPU than on a CPU. This improvement was due to
the implementation of CRS, and it was because of the sparseness
of the data. In the previous implementation, it was necessary to
perform a two-dimensional scan of the stoichiometry matrix in
order to determine which molecules should be updated; with the

Table 5 | Execution times of 10,240 realizations with various sizes of

model.

Number of reactions

(model size)

Execution time (s) CPU/GPU

CPU GPU

8 58 0.45 128.89

16 70 0.59 118.64

32 98 0.85 115.29

64 142 1.54 92.21

128 237 2.88 82.29

256 406 5.52 73.55

FIGURE 9 | Performance analysis of data compression w.r.t. the

number of reactions. This figure shows a plot of the ratios of the
execution times of 10,240 realization of a single-gene production-reduction
model on a CPU (Core i7 2.80 GHz with 12 GB of memory) and on a GPU
(NVIDIA Tesla C1060) as the vertical axis, and the number of reactions
(model size) as the horizontal axis. Compression of the stoichiometry matrix
resulted in a further improvement by a factor of 1.4 for a model with eight
reactions; this was about 130 times faster than on a CPU. On the other
hand, the execution time on a GPU was notably longer for larger models
(>64 reactions).

CRS, the molecular information is stored as an index; thus, it is
not necessary to scan the matrix, and the number of molecules
can be updated with a minimal computational cost (Figure 5).

Although this implementation resulted in a drastic improve-
ment in performance, the execution time on a GPU was notably
longer for larger models (> 64 reactions), as shown in Figure 9.
This is not caused by the firing of the reaction (step 7, Section 2.1),
but by the calculation of the propensity function and the selection
of the reaction (steps 3, 4, and 6 Section 2.1); this is because the
execution time of these procedures increases with an increase in
the number of reactions.

We now consider the effect of CRS on the memory footprint
of the stoichiometry matrix. Assume that a model consists of r
reactions and m molecular species; the size of the stoichiometry
matrix Ssm will be

Ssm = m × r (6)

and after using CRS, the size of the new stoichiometry matrix Scrs

will be
Scrs = r + 2α (7)

where α is the total number of elements in the CRS. Assuming
m̄ molecules are involved, on average, as reactants or products
of each reaction, α will satisfy α = m̄ · r; thus the size of the
modified matrix is as follows:

Scrs = (2m̄ + 1) × r (8)

From Equations (6, 8), the difference in the memory footprint
depends on the values of m and m̄. In the direct method (step 3,
Section 2.1), m̄ will be a value between zero and two; CRS will
result in a smaller memory footprint even with a small model.

4. DISCUSSION
In this section, we will summarize and discuss the results of our
implementation.

Table 6 summarizes the acceleration methods implemented in
this work and the ratios of the execution times compared with
the implementation of the direct method on a CPU (CPU/GPU).
From Table 6, it can be seen that the memory access optimiza-
tion resulted in the greatest improvement in the performance,
followed by the asynchronous data transfer and data compres-
sion. Although a GPU has the potential to be used for high-
performance computing, its computational power cannot be
harnessed by simply parallelizing an algorithm; this is because the

Table 6 | Summary of accelerated stochastic simulator and its various

acceleration methods.

Methods Parallelization Acceleration

algorithm (CPU/GPU)

Parallelization of the direct method Hybrid 16

Memory access optimization Hybrid 50

Coarse-grained 60

Asynchronous data transfer Coarse-grained 90

Data compression Coarse-grained 130

Frontiers in Physiology | Systems Biology February 2015 | Volume 6 | Article 42 | 8

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

way in which data is accessed during execution is a critical fac-
tor in GPU computing. We demonstrated this with our results in
Section 3.2.

The primary feature that differentiates a discrete stochastic
simulation from a continuous simulation (such as numerical inte-
gration of a differential equation) is the use of random numbers.
When numerically integrating a differential equation, it is obvi-
ous that, given identical initial conditions, each simulation will
produce identical results. On the other hand, stochastic simula-
tions require multiple realizations, the results of each one being
determined by random numbers. Parallelization on a GPU is
well-suited for this kind of simulation, because a simulator can
share one model for multiple realizations, which reduces the
memory footprint. Choosing the best parallelization algorithm
from fine-grained, coarse-grained, and hybrid parallelization is
another important need with GPU computing. In principle,
coarse-grained parallelization is the most efficient method for
multiple realizations, because it only requires infrequent synchro-
nization between the threads. For the problem that we considered
in this study, multiple realizations using one model was a require-
ment, so parallelizing one realization (fine-grained paralleliza-
tion) was not as effective as parallelizing multiple realizations
(coarse-grained parallelization), because of the need for frequent
synchronization. This was also shown in Section 3.2. Fine-grained
parallelization has the potential to accelerate a simulation when
an objective model contains a large number of reactions and/or
a large number of molecular species, which result in high com-
putational cost for the calculation of the propensity functions.
Although we did not consider fine-grained parallelization after
Section 3.2, preliminary results were shown in Section 3.4. It was
shown that the performance improvement obtained by coarse-
grained parallelization will decrease logarithmically with the
model size, as shown in Figure 9. This result suggests that it might
be possible to solve this problem by calculating the propensity
function using fine-grained parallelization. The efficiency of par-
allelization can be measured by the occupancy’, which is defined
to be the number of active thread groups divided by the max-
imum number of thread groups. If there is a synchronization
between threads during a simulation, some preceding threads will
be required to wait until the remaining threads reach the syn-
chronization point. The number of waiting threads will decrease
the occupancy, because they will be included in the denominator.
The occupancy depends on the particular problem and the par-
allelization method, but in principle, hybrid parallelization can
lead to lower occupancy than that of coarse-grained paralleliza-
tion. Applying hybrid parallelization is challenging, since high
occupancy must be maintained.

