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Microarray is one of the most powerful detection systems with multiplexing and high throughput capability. It has significant
potential as a versatile biosensing platform for environmental monitoring, pathogen detection, medical therapeutics, and drug
screening to name a few. To date, however, microarray applications are still limited to preliminary screening of genome-scale
transcription profiling or gene ontology analysis. Expanding the utility of microarrays as a detection tool for various biological
and biomedical applications requires information about performance such as the limits of detection and quantification, which are
considered as an essential information to decide the detection sensitivity of sensing devices. Here we present a calibration design
that integrates detection limit theory and linear dynamic range to obtain a performance index of microarray detection platform
using oligonucleotide arrays as a model system. Two different types of limits of detection and quantification are proposed by the
prediction or tolerance interval for two common cyanine fluorescence dyes, Cy3 and Cy5. Besides oligonucleotide, the proposed
method can be generalized to other microarray formats with various biomolecules such as complementary DNA, protein, peptide,
carbohydrate, tissue, or other small biomolecules. Also, it can be easily applied to other fluorescence dyes for further dye chemistry
improvement.

1. Introduction

Microarray detection platforms have been widely applied in
various research fields of molecular biology. A microarray is
one of the most powerful and successful detection platforms
with its high throughput and multiplexing capability. The
underlying principle of a microarray detection strategy is to
estimate the number or amount of target by the interaction
between immobilized probe on solid surface (e.g., glass slide
or nylon membrane) and fluorescently labeled target. Since
the first complementary DNA (cDNA) microarray platform
was introduced [1], various microarray platforms have been
explored, according to the nature of probes, such as oligonu-
cleotide, protein, peptide, carbohydrate, tissue, or other small

molecules [2–7]. However, despite the promise of microar-
rays as versatile biodetection platforms, most applications of
microarray have been limited to genome-scale gene expres-
sion analysis, such as a preliminary screening method to
investigate relative expression level of target genes or gene
ontology analysis based on the accumulated amount of vari-
ous genomedata and their functional annotation information
[8]. Hence, there is much room to expand the utility of
microarray to various biological and biomedical applications
[9], including environmental monitoring, pathogen detec-
tion, medical therapeutics, and drug screening, among many
others, realizing the full potential of microarray.

To determine microarray’s suitability as a biosensing tool
for a specific application, detection sensitivity information is
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a critical performance index and the detection limit is one of
important information, which is commonly required in the
specification information of sensing devices. The detection
limit is defined as “the smallest amount or concentration of
particular substance that can be reliably detected in a given
type of sample ormediumby a specificmeasurement process”
[10]. There are two types of analytical limits: a limit of
detection (LOD) and a limit of quantification (LOQ). LOD
is the minimum amount of analyte to determine its presence
or absence in the sample, and LOQ is the smallest amount
of analyte to be reliably estimated by the signal response
value from the specific equipment or an assay procedure [11].
LOD is defined as the smallest concentration or amount that
can be determined to be statistically different from a blank
at 99% of confidence level [11]. Thus, the response is rarely
indistinguishable from a blank at true LOD (e.g., 1%). LOD
is typically determined with the data, at which the signal
to noise ratio (SNR) is greater than 3 [10] and is generally
accepted to be 10 times of standard deviation of the blank
measure [12]. To date, there is no LOD or LOQ reported
in microarray detection system. The detection sensitivity in
the microarray experiment procedure has been reported as a
number of transcripts per cell, when 1–5𝜇g of target was used
[13]. However, more precise LOD and LOQ are necessary
to expand microarray applications as a detection tool in
various research fields. As a basic index, the LOD and LOQof
microarrays are required to be defined as the smallest amount
of fluorophores that can be reliably detected in a given type of
printing and detection condition.

