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Several species of yeast, including the baker’s yeast Saccharomyces cerevisiae, underwent a genome duplication
roughly 100 million years ago. We analyze genetic networks whose members were involved in this duplication. Many
networks show detectable redundancy and strong asymmetry in their interactions. For networks of co-expressed
genes, we find evidence for network partitioning whereby the paralogs appear to have formed two relatively
independent subnetworks from the ancestral network. We simulate the degeneration of networks after duplication
and find that a model wherein the rate of interaction loss depends on the ‘‘neighborliness’’ of the interacting genes
produces networks with parameters similar to those seen in the real partitioned networks. We propose that the
rationalization of network structure through the loss of pair-wise gene interactions after genome duplication provides
a mechanism for the creation of semi-independent daughter networks through the division of ancestral functions
between these daughter networks.
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Introduction

Beyond its obvious potential for creating new gene
products [1], gene duplication also affects the structure of
genetic networks [2–4]. Duplication initially increases the
number of network interactions, but the subsequent loss of
interactions can give rise to networks with novel architec-
tures. The particular changes will depend on the type of
duplication: i.e., single gene duplication versus segmental or
whole genome duplication. Here we study network evolution
after a whole genome duplication in the yeast Saccharomyces
cerevisiae [5,6].

Previous studies of network evolution have not needed to
differentiate between single-gene and whole genome dupli-
cation [2–4,7]. However, genome duplications are interesting
because they provide networks with many simultaneously
duplicated nodes. After such an event, the number of genes
(nodes) in the network has doubled, while the number of
interactions has quadrupled (Figure 1A) [8,9]. Subsequent
interaction gain or loss reduces redundancy [8], generally
rapidly [10–12].

We searched for patterns in how surviving interactions are
partitioned among the duplicate genes. In particular, it is
possible that specialization among the duplicates would yield
a network divided into two parts, each having one copy of
each pair of paralogs [13–15]. An interesting example of this
possibility involving the apparent duplication of the gluco-
sinolate synthesis pathway in Arabidopsis has been identified
by Gachon et al. [16]. After such specialization, we would
expect that interactions between genes would be mostly
confined within the two new subnetworks with few inter-
actions crossing between them. Another example of this
process, discussed below, concerns the glucose metabolism
pathway in yeast. This pathway contains several duplicate
gene pairs from whole-genome duplication (WGD) that are
active under differing cellular conditions. These include

genes for glucose sensing (SNF3 and RGT2), glucose transport
(HXT6/HXT1) and the enzymes that catalyze the initial
reaction of glycolysis (hexokinases HXK1 and HXK2). In all
three cases, the first member of the pair is involved in the
metabolism of glucose at lower concentrations than is the
second member [17–19]. The idea that gene paralogs formed
at WGD can associate into semi-autonomous subnetworks can
be thought of as the ‘‘division of labor’’ over evolutionary
time, with duplicate pairs specializing in a particular part of
the ancestral network. It is also closely related to models of
duplicate gene divergence through subfunctionalization
[20,21].
We have studied the evolution of a subset of the yeast

genetic network containing the 551 gene duplicate pairs
preserved since the whole genome duplication [5,22]. First, we
show that such networks tend to display asymmetry and
redundancy in their interaction distributions. We next
present evidence that some of these networks have significant
functional partitioning, with concomitant effects on the
patterns of protein localization and gene expression. Exam-
ples of the genes found in such networks are discussed.
Finally, we present models of network evolution that mimic
several properties of the real networks and hence provide
insight into the forces that may have driven that evolution.
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Central Idea and Algorithm
We represent the paralogs from WGD as a graph divided

into two columns with paralogs opposite each other. The
order of paralogous pairs in the columns is arbitrary (Figure
1A). Gene interaction data is overlaid as graph edges and can
include protein-protein interactions, shared expression
patterns, or interactions between transcription factors and
their targets.

We define two types of edge: ‘‘internal’’ edges connecting
nodes in the same column (arcs or vertical lines in Figure 1A)
and ‘‘crossing’’ edges joining nodes in different columns
(diagonal lines in Figure 1A). Although we can speak
conceptually of biologically interpretable subnetworks (such
as a metabolic pathway), in practice our data will generally
not give such clear-cut patterns. Our approach is concep-
tually similar to a pathway alignment algorithm developed by
Kelley et al. [23] but focuses on a different optimality
criterion and is applicable only to the particular case of
WGD, both of which allow us to make stronger assumptions
regarding the evolution of interactions.

