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Abstract

3D image reconstruction of large cellular volumes by electron tomography (ET) at high (#5 nm) resolution can now
routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and
macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the
crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error.
This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-
detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE
filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the
pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than
that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input
or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low
as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated
segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular
annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification
and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal
rearrangement of macromolecular assemblies in situ within cellular tomograms.
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Introduction

Electron tomography (ET) is an important tool for studying

structural cell biology in situ by bridging the resolution gap

between light microscopy and methods for protein structure

determination at atomic resolution, such as X-ray and electron

crystallography as well as nuclear magnetic resonance (NMR)

spectroscopy. Recent advances in ET at the level of sample

preparation, improved detector sensitivity/capture efficiency and

imaging resolution, along with automated computational tech-

niques for 3D image reconstruction, processing and analysis now

enable macromolecular assemblies to be resolved at up to 15–

30 Å, in the best case examples [1]. Meanwhile, the 3D

reconstruction of extremely large cytoplasmic volumes at ,3–

6 nm resolution and even entire mammalian cells at ,10 nm

resolution by cellular ET now affords unprecedented new insights

regarding the structure-function relationships that exist among

subcellular compartments/organelles, the plasma membrane,

cytoskeletal filaments, large macromolecular assemblies as well

as membrane proteins [2–5]. 3D cellular reconstructions of this

nature thus provide a precise spatial framework for developing

annotated, pseudo-atomic resolution 3D atlases of cells through

docking high resolution structures of macromolecular assemblies.

A critical step in the advancement of molecular resolution ET is

the ability to accurately segment molecular structures in situ within

cellular tomograms. Classical edge-detection algorithms such as

the Sobel [6], Prewitt [6], Laplacian of Gaussian [6] and Canny

edge detectors [7] are increasingly being incorporated into semi-

automated and automated methods for segmenting 3D image

volumes. However, all of these are best suited to images with

relatively high signal-to-noise ratios (SNR) and thus have limited

use for the accurate/automated analysis of cellular tomograms,

which have an inherently low SNR. By comparison, more modern

filters [8–16] exhibit improved edge-detection performance at low

SNR. However, for the most part these algorithms have only been

implemented in 2D and thus have limited utility for analysing 3D

image volumes. A true 3D filter, capable of using data from

adjacent slices, offers the advantage that additional information

from either side of the ‘focal’ slice can be considered, thereby

enabling enhanced noise suppression along with the detection of

contiguous and legitimate structural details throughout the 3D

image stack.

The Canny edge detector [7,17] is widely considered to be a

‘‘gold standard’’ filter [18] for 2D analysis. More recently it has

been implemented in 3D (http://www.imagescience.org/

meijering/software/featurej/edges.html). This implementation is

a multi-stage, complex filter, which in principle involves four

fundamental steps. In the first step it convolves the target volume

with a Gaussian filter to smooth the image and suppress the noise.

The second step calculates gradients of the image using a Sobel

edge detector, the rationale of applying which is to identify voxels

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e33697



with sufficiently large weighting magnitudes that identify them as

an edge. In step three, non-maximum peak suppression is

performed to track the edge points along the high magnitude

regions and to eliminate the remaining voxels. This is followed by

step four, which through hysteresis thresholding converts the

output volume into a binary format to ensure that noise voxels are

not included as part of a true edge.

Optimization of the filter’s performance requires the simulta-

neous fine-tuning of three parameters: the standard deviation of

the Gaussian as well as the high and low hysteresis thresholds. The

need to simultaneously optimize multiple parameters makes the

use of the 3D Canny labor-intensive and impractical for

application to high throughput, automated or semi-automated

analysis. An additional drawback is that it fails to detect true

discontinuities (i.e. it is unable to discriminate between contrast

discontinuities that are due to noise or a true edge).

The 3D recursive filter [19] offers a simplified alternative to the

3D Canny filter. It approximates the gradient of an image by

computing the impulse response recursively and finally applies a

pseudo 3D edge-closing algorithm; that is, it uses a 2D edge-

tracking algorithm [20] that is applied to each XY, XZ and YZ

plane separately. In practice, the tracking algorithm, which is

designed to complete discontinuous contours within a 2D plane,

limits its ability to accurately detect the 3D structure of an object.

The underlying principles of the bilateral edge filter [16] offer

an attractive alternative to the Canny and 3D recursive edge-

detection filters. The BLE is a nonlinear, photometrically-

weighted, discontinuity-based anisotropic filtering technique that

has been shown to be suited to images containing predominantly

low- and mid-frequency information [16]. More specifically, it

suppresses noise by attenuating undesired frequencies and

enhances edge-detection by selectively extracting specific features.

However it still requires user modification of the manual

parameter (s2) and has not been implemented in 3D.