In this study, we apply the detection limit theory and
linear dynamic range to investigate the LOD and LOQ in
microarray detection platform using a design for calibration
with a wide spectrum of probe concentrations to estimate the
limits. Also, multiple scanning was used to extend dynamic
linear range [14, 15]. The detection limit theory is the exper-
imental and analytical strategy to investigate LOD or LOQ
of a specific instrument in a specific condition, using linear
regression approach with statistical intervals (e.g., prediction
or tolerance interval). The underlying assumption of the
detection limit theory is that there should be a linear rela-
tionship between an amount of analyte (i.e., concentration)
and its measured signal (i.e., response), and the smallest
amount of analyte for detection and quantification can be
statistically estimated by calibrating the experimental design
and the relationship between known analyte amount and its
response. Hubaux proposed the detection limit theory, using
a spiked concentration and its prediction intervals [16]. The
prediction interval is a statistical interval, which provides
(1 − 𝛼)100% confidence of the next single observation at the
true analyte concentration, whereas the confidence interval
provides the reliability of an estimate with the range that
includes the true value at a given confidence level. It was
expected that the prediction interval could provide better
estimation for the next single observation than the confidence
interval. However, the nature of signals from actual exper-
iments showed heteroskedastic trend, which means that
the random variables have different variances according
to their concentrations. Since the preliminary assumption
of the ordinary least squares (OLS) is constant variance,

it could not be applied to estimate LOD and LOQ. Later
[17], Oppenheimer et al. proposed weighted least squares
(WLS) with one-sided prediction interval to overcome the
weakness of the OLS in practical experiment conditions.
The WLS can be used to optimize the regression parameter
estimation by considering proper amount of influence at each
data point, that is, the more influence from the more reliable
and precise data, by incorporating weights, which indicate
the precision of the information of each data point. The
inverse standard deviation or the inverse variance at a
given concentration has been commonly used as a weight.
Currie further improved the Oppenheimer’s detection limit
theory using linear model of standard deviation from the
spiked concentration to estimate the accurate weight using
standard deviation modeling [10]. Recently, Zorn et al. used
prediction and tolerance intervals to assess the detection
limits in sample population [11, 18]. Both statistical intervals
have their own advantages. Tolerance intervals are wider
and provide larger estimates of LOD and LOQ compared
to equivalent prediction intervals. However, considering the
estimation procedure of LOD and LOQ, which is to infer
an unknown value from the known spiked samples with
high degree of confidence, tolerance intervals could be better
suited to the common specification information of detection
tool provided by themanufacturer. Finally, to obtain precisely
estimated detection limits, linear regression is a critical tool,
and they should be calculated from known data in the
linear range. LOD and LOQ based on the detection limit
theory using linear regression with statistical intervals have
been applied to various detection systems, for example, mass
spectrometer for proteomic quantification [19]. However,
microarray is different from other detection systems because
of its expendable linear dynamic range by the adjustment of
detection sensitivity. The linear dynamic range is the data
range that the detector can discriminate the responses from
the different concentration of a given compounds and it
is linearly proportional to its concentration. To implement
detection limit theory into estimation of LOD and LOQ
in microarray detection platform, the dataset within linear
dynamic range should be used. Here, we propose a new
approach to determine LOD and LOQ in a photomultiplier-
tube- (PMT-) based detection system and its sensing capa-
bility by combining the two analytical concepts, that is,
linear dynamic range and detection limit theory based upon
prediction and tolerance intervals using WLS. With the
proposed approach, the LOD and LOQ of the most common
cyanine fluorescence dyes, Cy3 and Cy5, in a microarray
detection systemwere presented using oligonucleotide arrays
as a model system.