We thus require a measure on these data that allows
patterns of network evolution to be studied. The definition
we have used is that of a network partition. Given a set of n
duplicate gene pairs (2n genes), a partition of n genes is
created by selecting one member from each duplicate pair.
This procedure defines the left-hand column in Figure 1A

and implicitly defines the complementary right-hand column.
There are 2n�1 possible unique partitionings of the duplicates.
The above suggests an optimality criterion: define the best
partitioning of paralogs as the one that minimizes the
number of crossing edges. Our heuristic partitioning algo-
rithm is able to optimally partition networks up to a size of 2n
¼ 402 (see Materials and Methods).

Results

Network Redundancy
Because interactions between genes can be defined at

varying stringencies and because not all paralogous pairs
interact with other genes, our data naturally presents itself as
19 graph components drawn from six large-scale datasets (see
Materials and Methods). These components (containing
subsets of the 551 duplicate pairs) will be the ‘‘networks’’
we refer to in our analysis below. Because these networks owe
their origins to genome duplication, we searched for
redundant interactions (cases where more than one inter-
action exists between two pairs of duplicates; see Figure 1A
and 1B) in the networks. Teichmann and Babu have
previously shown in transcriptional regulatory networks that
redundant interactions survive even for comparatively
ancient duplicates [7], so it is reasonable to expect survival
of some such interactions since WGD. We compared the

Figure 1. Network Duplication

(A) A view of network duplication illustrating our representation of these networks. Nodes (genes) directly opposite each other are paralogs resulting
from WGD. Given genes n1 and n2 and their respective paralogs p1 and p2, redundant interactions (dashed lines) are those that occur more than once in
the set fn1:n2 , n1:p2 , p1:n2 , and p1:p2g.
(B) Two statistics used to quantify these networks. Symmetry measures the degree to which one network partition has more interactions than the other.
Redundancy measures the proportion of edges which have survived in more than one copy since duplication (see main text). Example values for the
extant network in (A) are also given.
(C) Network randomization via subgraph replacement. Each quartet of nodes is randomly replaced by one of the possible subgraphs with the same
number of edges. Subgraph frequencies are dependent on the overall edge frequencies of the nodes.
DOI: 10.1371/journal.pbio.0040109.g001

PLoS Biology | www.plosbiology.org April 2006 | Volume 4 | Issue 4 | e1090546

Network Partitioning after Duplication



proportion of the total network edges that were redundant to
the degree of redundancy seen in random networks with the
same node degree distribution. Many of the real networks
have significantly more redundancy than the random ones,
presumably due to genome duplication (Figure 2A: we apply a
Bonferroni correction for 19 hypothesis tests, thus p � 0.002,
with a , 0.0026 to reject the null hypothesis of no
redundancy).

Network Asymmetry
For each dataset in Table 1 we searched for the optimal

partitioning as described above. We then calculated the
symmetry between the numbers of interactions in the
resulting two partitions. Symmetry (r) was defined as the
ratio of the number of edges in the edge-poor partition to the
number of edges in the edge-rich partition (Figure 1B). Were
edges distributed at random with respect to the partitions, we
would expect approximate symmetry (r ’ 1) between a
partition and its complement. Instead, we find for many
networks that one partition had significantly more inter-
actions than the other (r , 1.0, two–sided Binomial test with
Bonferroni correction, p � 2 3 10�5; Figure 2B). Note that,
because we have often used different thresholds to define
networks, several of the networks in Figure 2 are subnetworks
of other networks (thus networks H075_1, H075_2,
H075_3, H08_1, and H08_2 are subnetworks of H07 with
higher interaction threshold values of 0.75 or 0.8). This
selection procedure will tend to result in networks with some
variation in the level of asymmetry (unpublished data).

Network Partitioning
As discussed, we searched for evidence for significant

interaction partitioning using our algorithm. To determine if
the networks showed more partitioning (fewer crossing edges)

than we would expect by chance, we randomized the
networks and recalculated the optimal partitioning. Random-
ization was carried out by selecting every possible pair of pair
of paralogs (four genes). These four-node subgraphs were
replaced at random by another four-node subgraph with the
same number of edges (see Figure 1C). The probability of
subgraph replacement was made to depend on the inherent
asymmetry in interaction degree between paralogs. Thus, we
calculated the average fraction p of the total number of
interactions for a paralog pair that belonged to the
interaction-rich paralog. The probability of an interaction
joining two interaction-rich genes in a subgraph is then p2,
while the probability of an interaction joining an interaction-
rich gene to an interaction-poor one is 2p(1�p) (because there
are two possible interactions of this type). The subgraph
replacement probabilities are calculated accordingly.
Neither the protein-protein interaction data [24–28] nor