In this paper, we present a full 3D implementation of the

bilateral edge filter (3D BLE), which importantly also eliminates

the need for manual s2 optimization. This fully automated 3D

BLE is a simple and fast filter, specifically designed for electron

tomography data which typically has low signal to noise ratios, but

also suitable for analysis of a wide range of other 3D data. Our

implementation includes Gaussian filtration followed by iterative

median filtration as a pre-filtering step [6,21]. The iterative

median filter maintains edges and converges to an optimal solution

beyond which it does not keep smoothing. This significantly

improves edge-detection by simplifying the voxel intensity

distribution and suppressing noise disturbances without corrupting

the edge information. The output 3D binary image data can then

be used together with automated segmentation, or for edge-

detection-based 3D particle picking.

Results and Discussion

Adaptation of the 2D bilateral edge filter to analysis of
3D image volumes

In this paper, the original 2D variant of the BLE filter [16] has

been extended to operate in three dimensions. Additionally,

parameter adjustment has been fully automated. Similar to the 2D

BLE filter, the 3D BLE filter first calculates the photometric score

for each individual voxel (focal voxel) in the context of the

‘processing window’ of the image volume being analysed. A score

of 0 represents a perfect edge while 1 represents noise, for each

individual voxel. The rationale of sequentially calculating

photometric scores for each focal voxel, as the window moves

across the image, is to build a photometric score map, from which

edges can be traced. The photometric function W x,y,z,m,n,oð Þ,
corresponding to an adjacent neighboring voxel m,n,oð Þ from the

focal voxel x,y,zð Þ is defined in Eq 1.

W x,y,z,m,n,oð Þ~e
{

DI xzm,yzn,zzoð Þ{I x,y,zð ÞD2

2s2
2 ð1Þ

I(x,y,z) is the original volume and x,y,zð Þ indicates the

coordinates of the focal voxel, while m,n,oð Þ indicates the adjacent

coordinates of a neighboring voxel to the focal voxel (which can be

expressed as: m = {x21, x, x+1}, n = {y21, y, y+1} and o = {z21,

z, z+1}). s2 is a photometric parameter which defines the

minimum difference in intensity that is to be regarded as an

edge. In the 2D BLE, s2 is the only parameter requiring manual

adjustment. While manual adjustment ensures the highest quality

result as it allows the fine tuning of s2, in this 3D implementation

the user can choose to adjust this parameter automatically to

achieve high thoughput, by replacing it with the actual standard

deviation (s) of the volume (Eq. 2):

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

XN

i~1

Xi{X
� �2

vuut ð2Þ

where N is the total number of voxels, Xi is the current voxel

intensity and X is the mean value of all the intensities present in

the volume. Automated optimisation of this photometric param-

eter is highly desirable to facilitate segmentation of large and

complex cellular tomograms in a high throughput manner.

Voxels having intensities above the background level may

correspond to signal or noise and the further such a high intensity

voxel is from a focal voxel, located on a given edge, the less likely it

is to be part of that edge. Consequently, to distinguish between

edge and noise voxels, each photometric score of a neighboring

voxel m,n,oð Þ is next spatially weighted according to a 3D

Gaussian distribution centred at the focal voxel (i.e. the further a

voxel of a given intensity is from the focal voxel, the lower its

photometrically-weighted score). The Gaussian weightings

c m,n,oð Þ are given in Eq. 3.

c(m,n,o)~e
{m2zn2zo2

2s2
1 ð3Þ

Here s1 is used to define the significant weights and is fixed to 2

voxels, similar to the 2D case [16]. It is also used to determine the

size of the neighborhood for the calculation of the normalized

photometric score given in Eq. 4.

To identify substantial discontinuity (i.e. an edge), the

photometric score is next normalized by averaging across a pre-

defined number of voxels (see Eq. 4). The normalized photometric

score W x,y,zð Þ for the given focal voxel is calculated as a Gaussian

weighted average of the individual photometric scores over a

radius of 2 voxels.

W x,y,zð Þ~
P2

m~{2

P2
n~{2

P2
o~{2 W(x,y,z,m,n,o)P2

m~{2

P2
n~{2

P2
o~{2 c(m,n,o)

ð4Þ

The normalized photometric scores indicate the significance of

discontinuity of a given edge. Scores close to 1 are considered

3D Bilateral Edge Filter
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weak photometric responses and can correspond to fluctuations

in background noise; single, high intensity, spurious voxels or the

focal voxel otherwise not being centered on an edge. Strong

scores (close to 0) represent voxels that are likely part of an edge.

After analysing the possible numerical representations of

connectivity of an edge, a threshold of 0.85 was chosen. This

setting was repeatedly found to provide the largest observed gain

in edge-detection performance. Average photometric scores

below this threshold are considered to indicate edge voxels and

scores greater than 0.85 indicate spurious voxels, non-edge

voxels, or weak fluctuations in background intensity due to

anisotropy. The thresholded photometric score W
0
(x,y,z) is thus

given by:

W
0
(x,y,z)~

W : W(x,y,z)v0:85,

1 : W(x,y,z)§0:85

(
ð5Þ

Consequently W
0
(x,y,z) remains unaltered if its value is below

0.85, but is adjusted to 1 if its value is greater than or equal to 0.85.