Functionality for storing all of the time course data during a
realization is an essential feature for understanding the dynamics
of a model. We note that this functionality is found in most exist-
ing software tools that support stochastic simulation (Ramsey
et al., 2005; Hoops et al., 2006; Mauch and Stalzer, 2011; Sanft
et al., 2011). An existing proposal for the acceleration of the direct
method using a GPU (Li and Petzold, 2010) performs faster than
our method (speedups by a factor of about 200), but it lacks
the functionality for storing all the time course data, which not
only consumes memory but also increases execution time. Our

intent was to add functionality to store the time course data while
improving performance. We used an asynchronous data trans-
fer scheme so that the time course data would be transferred
during the simulation and thus decrease the data transfer time
(Figure 8). Overall, we achieved a speedup by a factor of 130
compared with a sequential realization on a CPU.

Our evaluation was performed on an NVIDIA Tesla C1060,
which has 240 arithmetic units (cores) and 4 GB of memory.
The peak performance of the C1060 is 933 Gflops in single-
precision floating point format. Several GPUs have been released
by NVIDIA for the purpose of GPGPU. For example, the NVIDIA
Tesla K40, which is a high-end product with 2880 cores and 12 GB
of memory, provides 4.29 Tflops at peak single-precision floating-
point performance. By implementing our method on a high-end
GPU, we would expect a greater improvement in performance.
The performance is not affected only by the number of flops; cur-
rent GPUs have a higher compute capability (3.5) compared with
the C1060 (1.3). The difference in compute capability directly
affects the memory access performance. In principle, higher com-
pute capability will place a lower penalty on uncoalesced access
and looser restrictions on coalesced access and bank conflicts.
Benchmarking on a GPU with higher compute capability might
show different results for improvements when using different
acceleration methods.

In this study, we applied parallelization and several accelera-
tion methods to the direct method, which is the most straight-
forward way to implement the SSA of Gillespie. As described in
Section 2.1, there are several algorithms for the SSA, and the
use of simulation algorithms can improve the total throughput.
The next targets for improved implementation are the optimized
direct method (Cao et al., 2004) and the sorting direct method
(McCollum et al., 2006). The optimized direct method optimizes
the order of

∑n − 1
i = 0 ai (in step 6, Section 2.1) to reduce the calcula-

tion time. The sorting direct method is another improvement of
the direct method. The difference between the optimized direct
method and the sorting direct method is a pre-simulation step,
in which the optimized direct method sorts the propensity func-
tions. Since both algorithms are based on the direct method,
extending our implementation to them is expected to have a
notable effect on parallelization.

In this work, we have designed and implemented several par-
allelization algorithms and acceleration methods for the SSA. We
have included a time course recording function while accelerating
SSA simulations by a factor of up to 130. GPUs are known to be
a cost-effective and power-saving solution for high-performance
computing. With the added functionality for recording the time
course and the ability to import a model that is described in
SBML, we hope that our implementation will contribute to the
field of systems biology, in which modeling and simulation play
important roles in understanding complex biological systems.

AUTHOR CONTRIBUTIONS
AF conceived of the study and coordinated the project. KS
designed and implemented the majority of the source code; KH
and AF participated in the design of the acceleration scheme.
NH and AF supervised the project. KS, NH, and AF wrote the
manuscript. All authors read and approved the final manuscript.

www.frontiersin.org February 2015 | Volume 6 | Article 42 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive

Sumiyoshi et al. Acceleration of stochastic biochemical simulation

FUNDING
This work was supported by JSPS KAKENHI Grant Numbers
23136513 and 24300112.

ACKNOWLEDGMENTS
We are deeply grateful to Mr. Nobuyuki Ohta (Keio University),
Mr. Kota Mashimo (Keio University) and Mr. Akito Tabira (Keio
University) for our fruitful discussions.

REFERENCES
Arkin, A., Ross, J., and McAdams, H. (1998). Stochastic kinetic analysis of devel-

opmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics
149, 1633–1648.

Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka, M. (2008). LibSBML: an
API library for SBML. Bioinformatics 24, 880–881. doi: 10.1093/bioinformat-
ics/btn051

Cao, Y., Li, H., and Petzold, L. (2004). Efficient formulation of the stochastic simu-
lation algorithm for chemically reacting systems. J. Chem. Phys. 121, 4059–4067.
doi: 10.1063/1.1778376

Gibson, M., and Bruck, J. (2000). Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889.
doi: 10.1021/jp993732q

Gillespie, D. (1976). A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434. doi:
10.1016/0021-9991(76)90041-3

Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem. 81, 2340–2361. doi: 10.1021/j100540a008

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., et al. (2006).
COPASI–a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074. doi:
10.1093/bioinformatics/btl485

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al.
(2003). The systems biology markup language (SBML): a medium for rep-
resentation and exchange of biochemical network models. Bioinformatics 19,
524–531. doi: 10.1093/bioinformatics/btg015

Hucka, M., Finney, A., Bornstein, B. J., Keating, S. M., Shapiro, B. E., Matthews, J.,
et al. (2004). Evolving a lingua franca and associated software infrastructure for
computational systems biology: the Systems Biology Markup Language (SBML)
project. Syst. Biol. 1, 41–53. doi: 10.1049/sb:20045008

Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662–1664. doi:
10.1126/science.1069492

Komarov, I., and D’Souza, R. M. (2012). Accelerating the gillespie exact stochas-
tic simulation algorithm using hybrid parallel execution on graphics processing
units. PLoS ONE 7:e46693. doi: 10.1371/journal.pone.0046693

Li, H., and Petzold, L. (2010). Efficient parallelization of the stochastic simulation
algorithm for chemically reacting systems on the graphics processing unit. Int.
J. High Perform. Comput. Appl. 24, 107. doi: 10.1177/1094342009106066

Matsumoto, M., and Nishimura, T. (1998). Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Trans. Model. Comput. Simul. 8, 3–30. doi: 10.1145/272991.
272995

Mauch, S., and Stalzer, M. (2011). Efficient formulations for exact stochastic simu-
lation of chemical systems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 27–35.
doi: 10.1109/TCBB.2009.47

McAdams, H. H., and Arkin, A. (1997). Stochastic mechanisms in gene expression.
Proc. Natl. Acad. Sci. U.S.A. 94, 814–819. doi: 10.1073/pnas.94.3.814

McCollum, J., Peterson, G., Cox, C., Simpson, M., and Samatova, N. (2006).
The sorting direct method for stochastic simulation of biochemical systems
with varying reaction execution behavior. Comput. Biol. Chem. 30, 39–49. doi:
10.1016/j.compbiolchem.2005.10.007

Nvidia, C. (2014). NVIDIA CUDA Programming Guide (version 6.5). Santa Clara,
CA: NVIDIA Corporation. Available online at: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A. E.,
et al. (2007). A survey of general-purpose computation on graphics hardware.
Eurographics 26, 80–113. doi: 10.1111/j.1467-8659.2007.01012.x

Podlozhnyuk, V. (2007). Parallel Mersenne Twister. Santa Clara, CA:
NVIDIA Corporation. Available online at: http://developer.download.
nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/MersenneTwister/doc/
MersenneTwister.pdf

Ramsey, S., Orrell, D., and Bolouri, H. (2005). Dizzy: stochastic simulation of large-
scale genetic regulatory networks. J. Bioinform. Comput. Biol. 3, 415–436. doi:
10.1142/S0219720005001132

Sanft, K. R., Wu, S., Roh, M., Fu, J., Lim, R. K., and Petzold, L. R. (2011). Stochkit2:
software for discrete stochastic simulation of biochemical systems with events.
Bioinformatics 27, 2457–2458. doi: 10.1093/bioinformatics/btr401

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 16 October 2014; accepted: 29 January 2015; published online: 13 February
2015.
Citation: Sumiyoshi K, Hirata K, Hiroi N and Funahashi A (2015) Acceleration of
discrete stochastic biochemical simulation using GPGPU. Front. Physiol. 6:42. doi:
10.3389/fphys.2015.00042
This article was submitted to Systems Biology, a section of the journal Frontiers in
Physiology.
Copyright © 2015 Sumiyoshi, Hirata, Hiroi and Funahashi. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Physiology | Systems Biology February 2015 | Volume 6 | Article 42 | 10

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/MersenneTwister/doc/MersenneTwister.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/MersenneTwister/doc/MersenneTwister.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/MersenneTwister/doc/MersenneTwister.pdf
http://dx.doi.org/10.3389/fphys.2015.00042
http://dx.doi.org/10.3389/fphys.2015.00042
http://dx.doi.org/10.3389/fphys.2015.00042
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

	Acceleration of discrete stochastic biochemical simulation using GPGPU
	Introduction
	Materials and Methods
	The SSA
	Random Number Generation
	Parallelization of the Direct Method
	Memory Access Optimization on a GPU
	Reduction of the Time to Transfer Data Between the GPU and the Host Computer
	Data Compression
	Importing the Model

	Results
	Hybrid Parallelization
	Memory Access Optimization
	Reduction of Data Transfer Time
	Data Compression

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