2. Materials and Methods

2.1. Microarray Printing, Hybridization, and Scanning. The
100-base oligonucleotide with 5-amine modification (5-
TAA GTT CTT CAT ACT ATA TGT GTT CGA TGA ATT
TAG TGG GTC TTC CTA AAC GTT CCT TCC ATG
TTA TTG TGT TCG ATC CCA CTA GCT CCA CTT CTT
CGA C-3) was purchased from Integrated DNA Technology
Inc., IA, and serial dilutions were made with printing buffer
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(50mM sodium phosphate (pH 8.5)), giving a concentra-
tion range of 0 to 0.3 𝜇g/𝜇L. The 100-base oligonucleotide
sequence was designed to avoid a cross-hybridization and
had a minimum secondary structure according to our pre-
viously established method [20–25]. The noncrosshybridiz-
ing (NCH) sequence is thermodynamically unfavorable for
hybridization to any other sequence except for their comple-
mentary strands. They were immobilized onto the CodeLink
activatedmicroarray slide (AmershamBiosciencesCorp.,NJ)
with 10 technical replications of each concentration according
to themanufacturer’s instruction usingMicroGridIImicroar-
ray printing system and BioRobotics MicroSpot 2500 pins
(Genomic Solutions, MI) at 40% relative humidity. After
printing, a 40-base 3 complementary oligonucleotide (5-
GTC GAA GAA GTG GAG CTA GTG GGA TCG AAC
ACA ATA ACA T-3), which was modified with Cy3- or
Cy5-fluorophore at its 5 end, was hybridized at the room
temperature. After hybridization, the array was scanned at
eight different PMTG settings in the range of 300 to 1,000
using GenePix 4000B (Axon Instruments, CA), and its signal
intensity data was acquired with GenePix Pro 6.0 microarray
image analysis software (Axon Instruments, CA) with 10𝜇m
of pixel size as detection sensitivity (Figure 1). The physically
detected features that showed irregular spot morphology or
unreasonable signal intensity were removed from the data
by visual inspection. For the samples used in this study, 8
datasets were acquired from each identical sample based on
the detection sensitivity. Each dataset had different dynamic
ranges, that is, the range of initial printing concentration
(IPC) for linear background-subtracted intensity (BSI). At
the high detection sensitivity, high IPC features showed
saturatedBSI values.However, at the lowdetection sensitivity,
low IPC features did not show significant BSI value for the
data analysis. To obtain the data in the dynamic range, the
two criteria, that is, feature saturation and SNR, were applied
to the raw dataset. The features with saturation rate ̸= 0 and
its SNR <3 were excluded from the raw dataset.

2.2. Data Analysis and Computations. The BSI, calculated by
subtracting median background from total intensity divided
by the number of pixels in feature, was used in the following
statistical data analysis. Statistical analyses were performed
using statistical package R (version 2.10.1) [26] with macros
written to facilitate regression analyses and calculation. The
LOD and LOQ were computed based on prediction and
tolerance intervals using WLS to accommodate nonconstant
variance of BSI, that is, significant increases of the variance of
BSI as IPC increased.

The LOD and LOQ based on the weighted prediction
intervals (one-sided) are estimated by [11, 18]
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The LODandLOQbased on theweighted tolerance inter-
val are estimated by [11, 18]
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where 𝑁(𝑃) is the two-sided 𝑃% percentile of the standard
normal distribution and

𝛽

𝜒
2
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is the (𝛽)100% percentile of

the 𝜒2 distribution with 𝑛 − 𝑝 − 2 degrees of the freedom.

3. Results and Discussion

3.1. Data Filtering and Dynamic Range. There are two impor-
tant data filtering parameters, pixel saturation rate (SAT) and
SNR, to evaluate the feature signal quality and reliability. The
first parameter is the pixel saturation within feature. Satu-
rated pixel is caused by the physical limitation of microar-
ray scanner in analog-to-digital image converting process
and represents a status that the detected number of photons
exceeds the maximum number PMT can process. At the
saturated pixel, measured intensity is underestimated than its
true value. The other parameter is the SNR, which has been
used in various signal-detection disciplines as a criterion to
determine its signal quality and reliability [27]. Pixel satura-
tion leads to detection of the low signal data, which usually
has insufficient SNR value at low PMT Gain (PMTG), and
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(a) (b) (c)

(d) (e) (f)

Figure 1: Representative microarray spot images with two common cyanine fluorescence dyes, Cy3 and Cy5, in this study. Cy3 ((a)–(c)) and
Cy5 ((d)–(f)) features were scanned at various photonmultiplier tube gain (PMTG) settings: (a) PMTG 300, (b) PMTG 400, (c) PMTG 600,
(d) PMTG 300, (e) PMTG 600, and (f) PMTG 800.

can show reasonable signal response value at high PMTG.
The bottleneck of this approach is that high signal feature
showed saturated pixel within its features, and this could
cause the underestimation of its intrinsic signal value. Dudley
et al. proposed linear regression strategy to extend the linear
dynamic range of signal intensity by multiple scanning in
microarray [14]. This is a useful and cost-efficient method
to extract maximal information from the given experiment
condition [15]. In the data analysis of this paper, raw data was
processed by linear regression algorithm for extending linear
dynamic range. It should be noted that physically defected
featureswere excluded from the analysis, such as featureswith
irregular or unexpected morphology, determined by visual
inspections, that is, 115 defected features from Cy3 dataset
and 49 defected features from Cy5 dataset, when total feature
number of each is 560.