the transcriptional regulatory data [29] showed significant
network partitioning (Table 1), whereas there was evidence
for significant partitioning in the co-expression data of
Hughes et al. [30] and the shared expression change data of
Gasch et al. [31]. For the co-expression data [30] we defined
interacting genes as those sharing expression similarity
(Pearson’s r) of 0.7 or greater. As Table 1 shows, these data
showed significant partitioning of edges when compared to
randomized networks (p � 0.002). Of course, the issue of the
multiple tests inherent in our approach should be considered.
A standard Bonferroni correction is suboptimal for two
reasons: first because many of our p-values are upper bounds,
and second because several of the networks are subnetworks
of other networks. We can avoid the second issue by
considering only the largest network in each case: we then
have six comparisons, with the two gene expression networks
still showing significant partitioning after this correction (p ,

Figure 2. Redundancy and Asymmetry

(A) Proportion of total interactions in our networks that are redundant. Black central bars give the mean proportion of redundancy in randomized
networks: grey outer bars indicate significant deviation from this expectation (p , 0.002) while white outer bars indicate no significant deviation
(Datasets PPG03, PPG05, H08_1, and H08_2 do not show significant differences in redundancy to the randomized networks).
(B) Symmetry of inferred partitions for the same 19 datasets. Symmetry is reported as the ratio of the number edges in the edge-poor partition to the
number in the edge-rich partition. Cases where the differences from the expectation of r ¼ 1.0 were of marginal significance are shown in grey for
reference.
DOI: 10.1371/journal.pbio.0040109.g002
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0.001 for each, with a¼ 0.008 for the Bonferroni correction).
As a further test, we considered the overall distribution of co-
expression correlations for the genes in the network H07. As
shown in Figure S1, there is a significant difference in the
distribution of correlation values between the two partitions
and a significantly lower mean correlation for comparing
genes between partitions (likelihood ratio test [LRT], unpub-
lished data). Moreover, the 201 duplicate pairs show an
average correlation that is significantly higher than the
average in either of the partitions, consistent with their
recent duplication (LRT, unpublished data). The average
correlation between duplicates is nonetheless much lower
than our cutoff for an interaction (r¼ 0.27 as opposed to r¼
0.7).

An example network (H075_1) is shown in Figure 3. Note
the large number of internal edges and the few crossing edges
and recall again that WGD paralogs are arranged opposite
each other. Hence those genes without interactions are
nonetheless of importance: the fact that their paralogs
possess interactions indicates divergence between the two
genes since WGD. Our results were robust to the exclusion of
55 pairs of ribosomal proteins from the largest subnetwork
(H07) and to the random removal of 5% of interactions from
this same network (unpublished data).

For the data from Gasch et al. [31], who studied the

transcriptional response of yeast to 11 stress conditions, we
found that because most genes did not show expression
changes in most experiments, a correlation analysis similar to
that above was inappropriate (many genes were highly
correlated with each other because they showed no expres-
sion changes). Instead, we considered only genes with a
change of expression of at least 3-fold in a stress condition
relative to a control condition. Our approach is similar to
that used by Wagner [32]. We then connected genes that both
showed expression changes in the same three (or four)
conditions (datasets G3 and G4 in Table 1). A few genes in
these experiments showed changes in expression over many
of the 11 experimental conditions, and these generalized
stress response genes were thus connected to many other
genes. To test for any resulting bias, we removed all genes
with greater than six (G3_6 dataset) or greater than four
(G3_4 dataset) responses, but in both cases the partitioning
remained significant (Table 1). The interaction definition
used here can connect gene pairs where one gene is induced
and one repressed in a given condition. We feel that such
connections are valid because the genes in question show
evidence of important associations. However, significant
partitioning remains even when only genes whose direction
of changes are the same are connected (p , 0.001).
We note that, when the two gene expression analyses

