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Abstract

Background—Infantile hemangioma (IH) is the most common tumor of infancy. The first-line 

therapy for IH is propranolol, a non-selective β-adrenergic receptor antagonist. However, 

mechanisms for the therapeutic effect of propranolol and regrowth of IH following cessation of 

treatment in some cases are not clear. We have recently shown that IH arises from multipotent 

stem cells. Whether IH stem cells are responsive to propranolol and are selectively targeted is 

unknown, and is the focus of this study.

Methods—IH stem cells were exposed to propranolol and assayed for cellular and molecular 

alterations. We used endothelial cells (ECs) as controls and bone marrow-mesenchymal progenitor 

cells (bm-MPCs) as normal stem/progenitor counterparts to determine selectivity.

Results—Our results show that propranolol significantly reduced IH stem cell growth but failed 

to induce caspase-3 activation. Normal bm-MPCs and mature ECs showed maintained or 

increased caspase-3 activation and significantly reduced cyclin-D1 levels. We further show that IH 

stem cells may escape apoptosis by inducing anti-apoptotic pathways.

Conclusions—This study reveals that propranolol does not induce apoptosis in IH stem cells, 

which is in contrast to ECs. Escape from apoptosis in IH stem cells may involve induction of anti-

apoptotic pathways.

Introduction

Infantile hemangioma (IH) is a benign vascular tumor affecting 1 out of 100 newborns (1,2). 

IH undergoes three developmental phases: a proliferative phase, where the tumour grows 

rapidly and comprises undifferentiated cells during the first year of life; an involuting phase, 

where tumor growth slows and vessels become prominent; and an involuted phase, where 

fibrofatty tissue replaces much of the tumor mass (3). A unique feature only seen in IH is 
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that the tumor follows this natural course and spontaneously regresses. Hence, most IH pose 

no serious threat or complications to the infant; however, in problematic cases that interfere 

with health and normal function due to the size or location of the tumor, patients may 

require immediate treatment (4). For example, obstructive IH in organs, such as eyes or 

airway, require immediate attention because the tumor may inhibit normal development and 

function of the organ to impair the infant permanently (3,5).

Current treatments for IH include surgery when necessary and use of corticosteroids, despite 

the severe side effects when taken for extended periods at high doses. Recently, propranolol 

was discovered to be an effective treatment for IH (6), with higher efficacy and minimal side 

effects when compared to corticosteroid use (7). Propranolol is a non-selective β-adrenergic 

receptor antagonist that has been widely used for complications such as angina pectoris, 

myocardial infarction, and hypertension. Although the mechanism of therapeutic effect of 

propranolol is unknown, theories suggest vasoconstriction, endothelial cell apoptosis, and 

inhibition of angiogenesis by modulating vascular endothelial growth factors (8–11). In fact, 

a number of recent studies have shown that propranolol treatment of normal endothelial cells 

as well as endothelial cells derived from IH specimens causes activation of caspase-3 

(12,13). Caspase-3 is an important regulator of cellular apoptosis and is recognized as an 

indispensable death protease for apoptotic chromatin condensation and DNA fragmentation 

in all cell types examined (reviewed in (14)). In addition to inducing apoptosis, propranolol 

also decreases the expression of various cyclins in endothelial cell, thus disrupting cell cycle 

progression and growth (12).

A puzzling finding from a few propranolol treatment studies in patients is that some IHs 

regrow upon cessation of propranolol treatment (15–17). This has been attributed to early 

treatment withdrawal and/or a long proliferating phase of IH. Previously, we have shown 

that IH arises from multipotential stem cells (termed hemSCs) (18). HemSCs, isolated based 

on expression of stem cell antigen CD133, form glucose transporter-1 (Glut1) positive 

microvessels in immunodeficient mice. These Glut1-positive vessels are later replaced by 

human adipocytes that mimic the natural stages of human IH. Interestingly IH-derived 

endothelial cells are unable to produce microvessels (18). This suggests that hemSCs may be 

responsible for the recurrence of IH upon cessation of propranolol treatment possibly owing 

to the non-responsiveness of hemSCs to propranolol. In this study, we have explored this 

possibility by treating primary hemSCs with propranolol to determine whether propranolol 

induces caspase-3 activation and apoptosis as has been shown for vascular endothelial cells. 