The saturated-feature-corrected BSI values were plotted
to IPC (Figure 2). Overall data trend showed sigmoid type
and there are two clear breakpoints, 0.1𝜇g/𝜇L (green dotted
line in Figure 2(a)) and 2 × 10−4 𝜇g/𝜇L (green dotted line
in Figure 2(b)) of IPC. The first breakpoint was detected at
0.1 𝜇g/𝜇L of IPC using Chow test [28]. In high IPC range, it is
found that BSI linearly increases up to 0.1 𝜇g/𝜇L, at which a
structural break is presented. In the microarray data analysis
and interpretation, signal intensity (i.e., BSI) correlated to

the number of fluorophores, which is incorporated into
hybridized target. Thus, the density of immobilized probe
strands is very important in order to increase the signal inten-
sity. However, too high probe density can lead to decrease
of hybridization rate and cannot produce reliable signal
response, which is proportional to target amount to entire
target population. Strey et al. showed that double stranded
DNA molecules have strong repulsions between neighbors
according to decrease of the intermolecular distance [29]. To
obtain themaximum signal response and extend the dynamic
linear range, the immobilization of maximal number of
probe in the defined area is essential. Under the proposed
experiment condition, 0.1𝜇g/𝜇L of IPC (green dotted line in
Figure 2(a)) could be considered as an optimal probe density
for the maximum target hybridization rate and its signal
response. In low IPC range, the second breakpoint was found
at 2 × 10−4 𝜇g/𝜇L of IPC, equivalent to 242 fluorophores/𝜇m2,
(green dotted line in Figure 2(b)) because the delivery volume
of each feature was around 700 pL with diameter of around
120𝜇m [30]. There was clear difference between signal from
2× 10−4 𝜇g/𝜇L and features smaller than that in bothCy3- and
Cy5-fluorophore dataset (Figures 2(c) and 2(d)). The BSI of
the low-density features, smaller than 242 fluorophores/𝜇m2,
shows background-equivalent signals. The significance test
with 95% confidence level was conducted, and the result
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Figure 2: Data analyses. (a) Relationship between initial probe concentration (IPC) and background-subtracted signal intensity (BSI) in Cy3-
(black circle) and Cy5-fluorophore (red circle) dataset. (b) Log-scale plot of (a) to investigate low IPC ranges. Box plots to show significant
differences between BSI from low IPC (e.g., <2× 10−4 of IPC) and high IPC in Cy3 (c) and Cy5 (d) dataset.

showed that there was significant difference at 2× 10−4 𝜇g/𝜇L
as IPC to background-equivalent signals. In addition, the
SNR values of low IPC features (lower than 2× 10−4 𝜇g/𝜇L)
are lower than 3, even at highPMTG.At low sensitivity setting
(PMTG 300 for Cy3 and PMTG 300 and 400 for Cy5), low
IPC features showed insufficient SNR for the detection. It
was expected that SNR of these features could be over 3 by
increasing PMTG. However, their SNR did not exceed the
SNR of 3 at high PMTG. The features with its IPC between
2× 10−4 𝜇g/𝜇L and 1× 10−3 𝜇g/𝜇L had SNR higher than 3, but
there is no linear trend of increase. These signal responses
could not be included for the LOD calculation because this
calibration design should show linearity between IPC andBSI
and signal responses of these IPC features could not represent
its IPC.This could be caused by the high variations within the
repeated features, which are intrinsic problems of biological
samples as well as the microarray detection system. Hence,
the features, with IPC lower than 1× 10−3 𝜇g/𝜇L and higher
than 0.1 𝜇g/𝜇L, were removed from the further data analysis.