The lowest scores in the final photometric map generated by Eq. 5

represent local minima or troughs along which an edge is traced

based on the use of a 36363 voxel volume. A focal voxel in a

36363 volume (i.e. 27 voxels) therefore has the possibility of

forming 26 different connections with its immediate neighbors. If

the focal voxel is part of a continuous trough (edge) or at the end of

a trough, its average photometric score will be within the thirteen

smallest scores of a (36363) voxel neighborhood. This is because

twelve represents the number of voxels required to describe a

continuous edge within this 3D volume of 27 voxels (4 voxels

within each plane of a 36363 volume = 12 voxels). Increasing this

value tends to increase edge connectivity further in noise free data,

but in the presence of high levels of noise (e.g. cryo-EM data) this

tends to result in decreased noise suppression. Theoretically, a

continuous edge of 5 voxels within a 363 voxel plane ( = 15 voxels

in a 36363 volume) is possible. However thresholding at a value

of 15 also allows edges with branching (or noise contamination) to

be detected. Thirteen in our experience is a sensible compromise

(see Supplementary Material of Pantelic et al. [16] for further

explanation).

Application to synthetic data
Using a combination of real and synthetic datasets, the

performance of the 3D BLE filter was evaluated and compared

to two benchmark 3D edge-detection algorithms: the 3D Canny

and 3D recursive filters. To obtain a fair comparison, all test

volumes in the initial phase were subjected to the same pre-

filtering step and the recommended or default settings of each

filter were used. No attempts at parameter adjustment were

made. As a first test, the noise suppression and edge-detection

abilities of the 3D BLE filter were evaluated using synthetic

‘‘truth’’ reference volumes (hollow cylindrical, spherical, triangu-

lar and rectangular) contaminated with different combinations of

Gaussian (G) and impulse (I) noise (Figure 1). Results were

evaluated based on three criteria: response to true edge

directionality, the minimum detectable object edge width (in

pixels) and capability to detect true edges and distinguish them

from noise in images corrupted with high levels of noise (Figure 1,

Table 1). Such an analysis enables the quantification of the

minimum possible signal to noise ratio (SNR) required for the

filter to detect edges.

Noise was introduced incrementally from an initial value of 5%

G/5% I (expressed as a percentage of the signal intensity) up to

80% G/80% I. The width of the reference objects was varied from

1 to 16 pixels. Figure 1 shows a subsample of the tests performed

that highlight the performance limitations of the 3D BLE

(Figure 1B) in comparison to the 3D recursive (Figure 1C) and

Canny filters (Figure 1D). Post-processed 3D surface views of the

test datasets clearly highlight performance differences between the

three filters. At low noise levels (G 0/I 0 to G 20/I 20) the three

filters performed similarly and effectively detected the edges of all

reference volumes. However as the noise levels increased further

(G 40/I 40 to G 80/I 80) differences in performance emerged. At

G 60/I 60 or greater, the 3D BLE was unable to effectively

discriminate the structure of the object from noise at an edge width

of 2 pixels, but was able to recognise all test objects with an edge

width of 4 pixels or greater even at G 80/I 80. Corruption with G

80/I 80 noise provided a stringent test in which it was almost

impossible to distinguish the objects from noise by eye (Figure 1

A5) but the 3D BLE was still capable of significantly amplifying

object information above the level of the noise for edge widths of 4

and 8 pixels. By comparison, the capabilities of the 3D recursive

filter appear to be limited at G 60/I 60 and beyond, regardless of

edge width. Furthermore at the lower noise levels of G 40/I 40

and even G 20/I 20 the 3D recursive filter, while effectively

dampening background noise, poorly resolved edges 2 pixels in

width in comparison with the 3D BLE and the Canny filters.

Consequently we concluded that the performance of the 3D BLE

filter was better than that of the 3D recursive filter and particularly

so at high noise levels.

A comparison of the performance of the 3D BLE filter with the

Canny filter at G 60/I 60 and above indicated that the 3D BLE

achieved a better edge connectivity at 4–8 pixel widths (see

Figure 1 B4 vs. D4; B5 vs. D5). In the 2 pixel test the 3D BLE

showed signs of noise contamination (Figure 1 B4 & B5) while the

Canny filter showed poor connectivity (Figure 1 D4 & D5). At G

80/I 80, the Canny and 3D recursive edge detectors both treated

high frequency noise voxels as edges and thus failed to highlight

true structural information (see Figure 1 C5-D5). In contrast the

3D BLE filter, while retaining some high frequency noise voxels,

appeared to better preserve edge detail (Figure 1 B5).

Collectively these tests suggest that the 3D BLE filter has a

similar level of performance to the Canny filter. An important

advance over the Canny, however, is that the 3D BLE filter

achieves a similar level of performance for many test images of this

type in an automated fashion, while the Canny requires the

optimization of 3 parameters for each image. Parameter-free

filtration is essential for automated segmentation.