We have also studied bone marrow-derived mesenchymal progenitor cells (bm-MPCs) as 

normal counterparts of hemSCs to determine whether changes (if any) observed in hemSCs 

are specific or whether the response depends on the stem/progenitor phenotype. In addition, 

we investigated possible signaling pathways involved upon propranolol treatment.

Results

Atypical phenotype of IH endothelium

A number of studies have investigated the effect of propranolol on IH-derived endothelial 

cells to offer insight into the mechanisms of therapeutic effect of propranolol (12,13,19). 

These studies show that propranolol causes apoptosis in IH endothelial cells by activating 
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caspase-3 and also blocks other cellular activities including migration and tubule formation 

(12,13). This effect of propranolol is also exhibited by normal endothelial cells (9,12). We 

have shown that IH arises from multipotent stem cells (18). CD133-selected cells from 

human IH produce hemangioma lesions in mice. Interestingly, IH-derived endothelial cells 

(exhibiting mature endothelial phenotype as assessed by endothelial cell markers) fail to 

produce Glut1-positive microvessels (18). This suggests that the cell of interest, at least in 

proliferating phase IH when treatments are required, is the hemSC. Therefore, we performed 

immunostaining for CD133 to probe for the number of microvessels that are lined by 

CD133-expressing cells. Results from two proliferating IH specimens show that all 

microvessels within IH tissues are immunoreactive to CD133 (figure 1). This suggested that 

for understanding the effect of propranolol, CD133-selected hemSCs are essential.

β2 and β3 are the predominant β-adrenergic receptors in IH stem cells

We first assayed for β-adrenergic receptor expression in hemSCs and compared the levels to 

mature endothelial cells. Our results show that hemSCs express both β2 and β3 adrenergic 

receptors (figure 2a). β1 adrenergic receptor mRNA level, although detectable, were 

significantly lower. Interestingly, we found that bm-MPCs share β-adrenergic receptor 

profile with hemSCs. Mature endothelial cells (human microvascular endothelial cells; 

HDMECs) on the other hand exhibited higher level of β1 adrenergic receptor expression 

(figure 2a). No significant differences were found in the level of β2 or β3 adrenergic 

receptors between endothelial cells, hemSCs, and bm-MPCs.

Propranolol inhibits IH stem cell growth

Our next objective was to determine the effect of propranolol on the growth of hemSCs. We 

cultured the cells with 25, 50, 100 μM propranolol and assayed for cell number at both 24 

and 72 hours. We chose these concentrations based on previous studies that have observed 

significant differences in IH endothelial cells (9,12). Furthermore, propranolol has been 

shown to have immediate effects in inhibiting cell viability at 24 hours (13). Interestingly, no 

significant changes to cell number were observed in any cell type at 24 hours (data not 

shown). At 72 hours, however, bm-MPCs and HDMECs showed significant reductions in 

cell number at all concentrations of propranolol when compared to control (figure 2b). In 

contrast, a proliferative effect was observed when hemSCs were treated with 25 μM 

propranolol and a reduction in total live cell number with 100 μM propranolol (figure 2b).

Reduced cell number following propranolol treatment is not due to apoptosis in IH stem 
cells

As the cell number decreased significantly for all cell types when cultured in 100 μM 

propranolol (at 72 hours), we examined whether this was due to apoptosis. Therefore, cells 

treated with propranolol were assayed for active caspase-3. Caspase-3 is the most frequently 

activated death protease and has been shown to play a role in inducing endothelial cell 

apoptosis upon propranolol treatment (12,13). Unexpectedly, hemSCs treated with 100 μM 

propranolol showed a significant reduction in the level of active caspase-3. This suggested 

that in hemSCs, the reduction in cell number might be due to inhibited cell growth and not 

apoptosis. bm-MPCs did not show a significant difference upon propranolol treatment as 

caspase-3 levels remained unchanged (figure 3a). On the other side of the spectrum, 
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propranolol-treated HDMECs showed a significant increase in the level of activated 

caspase-3 as expected. These data demonstrate that propranolol treatment induces apoptosis 

in HDMECs, whereas the decrease in cell number in hemSCs and possibly bm-MPCs is 

mediated by a reduction in cell growth.