Table 1. Network Statistics for 19 Analyzed Datasets

Dataset

Namea
Interaction

Type

Data Tb 2nc Edges Crossing

Edges

Clustering

Coefficientd
pe

PPDC Protein-protein DIP coref NA 206 145 28 0.72 . 0.05

PPG01 Protein-protein Filtered complexesg p . 0.1 124 75 10 0.72 . 0.05

PPG02 Protein-protein Filtered complexes p . 0.2 114 66 6 0.73 . 0.05

PPG03 Protein-protein Filtered complexes p . 0.3 38 19 0 0.76 . 0.05

PPG05 Protein-protein Filtered complexes p . 0.5 32 16 0 0.75 . 0.05

PPIU Protein-protein Pair-wise two hybridh NA 340 209 19 0.81 . 0.05

L07 Regulatory Chromatin precipitationi p , 10�7 30 16 2 0.81 . 0.05

L05 Regulatory Chromatin precipitation p , 10�5 172 101 15 0.84 . 0.05

L04 Regulatory Chromatin precipitation p , 10�4 276 189 26 0.73 . 0.05

H07 Co-expression Pair-wise Pearson’sj r � 0.7 402 797 96 0.82 < 0.001

H075_1 Co-expression Pair-wise Pearson’s r � 0.75 130 187 10 0.86 < 0.001

H075_2 Co-expression Pair-wise Pearson’s r � 0.75 94 113 1 0.83 = 0.002

H075_3 Co-expression Pair-wise Pearson’s r � 0.75 40 61 20 0.79 > 0.05

H08_1 Co-expression Pair-wise Pearson’s r � 0.8 40 44 0 0.79 < 0.001k

H08_2 Co-expression Pair-wise Pearson’s r � 0.8 38 25 0 0.76 > 0.05

G3 Stress response Shared conditions 3l 122 1314 169 0.94 < 0.001

G4 Stress response Shared conditions 4 64 384 40 0.95 < 0.001

G3_6 Stress response Shared conditions 3, 6 Maxm 114 1093 150 0.94 < 0.001

G3_4 Stress response Shared conditions 3, 4 Maxm 80 334 25 0.96 < 0.001

Shown are the sources, sizes, and composition of the networks studied as well as the significance of any network partitioning.
aDatasets H075_1, H075_2, and H075_3 are connected components within a network defined by an interaction threshold of Pearson’s r � 0.75, and similarly for H08_1 and H08_2.
bThreshold value for an interaction: thus, for the complex data PPG01, interactions were assumed if the p-value for the interaction was greater than 0.1.
cNumber of genes in the network.
dClustering coefficient: measures to what degree the nodes that a given node interacts with also interact with each other (i.e. the ‘‘cliquishness’’ of the network; [53]).
eSignificance of partitioning as compared to randomized networks (see Materials and Methods).
f[25,26].
g[24].
h[27,28].
i[29].
j[30].
kIn each of the 20 duplicate pairs in this network, one of the paralogs had no interactions. Hence, our subgraph randomization method using edge frequencies failed, and this p-value
reflects symmetric randomization.
lNumber of conditions where both genes had to share an expression change for an interaction to be recorded [31].
mSame as previous footnote, except that in this case interactions for genes with more than six or four conditions with expression changes were excluded.
DOI: 10.1371/journal.pbio.0040109.t001
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(datasets G3 and H07) are combined, roughly 40% of the
preserved duplicate gene pairs (230/551) appear in a network
showing significant partitioning of interactions.

One would expect network partitioning to leave its mark
on other aspects of yeast’s cellular organization. We thus
examined the distribution of shared regulatory motifs and of
protein localization in networks with significant partitioning.
We also discuss the concordance of our inferred partitions
with a well-understood part of the yeast metabolic network
and their association with knockout phenotypes.

Partitioning, Protein Localization, and Sequence Motifs
An obvious question is whether the pairs of inferred

partitions are distinct from one another in where their
constituent proteins are located in the cell or in how often
different regulatory motifs are found upstream of the genes
in question. To test for such differences, we counted the

number of proteins located in each of seven subcellular
compartments [33]. We then asked, using a permutation test,
whether the number of genes in each compartment differs
between the two partitions inferred for our largest dataset
with significant partitioning (H07). An identical analysis was
done with a total of 65 sequence motifs [34]; see below for
details on motifs used. Surprisingly we observe no differences
in these two distributions between the partitions (unpub-
lished data). Given our simulation results below, we suggest
that, because partitioning appears to be a function of local
network structure, the partitions, which consist of many
duplicate genes (201), may still be grossly similar at this more
global level.
Given than our partitions did not appear to differ in global

motif usage or in overall localization distribution, we next
considered whether the partitions considered individually
showed an excess of pairs of genes located in the same