Table 1 lists the respective root mean square error (RMSE)

values calculated between the filtered volumes and the truth set.

Analogous to Pantelic et al. [16], the truth image was constructed

by applying the Canny edge-detector to the noise/CTF/envelope-

free variant of Figure 1 A1. We then compared the truth image

with the results generated by all filters (Figure 1 B1–5 to D1–5).

The 3D BLE filter outperformed the recursive filter, yielding lower

RMSE values in each case (see Table 1). However for all five tests,

the Canny yielded the lowest RMSE scores. The apparently

improved performance of the Canny filter under these conditions

was not surprising due to the fact that the truth image was

constructed based on the output of the Canny edge detector. The

percentage voxel variation between the truth image and the

filtered image was also calculated (see Table 1). The apparently

improved performance of the Canny filter under these test

conditions could be attributed to the more rapid fall off in edge-

detection by the 3D BLE for thin objects (edge width of 2 pixels)

compared with that of the Canny, where performance deteriorat-

ed almost equally, regardless of edge width. In summary, these

3D Bilateral Edge Filter
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tests indicated that the 3D BLE filter performed significantly better

than the 3D recursive filter and similarly to the Canny filter under

the test conditions analysed.

In the preceding tests, the 3D BLE filter was able to resolve

contours of truth reference images from synthetic impulse and

Gaussian noise at levels up to 80% of the signal intensity. In the

Figure 1. Application of 3D BLE to synthetic phantoms corrupted with Gaussian and impulse noise. Performance of the 3D BLE, 3D
recursive and 3D Canny filters was assessed using a volume of 3D synthetic phantoms contaminated with increasing levels of Gaussian and impulse
noise. (A1–A5) 2D sections taken from synthetic volumes contaminated with increasing levels of Gaussian and impulse noise. (B1–B5) 3D surface
rendering of results (B1–B5) obtained from the 3D BLE filter. (C1–C5) Surface rendering of the 3D recursive-filtered synthetic dataset. (D1–D5)
Surface rendering of the 3D Canny-filtered synthetic dataset.
doi:10.1371/journal.pone.0033697.g001
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next stage of testing the truth reference set was contaminated with

noise more closely simulating ‘‘real’’ experimental conditions

encountered in electron micrographs, in order to provide a more

realistic evaluation of the performance of the 3D BLE filter for EM

data.

The most stringent test settings used are shown in Figure 2

panels A3-E3. In this experiment the contrast and intensity of the

original signal (A3 – dotted line) was adjusted to match that of the

noise so that the signal (A3 - green line) and noise profiles (A3 - red

line) were identical in contrast. Consequently the truth reference

volumes were not visible to the eye (Figure 2, B3). The offsets,

applied to the original intensity and contrast of the signal to attain

the same values as the noise profile, were 47% (w.r.t. standard

deviation) and 8.6% (w.r.t. mean). Next, the intensity and contrast

of the signal were adjusted to above and below this mean value to

determine the effective detection limits of each of the filters. In

case II and case IV (Figure 2 A2-E2, A4-E4) the signal intensity

was set to 0.43% above and below the mean of the noise. Case I

and case V (Figure 2 A1-E1, A5- E5) were less stringent cases in

which the signal intensity was 0.72% above and below the level of

noise. It should be noted that the difference between C1-E1 and

C5-E5 is that the particle contrast has been inverted (black to

white, respectively).

The results of these analyses provided a clear indication of the

limitations of each of the three filters tested. Unsurprisingly, for

case III (perfectly overlayed noise and signal), none of the three

filters were able to distinguish signal from noise (nor did any of the

three filters show any detection artefacts). In all other cases, the 3D

BLE filter performed at least as well or better than both the 3D

recursive and Canny algorithms.

At the less stringent settings (C1-E1; C5-E5) all three filters

detected 4 and 8 pixel wide edges. The Canny filter appeared to

be more affected by background noise (Figure 2 C1 vs E1; C5 vs

E5) but also at the cost of artifactual noise contamination of the

edge. It did however detect 2 pixel edges better. In contrast the 3D

BLE filter yielded clearly defined and relatively noise-free contours

but resolved the 2 pixel edges less well. Connectivity could be

increased manually in the 3D BLE filter by raising the threshold

setting from 0.85 (see Eq. 5) but at a cost of increased background

noise. Overall, this suggested that the performance of the Canny

and 3D BLE filters was similar.

At the most stringent intensity test settings (B2-E2; B4-E4) the

3D BLE and Canny filters both performed significantly better than

the 3D recursive filter. The Canny and 3D BLE filters both

effectively detected 4–8 pixel wide edges. Again the Canny filter

yielded a level of performance better than 3D BLE but at the cost

of increased artifactual noise contamination of the edge. In terms

of the detection of 2 pixel edges, the 3D BLE and Canny filters

were both close to their limits of detection. Generally the 3D BLE

appeared to be better at suppressing noise while the Canny

appeared better at detecting 2 pixel edges, but the differences were

minimal.