Propranolol halts cell cycle progression but does not induce apoptosis in hemSCs

We examined the effect of propranolol on cyclin-D1 level. Cyclin-D1 is a key regulator in 

the progression from G1/S phase and has recently been shown to be maintained in G2 phase 

(20). Recent studies have shown that propranolol reduces cyclin-D1 in a time-dependent 

manner in endothelial cells (9). Surprised by previous experimental findings, we wanted to 

determine if propranolol reduces cyclin-D1 in hemSCs. Our results do show significantly 

reduced cyclin-D1 in hemSCs upon propranolol treatment (figure 3b). Similarly, bm-MPCs 

and HDMECs cyclin-D1 levels were also significantly reduced (figure 3b). The greatest 

change in cyclin-D1 was seen in bm-MPCs which may explain the reduced cell number seen 

earlier. These results suggest that propranolol inhibits cell cycle progression in all cell types 

by decreasing level of cyclin-D1.

Propranolol induces anti-apoptotic pathways in hemSCs

In order to understand the possible mechanism by which propranolol induces apoptosis in 

endothelial cells but not hemSCs, we used quantitative RT-PCR to profile for genes 

important in the central mechanisms of cellular death. We used Human Cell Death Pathway 
Finder PCR Array (Qiagen; see Methods for details) which comprises 84 key genes 

important for cell survival and apoptosis. HemSCs, bm-MPCs, and HDMECs were cultured 

in normal growth media or in media containing different concentrations of propranolol for 

72 hours. Using this PCR-based array, we found that propranolol significantly induces 

various anti-apoptotic pathways in hemSCs and normal bm-MPCs (figure 4a). These 

included Akt (also known as protein kinase B; induced 31.2x in hemSCs, 7.58x bm-MPC), 

Bcl2 (295.9 x in hemSCs, 143.2x bm-MPC)/Bcl2A (23.47x in hemSC, 10.97x in bmMPC), 

and insulin-like growth factor receptor-1 (IGFR-1, 53.68x in hemSC, 9.29x in bm-MPC). In 

contrast, we did not observe any alteration of these anti-apoptotic pathways in HDMECs 

(figure 4a).

TNF- α, but not IFNγ, reduced cell growth in IH stem cells

In addition to inducing anti-apoptotic pathways, we observed that propranolol treatment 

significantly increased tumor necrosis factor (TNF) pathway members and interferon γ 
(IFNγ) in hemSCs and to a lesser degree in bm-MPCs (figures 4b and 4c). This led us to 

question whether TNF or IFN signaling mediates changes we have observed in hemSCs 

upon propranolol challenge. We first determined the effect of exogenous TNF-α treatment in 

hemSCs. Interestingly, there was a significant cell number reduction in hemSCs upon 

exposure to 50 and 100 ng/mL TNF-α (figure 5a). We then investigated the effect of TNF-α 
on activated caspase-3 level in hemSCs. If propranolol is acting through TNF-α pathway, 

then we would expect no increase in caspase-3 activity. Indeed, our results show that TNF-α 
treated hemSCs did not change active caspase-3 level when compared with control (figure 

5b). We then tested the possible involvement of IFNγ by exposing hemSCs and bm-MPCs 

to exogenous IFNγ. Our studies show no significant effect on hemSC or bm-MPC growth at 
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24 or 72 hours (figure 5c and 5d). This suggests that TNF-α, but not IFNγ, have anti-

proliferating effect in vitro and may be involved in propranolol’s action.

Propranolol-induced altered differentiation in hemSC

While our studies were underway, a report showed that presence of propranolol in 

adipogenic differentiation media increased the differentiation level in hemSCs as compared 

to cells in adipogenic media alone (21). Higher levels of C/EBPβ and δ were found at day 4. 

Interestingly, when the cells were maintained in the differentiation media supplemented with 

propranolol for 7 days, significant cell death was observed. This is in contrast to our 

observations in normal growth media where a significant reduction in cell number is evident 

without apoptosis. Therefore, we explored the possibility that this enhanced adipogenic 

differentiation with propranolol is mediated through cell growth regulation. To test this idea, 

we treated hemSCs with mitomycin C to inhibit proliferation and tested for C/EBP 

expression. Our results show that C/EBPα was significantly higher when mitomycin C-

treated hemSCs were exposed to adipogenic differentiation media for 4 days (figure 6a). No 

change was observed in PPARγ2 levels. C/EBPα is a critical transcription factor in 

adipogenesis and enhanced levels suggest that inhibition of cell proliferation increases the 

differentiation capacity of hemSCs and this may be the mechanism underlying propranolol’s 

effect. We then assayed for β-adrenergeic receptor expression and show here that 

adipogenesis is associated with significantly higher levels of all three adrenergic receptors 

(figure 6b). Therefore, cell death in adipogenic media supplemented with propranolol (21) 

might be due to increased expression of β-adrenergic receptors, which accompanies hemSC 

differentiation.