3.2. LOD and LOQ Using WLS Scheme. The detection limit
theory requires response values in linear range and their least-
square linear regression [16]. Features in the linear range
were defined, as described in Section 3.1, and its linearity
through lack-of-fit test was evaluated. As projected, OLS,
which requires constant variance assumption, was shown to
be not suitable for the microarray data analysis according to
the evaluation of the homoscedasticity with the residuals
from OLS (Figures 3(a) and 3(c)). The variability of BSI
increased according to increase of IPC for both Cy3- and
Cy5-fluorophore dataset. The funnel shape openings toward
higher fitted responses (i.e., fitted BSI) in the residual plots
(Figures 3(a) and 3(c)) clearly showedheteroskedastic feature.
On the other hands, the residuals obtained from WLS with
inverse-variance weights removed the feature, indicating that
the fit accommodates the data well (Figures 3(b) and 3(d)).
This justifies the use of WLS for the estimation of LOD
and LOQ using the actual experimental data of microarray
systems, which generally show heteroskedastic trend, that is,
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Figure 3: Residual plots to evaluate the heteroskadecity. Residuals obtained from the ordinary least-square method (OLS) for Cy3 (a) and
for Cy5 (c), and those from the weighted least-square method (WLS) for Cy3 (b) and for Cy5 (d).

the random variables with different variances according to
their concentrations.

In estimating the weights in WLS, it was found that both
linear and quadratic models generated negative estimates of
the standard deviation of a blank.Hence, to avoid the negative
standard deviation, exponential model was used for the
weight specification. Also limit of detection was set as 0 in the
equations for LOD and LOQ to avoid their iterative solutions
since it could be assumed that the limit of detection is small
enough to be 0 [17]. Table 1 summarizes the LOD and LOQ
estimations of Cy3 and Cy5 based on weighted prediction
interval at 99% confidence (i.e., 𝛼 = 𝛽 = 0.01) and weighted
tolerance interval at 99% confidence and 99% coverage (i.e.,
𝛼 = 𝛽 = 0.01 and 𝑃 = 0.99). For both fluorescence
dyes, LOD and LOQ with both prediction and tolerance
interval were placedwithin themeasured dynamic range, that
is, higher than the lowest end of data in the linear range.
However, LOD and LOQ using tolerance intervals showed

wider values than those using prediction intervals. This can
be explained by the wider range of the tolerance intervals
than that of the prediction intervals as reported previously
[11]. Furthermore, Cy3 showed lower LOD and LOQ in both
weighted prediction and tolerance intervals than Cy5. This
implies that Cy3 would be more useful for both qualification
and quantification than Cy5. This could be caused by the
higher quantum yield of Cy3 compared to Cy5 [31]. The
estimated LOD and LOQ should serve as a key index to
characterize fundamental performance of the oligonucleotide
microarray system using the two common fluorescence dyes.

A number of uses of our demonstrated methodology
for LOD and LOQ estimations in this study are readily
envisioned. It could be directly applicable to other types of
labeling dyes, such as Alexa Fluor dyes (Life Technologies,
NY), which becomes available for microarray applications
with high quantum yield and low photobleaching. Also, it
could generalize to estimate the detection limits of different
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Table 1: Limit of detection and quantification (LOD and LOQ, resp.), which were calculated through detection limit theory with prediction
and tolerance interval.

Weighted prediction intervalsa Weighted tolerance intervalsb

LOD LOQ LOD LOQ
Number of fluorophores/𝜇m2

Cy3 13,366 36,606 21,046 42,666
Cy5 16,487 39,680 26,047 46,440
a99% confidence (i.e., 𝛼 = 𝛽 = 0.01).
b99% confidence and 99% coverage (i.e., 𝛼 = 𝛽 = 0.01 and 𝑃 = 0.99).

types of microarray systems, with various probes and targets
including DNA, RNA, peptide, protein, carbohydrate, tissue,
and other small molecules. Detection limits are considered
key parameters to determine detection capability and appli-
cability of biosensing tools. Ready assessment of ranges of
detection limits would facilitate not only designs and analyses
of experiments with microarray as well as other related
biosensing platforms for use in specific applications but also
developments of quantitative as well as qualitative models
of the system. Hence, the methodology presented in this
study would become an important tool to assess the detection
capability of microarray and other related biosensing plat-
forms, realizing their excellent potential as high throughput,
multicolor, and multiplexing biosensing devices for various
biological and biomedical applications.
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