Performance of the three filters was quantified by calculating

RMSE values (see Table 2) between the control/truth volume

constructed by applying the Canny edge-detector to the noise/

CTF/envelope-free variant of Figure 1-A1 and the filtered output

volumes (Figure 2 C–E). The 3D Canny outperformed the 3D

BLE when the signal mean was offset 60.43% from the noise, but

failed to recover the edge information in all cases, especially at an

object width of 2 pixels and signal offset of 20.43%. The 3D BLE

outperformed the 3D recursive at 60.43%, but performed roughly

equal to the 3D recursive at 60.72% with minor differences in

RMSE scores.

Application to biological test data
Having evaluated the performance of the 3D BLE filter using a

synthetic truth reference set comprised of simple geometric shapes,

we next used a simulated cryo-tomogram populated with 100

uniquely oriented copies of the GroEL chaperonin complex to

evaluate the performance of the filter in a more biologically

relevant context. Figure 3 demonstrates the performance of the

three filters on a representative area of this simulated cryo-

tomogram [22] containing nine GroEL molecules in different

orientations. The first column (Figure 3 A1–A5) shows the relative

ratio and offset of the mean signal contrast compared to the

background noise (as in Figure 2 A1–A5). Upon close inspection,

the 3D BLE (Figure 3 C1–5) and 3D Canny (Figure 3 E1–5) filters

showed better edge connectivity than the 3D recursive (Figure 3

D1–5). In addition, the 3D recursive filter started to become less

effective at removing noise at 60.43% noise over signal (Figure 3

D2, D4). The 3D BLE filter, with fully automated parameter

optimisation, performed nearly as well as the 3D Canny.

Differences in the performance of the 3D BLE and Canny filters

were attributed to connectivity of additional noise in the Canny

images and lower detection of 2 pixel edges in the BLE. Overall

therefore the BLE and Canny again seemed similar in perfor-

mance, but the fully automated 3D BLE filter provided a

considerable processing advantage.

Application to experimental data
We compared the ability of the 3D BLE, 3D recursive and 3D

Canny filters to extract molecular edge contours from an

80068006100 voxel region of a dual tilt tomographic reconstruc-

tion recorded from a resin-embedded, sectioned and post-stained

C. reinhardtii cell (Figure 4). The dark densities are putative

macromolecular assemblies, having an approximate diameter of

25 nm – roughly equivalent to the size of a ribosome. In this test,

the 3D BLE filter (Figure 4B) clearly outperformed both the 3D

recursive (Figure 4C) and 3D Canny edge detector (Figure 4D).

Noise suppression in the 3D BLE-filtered image (Figure 4B) was

considerably enhanced and contours around the putative macro-

molecular particles are thus more accurate and less corrupted by

spurious noise densities. We concluded that the most likely reason

for the 3D BLE filter outperforming the Canny and 3D recursive

filters in this test was that the SNR of the input data (Figure 4A)

was significantly higher than that of any of the other test images

(see Figure 1, 3). This was consistent with the enhanced

performance of the 3D BLE filter observed under high SNR

conditions in all of the previous tests (see Figure 1, 2; Tables 1, 2).

Table 1. Statistical evaluation of filter performance using
synthetic volumes contaminated with different levels of
Gaussian and impulse noise shown in Figure 1.a

Noise
Gaussian/Impulse 3D BLE (%) 3D recursive (%) 3D Canny (%)

0/0 29.66 (1.35) 30.03 (1.39) 26.91 (1.11)

20/20 46.24 (3.20) 118.46 (21.58) 38.52 (2.28)

40/40 52.52 (4.20) 120.74 (22.42) 42.05 (2.72)

60/60 63.36 (6.17) 123.00 (23.27) 43.73 (2.94)

80/80 67.86 (7.08) 124.96 (24.01) 45.62 (3.20)

aRMSE scores between the input volumes and the three filter outputs are
shown in bold. Smaller scores represent higher levels of correlation with the
input volume. Values in brackets are the percentage voxel variation between
input volumes and the three filtered outputs.
doi:10.1371/journal.pone.0033697.t001
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Figure 2. Application of 3D BLE to synthetic phantoms corrupted with simulated cytosolic noise. Performance of the 3D BLE, 3D
recursive and 3D Canny filters was assessed using the same volume of 3D synthetic phantoms shown in Figure 1, but contaminated with different
levels of simulated experimental noise. (A1–A5) A graphical representation of the SNR present in the five representative cases shown. Coloring in
A1–A5 is as follows: green dotted line shows the contrast and intensity of the original signal; red line shows the contrast and intensity of the
noise; green solid line shows the scaling and shifting of signal profile towards noise profile. Overall, the graph shows the probability density
function (G(I)) of the normal distribution (B1–B5) 2D sections taken from synthetic volumes contaminated with experimental noise. (C1–C5) 3D
surface rendering of results obtained following application of the 3D BLE filter to the synthetic dataset. (D1–D5) Surface rendering of 3D recursive-
filtered test dataset. (E1–E5) Surface rendering of 3D Canny-filtered dataset.
doi:10.1371/journal.pone.0033697.g002
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We surmised that the 3D BLE behaved better by detecting more

true positive edges and suppressed more noise for this tomographic

data set, and that it again achieved this using a fully automated

algorithm.