Discussion

Propranolol is now widely used for treating IH; however, the mechanism of therapeutic 

effect is still unknown. In addition, some IH regrow after stopping propranolol treatment 

(15–17). In the present study, we have demonstrated that propranolol does not induce 

apoptosis in hemSCs, cells responsible for IH initiation, as seen in mature/differentiated 

endothelial cells. This suggests that the direct effect of propranolol in IHs may be through 

modulating mature endothelial cells and angiogenesis (figure 7a). The mechanism by which 

hemSCs and possibly normal progenitor cells (modeled here by bm-MPCs) escape apoptosis 

may include induction of anti-apoptotic pathways. We found Akt, Bcl2/Bcl2A, and IGFR1 

to be significantly induced in hemSCs and bm-MPCs. Akt induction is of particular 

importance here as this pro-survival kinase counteracts caspase-3 activity (22–24). Bcl2 

downregulation has been shown to increase caspase-3 in breast cancer cells (25). 

Furthermore, Bcl2A mediates anti-apoptotic effects of fibroblast growth factor in 

chrondogenic progenitor-like cell line (26). Therefore, these pathways may be involved in 

reducing/counteracting caspase-3 activity in hemSCs but not mature endothelial cells.

We also examined whether the extrinsic apoptotic pathway is involved in propranolol-

induced growth inhibition. Extrinsic pathway is primarily mediated by the TNF superfamily. 

We found that TNF signaling pathway genes (listed in figure 4b) are also upregulated in 

hemSCs and bm-MPCs upon propranolol treatment. Since it is well known that TNF 
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signaling pathways are involved in cell death, these results were unexpected. However, 

recent studies show that TNF’s effect may not be limited to cell apoptosis. TNF-α causes 

cell cycle arrest but not death in keratinocytes (27), glioblastoma cells (28), and melanoma 

cell lines (29). These findings suggest two independent anti-proliferative mechanisms of 

TNF signaling. In hemSCs, TNF signaling may be involved in propranolol-mediated cell 

cycle arrest. Indeed, when we treated hemSCs to exogenous TNF-α, we noted decreased cell 

growth over 72 hours but no change in caspase-3 activity. Taken together with the results of 

anti-apoptotic gene induction, we believe propranolol may reduce hemSC growth by 

inducing TNF pathway and escape from caspase-3 activation and apoptosis by TNF-

independent induction of anti-apoptotic genes.

Another interesting finding of this study is that hemSCs predominantly express β2 and β3 

adrenergic receptors. β1 levels are almost ten-fold lower. Vascular endothelial cells, on the 

other hand, express significantly high level of β1 receptor compared to β2/3. These findings 

suggest that the differential effect of propranolol in hemSCs and endothelial cells may be 

due to distinct roles of β-adrenergic receptor subtypes. Communal et al. have shown that 

activation of β1 receptors on cardiac myocytes induces apoptosis, whereas β2 adrenergic 

receptor activation opposes cell death (30). Although this study involved activation of β-

adrenergic receptor and not antagonism, the concept of a distinct, receptor subtype-specific 

role is pertinent here. Moreover, Panjala et al. have demonstrated that β1-adrenergic receptor 

knockout mice exhibit increased formation of degenerate capillaries in retina (31). These are 

interesting findings because retinal endothelial cells express β1 adrenergic receptor but not 

β2 (32). Also associated with acellular capillaries in the retina in knockout mice were 

increased level of cleaved caspase-3. Based on our data, we suggest that antagonizing β1 

receptor in IH cells is associated with cell death while β2 is involved with cell cycle 

regulation (figure 7b). We know that hemSC predominantly express β2 and β3 receptors and 

show almost 10-fold lower β1 level. bm-MPCs showed a similar response to propranolol in 

cellular activity and molecular alterations, and share the β-adrenergic receptor profile with 

hemSCs.