Figure 3. Example Network

An example subnetwork (H075_1 in Table 1) with significant partitioning (p , 0.001). Edges join genes with co-expression correlation (Pearson’s r) �
0.75. There are 65 genes pairs in this network (2n ¼ 130).
DOI: 10.1371/journal.pbio.0040109.g003
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cellular compartment or with the same upstream motif
compared to the set of 1,102 genes with WGD paralogs taken
as a whole. This test will indicate if the partitions are enriched
in functionally related genes. For the two largest networks
with significant partitioning (H07 and G3), we tested whether
the partitions had more co-localized proteins (i.e. proteins
found in the same cellular compartment; [33]) than we would
expect given the overall frequency of co-localization among
these 1,102 genes. In both cases the partitions showed a
significant increase in co-localization (p , 10�5). We further
considered whether the identified network partitions were
associated with DNA-level sequence motifs by studying the
frequency of 71 conserved sequence motifs identified by
Kellis et al. [34] in the 1,500 basepairs upstream regions of
duplicate gene pairs. For these same two networks (H07 and
G3), we first compared the average number of shared motifs
for pairs of genes within each partition (kp, fit to a Poisson
distribution using maximum likelihood; see Figure S2) to the
average number of shared motifs for a sample of 20,000
random pairs of the 1,102 genes (kr). We also compared the
values of kp between each pair of partitions. In these networks
both partitions had kp . kr (p � 0.0003; LRT). We also saw
that one partition always had significantly more shared motifs
than other partition (p � 0.002; LRT). Our results indicate
that the differences in gene expression patterns seen between
partitions are mirrored by differences in sequence-level
motifs. This result is perhaps not surprising as these motifs
likely play a role in regulating expression.

Partitioning and Cellular Metabolism
We have already discussed the idea of functional partition-

ing of gene pairs after duplication. With apologies to Adam
Smith, we refer to this possibility as the division of labor, with
the implication that it allows the functional specialization of
duplicate genes. A known example of this concerns a WGD
duplicate pair involved in glycolysis but not found in
networks H07 or G3. The proteins encoded by the genes
CDC19 and PYK2 both catalyze the last reaction in glycolysis,
the conversion of phosophoenol-pyruvate to pyruvate. How-
ever, CDC19 is induced by the upstream metabolic inter-
mediate fructose-1–6-biphosphate, while PYK2 is not [35].
This difference can be understood if it is noted that PYK2 is
active at lower glucose concentrations than is CDC19 [35],
conditions where the concentration of upstream metabolites
may be insufficient to induce the required activity. Thus, this
duplication frees the cell from having to make a trade-off
between efficiency at high and at low glucose levels. Similar
divisions are apparent in our networks: two high-affinity
hexose transporters, HXT4 and HXT6, are both placed in the
same partition as the hexokinase gene HXK1 in networks H07
and H075_2, in agreement with the known roles of these
genes in low-concentration glucose metabolism [17–19].
Similarly HXK1 has many interactions in stress response
network G3, while its WGD paralog HXK2, active during
‘‘standard’’ conditions of glucose fermentation, does not.
Functional differences also exist between HXK1 and HXK2.
In particular, HXK2 has regulatory functions including the
regulation of its paralog HXK1 [19,36,37]. Considered
together, we believe the above facts constitute evidence for
division of labor, with one group of glycolytic gene duplicates
functioning at low glucose levels and the other at higher
levels.

In addition, the co-expression networks (H07 and H075_2)
also contain some smaller gene ‘‘circuits’’ which may be
associated with responses to growth in the absence of glucose.
The duplicate gene SIP3 (WGD paralog: YHR155W) is part of
the SNF1-complex responsible for inducing glucose-re-
pressed genes in the absence of glucose [38,39]. Several of
the genes SIP3 interacts with fit plausibly into such a
regulation pattern. These include the glycerol transporter
GUP1 [40], the glyoxalase GLO2 [41], and the gene DCI1
involved in fatty acid oxidation [42], all genes whose
metabolic activity would need to change depending on
glucose levels. The paralogs of these three genes either show
different phenotypes (GUP2, ECI1) or are only present in the
mitochondria (GLO4), suggesting functional divergence.
It is important to bear in mind that despite the attractive-

ness of the hypothesis of complete network duplication
followed by specialization, the high levels of gene loss
observed in yeast after WGD [43] will hamper our ability to
perceive biologically relevant patterns in these data (because
the resulting single copy genes that form part of any complete
biologically relevant network are not present in our analysis).

Stress Response and Knockout Phenotypes
Given the high asymmetry in the stress response datasets, it

is natural to ask what the role of the interaction-poor
paralogs is. To do so, we examined gene knockout data from
Giaever et al. and Steinmetz et al. [44,45] (curated by SGD;
[46]). For the largest stress response network (G3) there is no
significant difference between the number of interaction-rich
paralogs which have detectable knockout phenotypes when
their paralogs do not and the number of interaction-poor
paralogs who have such phenotypes (nine versus eight). This
result argues against the interaction-rich paralogs being
generally more important. Coupled with the above results,
there are thus strong indicators of differences in gene
function between these duplicate genes.