The ultimate aim of running an edge-detection algorithm is to

obtain high quality and continuous 3D contours. Noise can

however result in discontinuities. To enhance the performance of

the 3D BLE filter further in this regard, the edges that it detected

were completed using a Bspline interpolation (Figure 4B-inset).

The use of the Bspline clearly improved connectivity. This is seen

at the molecular scale in Figure 4A (insets) where one of the

segmented particle volumes is shown in a range of orientations.

This experiment demonstrated that the accuracy of the molecular

contours obtained was high and sufficient for the detection of

individual macromolecular assemblies within experimentally-

recorded electron tomograms. This potentially paves the way for

automated detection and extraction of molecular volumes for

downstream 3D alignment, classification and single particle

averaging.

Automation of the development of a molecular
resolution cellular 3D atlas

In the preceding sections we established that the automated 3D

BLE filter could be applied to recover molecular-level detail from

noise-corrupted and real experimental volumes. In particular we

demonstrated the application of the 3D BLE filter to the accurate

and automated segmentation of macromolecular structures in situ.

While the examples used in the preceding sections were based on

real tomographic data, the detection of individual particles was not

complicated by the presence of neighboring structures that might

have confounded its performance. As a final test, we therefore

applied the 3D BLE algorithm to a larger subvolume packed with

potentially confounding macromolecular and organellar struc-

tures. For this test, we extracted a subvolume from a tomogram

encompassing a large cytoplasmic volume imaged from a murine

pancreatic cell that had been analysed in detail by manual

segmentation in a previous study [23]. This set was chosen because

it contained tightly packed molecular and organellar contours and

because the performance of the 3D BLE could be compared to

that achieved by manual segmentation performed as part of the

original study.

The results obtained following application of the 3D BLE to the

pancreatic cell tomogram are shown in Figure 5. Figure 5A shows

a representative 2D section of the 3D tomogram. Figure 5B shows

the manually segmented structures reported by Marsh et al. [23]

for a representative subvolume (demarcated by the red box in

Figure 5A) of the full 3D tomogram. Figure 5C shows a 3D surface

view of Figure 5B. Figure 5D shows the output obtained following

processing of the complete volume with the 3D BLE filter.

Figure 5E shows the corresponding densities detected using the 3D

BLE filter. A comparison of Figure 5B and E indicates that 3D

BLE filter was able to detect all of the structural elements

identified by manual segmentation in a fully automated manner.

The tomographic slice in Figure 5G (which is extracted from the

dataset used in Figure 5A) shows the membrane organization of a

mitochondrion in the region. Figure 5H shows the surface view of

the outer membrane as well as the inner cristae (pink). The

detection of inner cristae clearly highlights the capability of the 3D

BLE. By comparison, manual segmentation is labor-intensive and

requires some biological expertise.

These results indicated that at the organellar level, the 3D BLE

was capable of extracting structural data from cellular electron

tomograms in an automated manner. The speed with which this

was achieved was another important property of this filter. The

3.163.261.2 mm3 volume reported by Marsh et al. [23] required

around 9–12 months to segment manually using IMOD [24]. The

3D BLE detected all of these structures (see Fig. 5F, full volume) in

1 h 53 min, which is approximately 40006faster. It should also be

noted that the 3D BLE additionally detected a much more

extensive set of particle contours (Figure 5D), but only those that

corresponded to the set of previously reported manual contours

were shown, in order to facilitate a direct comparison. The current

implementation of the 3D BLE required that the detected

contours corresponding to those reported by Marsh et al. [23] be

marked up (i.e. colored) manually, a process which remains time

consuming. In the future however the use of algorithms such as

those reported by Woolford et al. [13] could be used to detect and

therefore classify particles/organelles based on size and shape to

establish rules for a first pass of automated contour classification

prior to manual curation.

Evaluation of computational requirements
In addition to noise suppression and true edge accuracy, an

important consideration in comparing the 3D BLE filter to current

gold standard filters was the consumption of computational

resources. Table 3 summarises the processing times and memory

usage for the 3D BLE, 3D recursive and Canny filters. When

considering the processing time required by the filter alone, the 3D

BLE at first appeared to perform worst of all three filters, taking

63 s of CPU time to process the 38565126128 voxel test volume

shown in Figure 1, compared with 11 s for the 3D recursive filter

and 21 s for the Canny. But the 3D BLE filter compared much

more favourably, when taking into account the requisite pre- and

post-processing steps. The 3D BLE filter reported here was

Table 2. Statistical evaluation of filter performance using synthetic volumes contaminated with different levels of simulated
experimental noise shown in Figure 2.a

Noise
Signal mean above noise mean 3D BLE (%) 3D recursive (%) 3D Canny (%)

20.72 48.8 (3.66) 44.47 (3.04) 48.61 (3.63)