Wong et al have recently shown that propranolol enhances adipogenesis in hemSCs (21). 

Specifically, presence of propranolol in adipogenic media initially caused differentiation of 

hemSC but significant cell death at day 7 (21), which is the typical in vitro time for full 

functional adipocyte differentiation. We reasoned that the initial effect of propranolol might 

be mediated through cell cycle disruption. To test this possibility, we treated hemSCs with 

mitomycin-C before exposing the cells the adipogenic differentiation media. We noted that 

mitomycin-C treated cells had significantly higher levels of C/EBPα induction suggesting 

that enhanced adipogenesis in hemSCs may be related to a change in the differentiation 

timeline (reduced growth and earlier differentiation). We also tested whether adipogenesis 

itself alters β-adrenergic receptor expression in hemSCs, thereby making cells more 

sensitive to propranolol and possibly explaining cell death observed in the previous study 

(21). Indeed, differentiation of hemSCs significantly increased the expression of all β 
adrenergic receptor subtypes including β1. Therefore, cell death seen in adipocytes may be 

associated with the increase in β1 receptor expression (29.47-fold increase as reported in our 

study). Increased level of β2 receptors in adipocytes may further enhance the inhibitory 

process by regulating cell cycle progression.
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Our study represents an important step toward understanding the mechanism of propranolol 

action. A number of pressing questions remain. For example, is propranolol selective to IH 

vessels? Based on recent findings in endothelial cells (normal vs IH-derived) and our own 

findings in hemSCs, this seems unlikely. Alternatively, the effectiveness of propranolol in 

IHs may be a function of increased levels that are sustained in the capillary mass of IHs. 

These studies are underway in our laboratory and the findings may enhance our 

understanding of the mechanism of therapeutic action of propranolol and may provide more 

effective treatment options.

Methods

IH Specimens and Immunostaining

We obtained paraffin-embedded IH specimens from the Department of Pathology Archives 

at the London Health Sciences Centre (LHSC, London Ontario, Canada). The proliferating 

phase was confirmed by histological analysis. Tissue sections were deparaffinized, hydrated, 

and subjected to antigen retrieval using Tris/EDTA buffer (10 mM Trizma-base, 1 mM 

EDTA, 0.05% Tween-20, pH 9.0) in 2100 Retriever (Electron Microscopy Sciences, 

Hatfield, PA). To perform double staining, we incubated slides with mouse anti-human 

CD31 (1:50; M0823, Dako Canada, Mississauga, ON) and rabbit anti-human CD133 

antibody (1:100; ab19898, Abcam, Cambridge, MA) for 1 hour at room temperature. 

Fluorescein- or texas red-conjugated secondary antibodies (Vector Laboratories, Burlington, 

ON) were used for detection. Slides were counterstained with DAPI (Vector Laboratories). 

Images were taken using the Olympus BX-51 microscope (Olympus Canada In., Richmond 

Hill, ON) equipped with a Spot Pursuit digital camera (SPOT Imaging Solutions, Sterling 

Heights, MI).

IH Cell Isolation and Culture

Proliferating IH-derived CD133+ cells (hemSCs) were kindly provided by Dr. Joyce 

Bischoff (Children’s Hospital Boston, Boston, MA). We have previously shown full 

characterization of hemSCs and culture conditions (18). Freshly isolated bone marrow-

mesenchymal progenitor cells (bm-MPCs; isolated from bone marrow mononuclear 

preparations; 2M-125B, Lonza Inc., Walkersville, MD) were used as normal stem/progenitor 

controls. Neonatal human dermal microvascular endothelial cells (HDMECs; CC-2516, 

Lonza Inc) were also used as controls. Previous studies have compared normal endothelial 

cells with IH-derived mature endothelial cells and have shown striking similarity in 

propranolol response (9,12,13). All cells were cultured on fibronectin-coated (FN; 1 μg/cm2, 

FC010-10, Millipore, Temecula, CA) plates in Endothelial Basal Media-2 (EBM2; Lonza 

Inc.) supplemented with 20% FBS (Lonza Inc.) and EGM-2 SingleQuots (CC-4176, Lonza 