Simulated Network Evolution
Given the existence of networks with significant partition-

ing, we used simulations of network evolution to help us
understand the forces at work. Starting from a fully-
redundant network derived from dataset H075_1 (Figure
3), we simulated network evolution under three models of
interaction loss (see Materials and Methods) and examined
the distributions of crossing edges seen among 500 simulation
replicates (black bars in Figure 4). In the simplest model
(‘‘uniform loss;’’ Figure 4A), interactions are lost at random
until redundancy reaches the level seen in the real network.
The second model (‘‘poor-get-poorer;’’ Figure 4B) makes the
probability of interaction loss inversely proportional to the
number of ancestral interactions retained by the two nodes
involved. The third model: ‘‘co-loss’’ (Figure 4C), makes the
probability of edge loss dependent on the number of shared
neighboring nodes S of the two nodes n1 and n2 (i.e. the
number of nodes with which both n1 and n2 have an
interaction). We compare this to Smax, the maximum number
of shared neighbors across the four combinations of these
two genes and their respective paralogs p1 and p2 (i.e., n1:n2,
n1:p2, p1:n2, and p1:p2). Edge loss probability decreases with
increasing S/Smax.
The performance of the three models was assessed by

comparing the degree of partitioning seen in the 500
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simulated networks (black bars, Figure 4A–C) to the parti-
tioning seen after randomizing each of these simulated
networks using the above subgraph replacement approach
(grey bars). If these two distributions are similar that suggests
that that model does not produce partitioned networks. The
second two models (Figure 4B and C) have a variable
parameter allowing us to tune the simulations to be similar
to the real networks. For Figure 4B, separation between the
simulated networks and their randomized counterparts is
low, but asymmetry approaches values seen in the real data
(Figure 4D). In Figure 4C, tuning the model gave an average
proportion of crossing edges nearly identical to the real data
(10.11 versus 10; arrow in Figure 4C). Also, although mean
symmetry in these simulations (Figure 4D) was higher than in
the real co-expression data, median symmetry was lower.
Thus, the co-loss model (Figure 4C) provides a close
approximation to real data for two parameters and gives
clear separation between the simulated networks before and
after randomization.

For comparative purposes, we performed similar simula-
tions on a network without significant partitioning, the
protein-protein interactions from the database of interacting
proteins (DIP core, dataset PPDC in Table 1). In this case the
co-loss model did not generate significant partitioning or
asymmetry (Figure 4D), likely because the input network
lacked the clustering needed for such patterns to emerge
(note the lower clustering coefficients for this network as
compared to H075_1 in Table 1). The poor-get-poorer
model instead provided the best fit to this network.
Asymmetry was very similar to the real data, and the number
of crossing edges in the simulations was not significantly
different from the actual network (unpublished data). We

discuss implications of these simulation results and of the
division of labor among duplicates more generally below.

Discussion

Our analysis of the pattern of gene interactions seen
among duplicate genes in S. cerevisiae reveals interesting high-
level features of network duplication. There has been
considerable, though incomplete, loss of redundant inter-
actions since WGD, as well as development of significant
asymmetry in interactions in several cases (Figure 2).
We also found evidence for the partitioning of network

interactions between duplicate genes in gene expression
networks. Because partitions are inferred algorithmically, it is
important to be certain they have biological significance. We
point to three distinct lines of evidence that this is the case.
First, real networks possess more partitioning than do
randomized ones. Second, partitions show a non-random
distribution of shared regulatory motifs. We would not expect
this were the partitions biologically irrelevant. Finally, at least
some partitions show differences in the frequency of protein
co-localization.
Van Noort, Snel, and Huynen have previously observed

that gene co-expression networks can evolve in a modular
fashion, whereby, after the shared duplication of an ancestral
pair of co-expressed genes, the two pairs of paralogs diverge
in expression to form two new genetic ‘‘circuits.’’ Each circuit
of two co-expressed genes contains one member of each
duplicate pair but the circuits are not themselves co-
expressed with each other [15]. Our analysis allows us to
study such patterns at a global scale, rather than focusing on
pair-wise comparisons. Moreover, because our set of dupli-

Figure 4. Modeling Interaction Loss

(A–C) Three models of network interaction. Black bars are the number of crossing edges in the simulated networks. Grey bars are that number after
randomization. (D) compares the symmetry and number of crossing edges of the real data to the averages from the various models. For (D), results of
simulations carried out on the DIP core set of protein interactions (dataset PPDC in Table 1) are shown in grey for reference (see main text).
DOI: 10.1371/journal.pbio.0040109.g004
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cate genes is known to have originated with a single event, we
can make stronger conclusions regarding the evolution of the
network. We thus find larger scale examples of this
phenomenon, with several pairs of duplicates diverging into
parallel functional groups (such as members of the glycolytic
pathway). However, as Figure 3 indicates, patterns of network
evolution are more complex that simple pair-wise pathway
divergence.