20.43 65.13 (6.52) 73.08 (8.21) 48.82 (3.66)

0 99.48 (15.22) 80.42 (9.95) 58.67 (5.29)

0.43 65.51 (6.60) 71.22 (7.80) 58.89 (5.33)

0.72 49.28 (3.74) 44.64 (3.07) 53.82 (4.46)

aRMSE scores between the input volumes and the three filter outputs are shown in bold. Smaller scores represent higher levels of correlation with the input volume.
Values in brackets are the percentage voxel variation between input volumes and the three filtered outputs.
doi:10.1371/journal.pone.0033697.t002
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implemented with a small, fixed filter window (565 local

neighborhood - experimentally determined to minimize window

size) with pre-processing and post-processing routines incorporat-

ed directly into the filter algorithm. In comparison, the 3D

recursive filter required several pre-processing steps including the

conversion of the input file to a raw image format as well as post-

Figure 3. Detection of molecular volumes using 3D BLE. The ability of the3D BLE, 3D recursive and 3D Canny filters to resolve molecular
contours was assessed using a test volume populated with 3D GroEL molecules. A representative region of the test volume showing 9 molecules is
shown. (A1–A5) SNR illustrated as for Figure 2. (B1–B5) 2D sections taken from synthetic volumes contaminated with experimental noise. (C1–C5)
Surface rendering of results following application of the 3D BLE filter applied to the test volume contaminated with experimental noise. (D1–D5)
Surface rendering of 3D recursive-filtered test volume. (E1–E5) Surface rendering of 3D Canny-filtered test volume.
doi:10.1371/journal.pone.0033697.g003
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processing which included thresholding and conversion back to

the original (in this example, MRC) image format. Taking these

additional steps into account, the processing time of the 3D BLE

(169 s) was less than that of the 3D recursive filter (186 s) and as

has already been shown, yielded considerably improved results.

The 3D BLE also required slightly less memory than the recursive

filter when the resource requirements for file conversion and

thresholding were taken into account (240.8 Mb vs ,272 Mb).

The Canny filter required no pre- or post-processing but unlike

the 3D BLE and 3D recursive filters, which were fully automated,

the Canny edge detector required adjustment of three parameters

(x: the standard deviation of the Gaussian, y: the high hysteresis

threshold and z: the low hysteresis threshold). To evaluate all

combinations of just two different values for each parameter would

require 8 iterations of the filter. In practice we found that in the

best cases, a minimum of 10 parameter combinations had to be

tested to yield a result comparable in quality to that of the 3D

BLE. Correspondingly, the effective processing time of the 3D

Canny was increased at least 10-fold from 21 s to ,210 s. This

represents an increase of approximately 15–20% over and above

the processing times of the 3D BLE and 3D recursive edge

detectors ((210/187)6100 = 15%) when pre- and post-processing

were taken into account, while making the process much more

labor-intensive. Memory requirements (485 Mb) of the 3D Canny

were also substantially higher – approximately double that of the

3D BLE. This highlights the value of the fully automated 3D BLE

filter, in particular for high volume and/or high throughput image

processing, where the one ‘‘adjustable’’ parameter (s2) was

automatically optimised in our implementation.

Conclusion
We have described here a bona fide 3D implementation of the

BLE filter that is able to accurately recover 3D contours describing

the structure of individual macromolecular assemblies within real

tomographic reconstructions of subcellular volumes. In these tests,

the ability of the 3D BLE to accurately localize and detect edges in

conjunction with noise suppression has been demonstrated. The

performance meets or surpasses that of computationally more

expensive 3D edge detectors by providing a straightforward and

automatable implementation that does not require manual

parameter adjustment. It is especially well suited to 3D particle

detection for subsequent volume extraction, 3D alignment and

Figure 4. Extraction of molecular contours from an electron tomogram subvolume. Application of the 3D BLE, 3D recursive and 3D Canny
filters to a subvolume of an experimentally-recorded tomogram of a resin-embedded C. reinhardtii cell. (A) Unprocessed, central 2D cross-section of
the subvolume extracted from the 3D tomogram showing a region of the chloroplast heavily populated with putative macromolecular assemblies
(dark objects). The inset in (A) highlights a randomly chosen single particle, represented as an isosurface rendering and shown at a selected number
of orientations around the y-axis. (B) 3D surface rendering of results obtained from application of the 3D BLE filter. (C) Surface rendering of the 3D
recursive-filtered subvolume. (D) Surface rendering of the 3D Canny-filtered subvolume.
doi:10.1371/journal.pone.0033697.g004
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averaging and thus holds great promise for the rapid and accurate

segmentation/identification of 3D macromolecular structures.

The fact that the algorithm also yields contour information will

likely prove advantageous for subsequent down-stream processing

steps such as docking higher resolution structures determined from

SPA, NMR, X-ray and electron crystallography in situ within

lower resolution cellular tomograms.