Inc.) and 1X antibiotic antimycotic media (PSF; Life Technologies, Burlington, ON). All 

cells were cultured under identical conditions and experiments were performed with a 

minimum of 2 biological replicates (different IH cell preparations) and 3 technical 

replicates. All studies were conducted following approval by the Research Ethics Board at 

The University of Western Ontario, London, Ontario, Canada.
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Cell growth assay

To determine the effect of propranolol on cell growth, we plated each cell type at 5000 

cell/cm2 in complete EBM2 growth media (described above). After 24 hours, media was 

removed and cells were exposed to 25, 50, or 100 μM (R)-(+)-propranolol hydrochloride 

(Propranolol; 0624, R&D Systems, Minneapolis, MN) in fresh EBM2 media. Total number 

of live cells was determined at 24 or 72 hours using Scepter 2.0 Automated Cell Counter 

(Millipore) with appropriate histogram gating setup (33,34). For some experiments, hemSCs 

and bm-MPCs were treated with interferon-γ (IFNγ; 285-IF-100, R&D systems) or tumor 

necrosis factor-α (TNF-α; 210-TA-010/CF, R&D systems) for up to 72 hours.

RNA isolation, mRNA profiling & Quantitative RT-PCR

RNA was isolated using RNeasy Micro Plus Kit (Qiagen, Mississauga, ON). Total amount 

of RNA was measured using Qubit RNA Broad Range Assay in a Qubit Fluorometer (Life 

Technologies). cDNA was then synthesized using iScript cDNA Synthesis Kit (Bio-Rad 

Laboratories, Hercules, CA). We performed gene expression analyses using using RT2 

Human Cell Death Pathway Finder PCR arrays (PAHS-212Z; Qiagen) in Bio-Rad CFX 

Connect (Bio-Rad). Data was analyzed by CFX Manager Software using normalized 

(ΔΔCT) method with two housekeeping genes (β-actin and GAPDH were both used for 

normalization after empirically determining the expression for stability in our treatment 

groups).

β-adrenergic receptor and adipogenesis-specific gene expression was also assessed by qRT-

PCR. Reactions consisted of 10 μL ssoFast Evagreen (1725200, Bio-Rad), 2 μL of both 

forward and reverse primers (at a 10 μM concentration), 2 μL cDNA, and 6 μL of H2O. 

Adipogenesis was assessed by C/EBPα (QT00203357, Qiagen) and PPARγ2 (sequence 

shown in (35)). β1 (QT00204309, Qiagen), β2 (QT00200011, Qiagen), and β3 adrenergic 

receptor (QT00200004, Qiagen) expressions were measured similarly. Target gene mRNA 

data was normalized to β-actin (QT01680476, Qiagen). All reactions were performed for 40 

cycles using the following temperature profiles: 95°C for 2 minutes (initial denaturation); 

and 55°C for 12 seconds (annealing and extension). Data was analyzed using relative 

quantity (ΔCT).

Caspase-3 and Cyclin-D1 Measurements

Total proteins from the cultured cells were extracted using Cell Extraction Buffer (Life 

Technologies) with complete protease inhibitor cocktail (Roche Diagnostics, Laval, 

Quebec). Proteins were measured by BCA Protein Assay Reagent (Pierce BCA Protein 

Assay Kit, Thermo Scientific, Rockford, IL) and equal amounts were used for active 

caspase-3 and cyclin-D1 measurements. To measure activated caspase-3, caspase-3 (active) 

Human ELISA kit (Life Technologies) was used. Data were collected using Thermo 

Scientific Multiskan FC Microplate Photometer (Thermo Scientific), measuring absorbance 

at 450nm. Cyclin-D1 level was measured similarly using PathScan Total Cyclin-D1 

Sandwich ELISA kit (Cell Signaling Technology Inc., Danvers, MA).
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Adipogenic Differentiation

To induce adipogenic differentiation, hemSCs were seeded at a density of 40,000 cells/cm2 

in StemPro Adipogenesis differentiation media (Adipo media; Life Technologies). Control 

media consisted of Dulbecco’s Modified Eagle Medium supplemented with 10% FBS. 