The obvious question raised by our analysis is whether the
partitioned networks we observe formed through the
degenerative partial loss of ancestral functions (subfunction-
alization; [20,47,48]) or the appearance of new functions
(neofunctionalization). For the glycolytic genes, it seems
plausible to argue for the former, as the ancestral yeast
certainly expressed the glycolytic pathway genes at both high
and low glucose levels. However, because we lack detailed
knowledge of the regulation involved, we cannot make this
claim absolutely. This difficulty is a general one, and, if we
have a slight preference for the subfunctionalization hypoth-
esis, it is simply because it is the more parsimonious one.

Our simulations of network evolution also provide some
insight into these questions. We were able to generate
networks with partitioning similar to real data, based on a
set of rules that make interaction loss more or less favorable
depending on the local interaction environment of a
duplicate (Figure 4C).

Our three models allow interactions to be lost through
genetic drift or directional selection and to be maintained by
purifying selection. The models differ in how ‘‘knowledge’’ of
the total network is allowed to influence selection. Under the
uniform loss model, nodes have no knowledge of the wider
network, implying that a gene’s function is independent of
other genes. Given these features, it is unsurprising that this
model produces symmetric, non-partitioned networks (Fig-
ure 4A) which are most similar to the regulatory networks
studied (which also show neither partitioning nor asymme-
try). One can argue that the loss of a single binding site for a
transcription factor may have a relatively limited impact on
whether that factor will lose other interactions, which may be
the reason for the similarity between these simulated
networks and the regulatory data. The poor-get-poorer
model allows local knowledge to affect interaction retention.
The result is asymmetric but non-partitioned networks
similar to real protein-interaction networks (which exhibit
weak asymmetry in their interactions, see Figures 2 and 4D).
This similarity implies that loss of a direct protein interaction
would be disadvantageous but that the loss of a distant
interaction in a partner protein would have a much weaker
effect. This conclusion is supported by the fact that the poor-
get-poorer model created simulated networks with interac-
tion patterns very similar to the protein-protein interaction
network used to seed the simulations (Figure 4D). The co-loss
model incorporates regional knowledge by considering how
many shared neighbors two interacting genes have. Here, a
gene’s effectiveness depends both on direct partners and on
more distant connections. Note that the nature of co-
expression network evolution is inherently regional, because
changes in one gene’s expression pattern could simultane-
ously disrupt its expression correlation (and hence ‘‘inter-
action’’) with several other genes. Thus, it is not unexpected
that the co-loss model gives rise to networks similar to real
co-expression networks. Partitioning arises under this model

because we require all ancestral edges to be preserved in at
least one copy. Thus, interaction loss in one paralog will
naturally give rise to a subnetwork containing that gene’s
paralog which preserves the relevant interactions. Finally, it is
interesting to note that the co-loss model can create
partitioning by a process that is strictly degenerative and
hence similar to the subfunctionalization model of Force et
al. [20]. Such a possibility belies the idea that all complexity in
living systems must evolve through directional selection,
The ramifications of how genome duplication may lead to

the division of labor among duplicates needs further
exploration. Although it increases the complexity of a system
without any necessary improvement in function, the new
network layout may have other desirable features such as
robustness [49] or evolvability [50]. Moreover, the presence or
absence of partitioning in the network may be indicative of
the internal dependencies of the nodes upon each other. All
of these ideas will be interesting possibilities to test with
future functional genomic data.

Materials and Methods

Partitioning algorithm. We first use a greedy search (sequential
addition of paralogs minimizing the number of added crossing edges
at each step) followed by local pair-wise exchanges to identify a
candidate solution with few crossing edges. Using this candidate
solution, we recursively search a binary tree of all possible
permutations. We apply a branch and bound approach, such that at
any internal node in this tree we have added i paralog pairs to a
‘‘family’’ of potential permutations (thus if n¼4, one internal node of
this tree at depth i¼3 would have the form 0103, where3can take on
values of either 1 or 0). If the number of edges crossing in the
permutation family is as large as the number seen in the best
permutation so far, evaluation of that permutation family can be
abandoned, as the score of any permutation in that family can be no
better than the best score so far. Every such permutation family
abandoned saves a total of 2n�i�1 permutations which need not be
considered. To make this i as small as possible, our algorithm adds
node pairs with high degree first, which causes the score to climb
quickly in the initial branchings.

We save further time by noting that genes with interactions that
connect to both of a pair of paralogs must add one crossing edge to
the score for any permutation. We maintain a lookup table of such
instances, allowing us to determine if the final score of a partition
family will exceed the current best score and so to abandon that
permutation.