Methods

Implementation
The 3D bilateral edge filter was developed in C++ using the

BSoft C++ library [25,26]. The code has been compiled and tested

on Mac OS X operating systems (Snow Leopard). All testing and

Figure 5. Segmentation of the Golgi region of an insulin-secreting pancreatic beta cell line HIT-T15. (A) A tomographic slice (slice 33)
extracted from the reconstructed volume reported in [23]. The region demarcated by a red box is shown in (B). (B) Objects were segmented by
manually drawing colored lines (contours) using IMOD. (C) Surface-rendered 3D model of the Golgi region analysed in (B) by manual segmentation.
(D) 3D BLE-filtered tomogram. (E) Contours detected automatically by the 3D BLE were then manually colored for comparison to the manually
segmented volume shown in (B). (F) Surface-rendered 3D model generated by automatic segmentation of the same region shown in B. Coloring in
(C–D) and (E–F) is as follows: the seven cisternae that comprise the Golgi in the region - C1, light blue; C2, pink; C3, cherry red; C4, green; C5, dark
blue; C6, gold; C7, bright red. ER, yellow; membrane-bound ribosomes, blue; free ribosomes, orange; mitochondria, bright green; dense core vesicles,
bright blue; clathrin-negative vesicles, white; clathrin-positive compartments and vesicles, bright red; clathrin-negative compartments and vesicles,
purple; mitochondria, dark green. (G) A tomographic slice revealing the outer and inner membrane architecture of a mitochondrion in the Golgi
region. (H) Surface rendering shows that automated 3D segmentation facilitated by the application of 3D BLE detects the mitochondrial membranes.
doi:10.1371/journal.pone.0033697.g005
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experiments were conducted on 3D volumes. Software and

conceptual test data are available from the authors upon request.

Test data/patterns
The accuracy and integrity of the implemented 3D BLE was

initially tested using a truth set comprising a broad range of

conceptual reference volumes representing different geometries

(sphere, cylinder, triangular and rectangular prism) and edge

widths (1, 2, 4, 8 or 16 pixels) designed to thoroughly test the

response of the filter to curves, straight lines and directionality.

The reference volumes were then sequentially corrupted with

increasing combinations of impulse and Gaussian noise (5–80%),

or with simulated experimental noise (see below). Filter perfor-

mance was assessed in comparison to leading filters in the field

including the 3D Canny [7] and 3D recursive filters [19].

Noise suppression and edge-detection capabilities of the 3D

bilateral edge filter were also evaluated using an experimental test

volume populated with one hundred uniquely oriented density

maps generated from the 6 Å 3D reconstruction of GroEL

(EMDB accession code 1081) [22]. In order to comprehensively

evaluate filter detection limits, the test volume was contaminated

with differing amounts of simulated experimental noise adjusted to

achieve mean signal intensity either greater, equal or less than the

mean noise intensity. Contrast variation was normally distributed

by adjusting the signal mean intensity (28.6% to +8.6%) to match

that of the noise mean intensity. The width of the distribution was

parameterised by the standard deviation of signal (247% to

+47%) to match that of the noise standard deviation, where 0%

was the mean contrast of the embedded test objects.

The simulated experimental noise was extracted from cytosolic

regions of an algal cell tomogram in which organelles, filaments or

other major subcellular structures were absent. The intensity and

contrast profiles of the noise were defined and this information was

then used to model the noise profile in Figures 2 and 3. The signal

strength of the truth reference particles was normalised relative to

the noise i.e. the mean intensity and contrast of the truth reference

images was set to the same value as the mean values of the noise so

that particles were initially undetectable (See Figure 3 B3) and the

contrast of the truth sets then adjusted in order to identify the

maximum experimental noise tolerated by the three edge

detectors.

Filter performance was evaluated in terms of true and false

positive object detection rates and the calculated RMSE between

the filtered volumes and the corresponding uncontaminated

original volumes, as well as by comparison of processing times

and memory requirements.

Electron tomography
The final tests were performed on electron tomograms of either

the chloroplast region of a C. reinhardtii cell or the Golgi region of

an insulin-secreting pancreatic cell. For C. reinhardtii, cells (strain

stm3 [27]) were prepared for plastic embedding by concentration,

high pressure freezing then freeze substitution and fixation using

2% OsO4 (osmium tetroxide) and 1% TA (tannic acid) according

to Jimenez et al. [28]. 300 nm sections were cut and post stained

using 2% aqueous uranyl acetate and Reynolds lead citrate.

Sections were imaged at 23,0006 nominal magnification using a

Tecnai F30 FEG-TEM (FEI) operating at 300 kV, equipped with

a 4K64K lens-coupled camera (Direct Electron). Tilt series data

were collected over a range of 660u at 1.5u increments along two

orthogonal axes and recombined computationally to produce a

dual-axis 3D reconstruction using the IMOD software package

[23,24,29]. Experiments detailing the imaging, reconstruction and

manual segmentation of the Golgi region of an insulin-secreting

pancreatic cell are the focus of a separate study reported previously

by Marsh et al. [23].
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