Media was changed every other day. RNA was isolated from cells after 7 days to perform 

qRT-PCR for β-adrenergic receptor expression. To determine whether cell growth/

proliferation may alter adipogenesis, we pretreated hemSCs with 10 μg/mL mitomycin C 

(MitoC; Sigma Aldrich, Oakville, ON) for 2 hours. Cells were then washed, resuspended, 

and plated at 40,000 cells/cm2 in adipogenesis media. RNA was isolated at day 4 to assay 

for C/EBPα and PPARγ2 levels (transcription factors essential for adipogenic differentiation 

(33–35)).

Statistical Analysis

The data were expressed as means ± SEM. Where appropriate, analysis of variance 

(ANOVA) followed by two-tailed student’s unpaired t-tests were performed. P values < 0.05 

were considered statistically significant.
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Figure 1. CD133-positive cells line hemangioma vessels
Proliferating hemangioma specimens were double-labeled for CD31 (endothelial cell 

marker; Red) and CD133 (stem cell antigen; Green). DAPI (blue) was used as counterstain. 

Staining illustrates complete co-localization of CD133 and CD31 in both proliferating 

hemangioma specimens (images were taken at 20X magnification; inserts illustrate high 

magnification; scale bar = 200μm).
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Figure 2. Propranolol reduces hemSC growth
(a) mRNA levels of β-adrenergic receptors in CD133-selected hemSCs and normal bm-

MPCs and HDMECs were determined by real time qRT-PCR (data normalized to β-actin; 

*p<0.05 compared to β1 adrenergic receptor mRNA levels in hemSCs and bm-MPCs; 

†p<0.05 compared to β2 and β3 adrenergic receptor mRNA levels). RNA was isolated from 

cells cultured in EBM2 growth media under identical conditions. The specificity of the 

amplification was determined by melting curve analysis (data not shown). (b) Total live cell 

number after 72 hours of treatment with different concentrations of propranolol. Propranolol 

treatment at 100 μM showed reduced number of cells as compared to control in all cell types 

tested (*p<0.05 compared to respective control).

Kum and Khan Page 13

Pediatr Res. Author manuscript; available in PMC 2014 September 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 3. Propranolol reduces active caspase-3 level in hemSCs
Levels of activated caspase-3 (a) and cyclin-D1 (b) in hemSCs, bm-MPCs and HDMECs 

following 100 μM propranolol treatment for 72 hours (*p<0.05 compared to respective 0 μM 

treatment/control).
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Figure 4. Propranolol induces anti-apoptotic signaling pathways in hemSCs
Propranolol induced expression of anti-apoptotic genes (a), TNF superfamily signaling 

pathway (b) and interferon γ (c) in hemSCs and bm-MPCs but not HDMECs (mRNA levels 

were measured using SABiosciences RT2 Cell Death Pathway Finder and normalized to β-

actin and GAPDH; Red dashed lines in panels a and b, highlight 100 μM propranolol 

groups; graphs shown in a–c are representative of multiple PCR arrays).
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Figure 5. TNF activation leads to reduced cell growth in hemSCs
TNF-α treatment significantly reduced cell number (a) in hemSCs after 72 hours but did not 

change activated caspase-3 level (b) (*p<0.05 compared to control). HemSCs treated with 

IFNγ showed no significant change in cell number after 24 (c) or 72 (d) hours.

Kum and Khan Page 16

Pediatr Res. Author manuscript; available in PMC 2014 September 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 6. Growth inhibition enhances adipogenesis
Effect of mitomycin-C treatment on adipogenic differentiation (a) in hemSCs at day 4 

(Adipo = adipogenic media, MitoC = mitomycin C; *p<0.05 compared to control media; 

†p<0.05 compared to adipogenic differentiation media without mitomycin-C treatment). (b) 

Induction of β-adrenergic receptors following adipogenic differentiation in hemSCs at day 7 

(Adipo = adipogenic media; *p<0.05 compared to control media).
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Figure 7. Proposed mechanism of therapeutic effect of propranolol
Schematic illustrating the proposed mechanism of propranolol on hemSCs and mature 

endothelial cells. (a) Schematic illustrating the penetrance of apoptotic effect of propranolol 

in hemangioma regression. (b) Propranolol leads to cell apoptosis in endothelial cells and 

other mature cell types including adipocytes through alteration of β1 adrenergic receptor 

signaling. Engagement of β2 (and possibly β3) receptors leads to cell cycle arrest and 

growth inhibition.
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