
ENDOPLASMIC RETICULUM

Keeping in shape
Three proteins work together to control the shape of the endoplasmic

reticulum in animal cells.

CRAIG BLACKSTONE AND WILLIAM A PRINZ

T
he endoplasmic reticulum is the largest

single structure in eukaryotic cells. It con-

sists of a range of interconnected shapes,

including sheets and tubules, and comprises a

lumen enclosed by a membrane that is continu-

ous with the membrane that surrounds the

nucleus of the cell (Figure 1). The structure and

dynamic nature of the endoplasmic reticulum

allow it to be involved in many processes in cells:

these processes include protein production and

degradation, cell signaling, and the synthesis

and distribution of lipids and fat molecules.

Form follows function, and understanding how

the distinct shapes of the endoplasmic reticulum

are regulated and maintained is currently an

area of intense interest in cell biology

(Goyal and Blackstone, 2013; Westrate et al.,

2015).

Over the past decade, several proteins that

shape the endoplasmic reticulum have been

identified. In many cases, these proteins are evo-

lutionarily conserved across eukaryotes, from

yeast to mammalian cells. Membrane proteins of

the reticulon and REEP families can generate

curves in membranes and act to maintain the

tubules (Voeltz et al., 2006). Atlastin proteins

mediate the tethering and fusion of tubules to

one other to form three-way junctions (Hu et al.,

2009; Orso et al., 2009), which appear to be

stabilized by a membrane protein called luna-

park (Shemesh et al., 2014; Chen et al., 2015).

Several other proteins help the endoplasmic

reticulum to maintain contact with the cell mem-

brane, other cell compartments and the cyto-

skeleton. Increasingly, studies have revealed

dynamic changes in the shape of the endoplas-

mic reticulum in processes such as cell division

and during electrical activity in neurons

(Goyal and Blackstone, 2013; Phillips and

Voeltz, 2016).

Proteins involved in shaping the endoplasmic

reticulum have mostly been studied individually,

even though they are known to interact with one

another. Now, in eLife, Tom Rapoport and co-

workers at Harvard Medical School – including

Songyu Wang, Hanna Tukachinsky and Fabian

Romano – report on how three key proteins

work together to shape and maintain the endo-

plasmic reticulum (Wang et al., 2016).

Wang et al. performed CRISPR/Cas9 gene

knock outs and stable gene transfections in

mammalian cells and also investigated egg

extracts from the frog Xenopus, which can form

an endoplasmic reticulum network in vitro that is

strikingly similar to that seen in intact cells. They

found that in addition to being required for the

formation of three-way junctions, atlastins are

also necessary to maintain such junctions. Wang

et al. further report on the interplay among the

proteins that are involved in shaping the endo-

plasmic reticulum. For instance, lunapark is not

required for three-way junctions to form, but its

depletion appears to cause a loss of tubule junc-

tions and an increase in the number of sheet-like

structures.

Another remarkable finding is that the endo-

plasmic reticulum network fragments if atlastin is

inhibited (see also Orso et al., 2009), or if the
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reticulon proteins are overexpressed. This indi-

cates that the network can spontaneously disas-

semble in some circumstances and may explain

why no proteins specifically involved in the split-

ting of tubules have ever been identified.

Although the endoplasmic reticulum is generally

thought to be continuous, previous studies have

shown that it can split up in certain situations,

for example during the fertilization of starfish

eggs or during excessive electrical activity in

neurons (Goyal and Blackstone, 2013). A future

challenge will be to find out how and why cells

might fragment their endoplasmic reticulum.

Finally, Wang et al. propose a compelling

mechanism for how lunapark is regulated by

phosphorylation during cell division. Modifying

lunapark to mimic phosphorylated lunapark

caused it to disappear from three-way junctions.

This result, coupled with a recent study showing

that lunapark is a component of a ubiquitin

ligase complex at three-way junctions

(Zhao et al., 2016), will probably lead to addi-

tional studies into how structural modifications

regulate these proteins to control the shape of

the endoplasmic reticulum.

We have likely just scratched the surface of

how the endoplasmic reticulum is shaped, and

additional proteins and regulatory mechanisms

will surely be uncovered. Investigating the

dynamic interactions of the endoplasmic reticu-

lum with other cell compartments and the

plasma membrane seems a particularly exciting

area. Furthermore, numerous endoplasmic retic-

ulum shaping proteins are mutated in inherited

neurological disorders, particularly the heredi-

tary spastic paraplegias (Blackstone, 2012).

Future studies will benefit from emerging new

super-resolution microscopy tools, improving

our understanding of how the endoplasmic retic-

ulum is dynamically shaped in health and

disease.
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Figure 1. The endoplasmic reticulum consists of various interconnected shapes. At the center of the cell, the

nuclear envelope contains pores that control what molecules enter and exit the nucleus. The nuclear envelope is

also connected to the stacked sheets (cisternae) of the rough endoplasmic reticulum, which is specialized for

protein production. From the rough endoplasmic reticulum, the tubules of the smooth endoplasmic reticulum

(blue) form a network that extends across the cell and is interspersed with sheet-like structures (peripheral sheets).

From Goyal and Blackstone (2013).
Image credit: Goyle and Blackstone (public domain).
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