The performance of this algorithm is such that we were able to
analyze a network of n¼ 201 (roughly 1060 permutations) in 73 s on a
3-GHz Pentium 4 Xeon.

Data sources. A total of 551 gene duplicates previously described as
owing their origins to the whole genome duplication in yeast were
obtained from the Yeast Gene Order Browser project [22]. All gene
names used in the text and figures are taken from the Saccharomyces
Genome Database [46]: sequences and systematic names can be
obtained from this source. Duplicate identification was made based
on shared gene order across several species of yeast, both with and
without the genome duplication. A list of these gene pairs is available
at http://wolfe.gen.tcd.ie/ygob/doc/Byrne_Supp_Table2.xls.

Protein interaction data were obtained from: 1) a filtered dataset
of highly supported interactions from the DIP core [25,26]; 2) an
analysis by Gilchrist, Salter, and Wagner [24]; and 3) by pooling pair-
wise protein interactions from the two-hybrid experiments of Ito et
al. [27] and Uetz et al. [28]. Transcription factor binding data were
taken from the results of Lee et al. [29] and filtered on their reported
p-values. Expression data were obtained from the expression
compendia of Hughes et al. [30] and the stress response microarray
experiments of Gasch et al. [31]. For the data of Hughes et al.
(hereafter ‘‘co-expression data’’), we calculated, for each pair of
genes, the Pearson’s correlation coefficient (r) between the two genes.
Only gene pairs for which both genes shared measured expression
levels for at least 200 experiments were considered. The data of Gasch
et al. reports the response of yeast cells to a number of stress factors.
Following Wagner [32], we considered data for 11 different stress
conditions: heat and cold shock, oxidative stress, treatment with

PLoS Biology | www.plosbiology.org April 2006 | Volume 4 | Issue 4 | e1090552

Network Partitioning after Duplication



menadione, diamide, or dithiothrietol (DTT), hyper and hypo-
osmotic stress, amino acid and nitrogen starvation, and cells in
stationary phase cultures. For each gene and experiment, the absolute
value of the maximal expression change (induction or repression) was
found. We refer to these data hereafter as ‘‘shared expression
changes.’’

To assess whether cross-reactivity in the above assays was likely to
confound our analysis, we examined the synonymous divergence of
the 551 genes pairs. For the 19 networks in Table 1, only network H07
had more than ten paralog pairs with a pair-wise Ks , 0.2.
Subsequent analysis revealed that all but four of the 21 pairs with
Ks , 0.2 in this network were ribosomal proteins. For this reason we
repeated the analysis of network H07 excluding ribosomal proteins.

Graph components. Because our algorithm assumes that all paralog
pairs have at least one connection to another gene in the network, it
is properly applied to connected components within a graph. When
identifying these components, we required that members of a
duplicate pair always be in the same component.

Network randomization. Network randomization was carried out
as described in the main text (also see Figure 1C). A total of 100 initial
randomizations were performed. For cases where significant parti-
tioning was identified (p , 0.05), a further 1,000 randomizations were
performed (Table 1).

Network asymmetry. To detect asymmetry in the partitions (Figure
1B) we compared the observed symmetry r between partitions to the
expectation of r ¼ 1.0. Our approach might incorrectly infer
significant asymmetry if the partitioning algorithm tended to group
interaction-rich genes into the same partition. To be sure we were
not so mislead, we randomized the networks using subgraph
replacement under an assumption of symmetric edge distributions,
generating symmetric random networks. We then compared the
symmetry values for 100 of these simulations to the values from the
real networks. In all cases, the p-value from this approach was in close
agreement with those in Figure 2B.

Analysis of largest co-expression network. Randomization of our
largest network (H07) resulted in irregular new networks that our
algorithm could not optimally partition. Instead we used simulated
annealing to find the best partition of the randomized networks in
this case (the real network was easily solved by our exact algorithm
due to its ordered structure). For each of 1,000 random networks, ten
simulated annealing runs were made. In all cases, at least two runs
resulted in the same lowest score. The best score found among these
1,000 random graphs (156 crossing edges) is 1.53 larger than the score
in the real data (96 crossing edges).

Co-localization. We computed what proportion p of all possible
pairs of the 1,102 paralogs were co-localized in our data (p ¼ 0.09).
Using a binomial test, we compared this proportion p to the
proportion of co-localized genes seen in the various partitions.

Motifs. We examined the density of shared DNA-sequence motifs
in our two largest networks showing significant partitioning (H07 and
G3: other networks with significant partitioning are subsets of these
two). Using 71 motifs identified by Kellis et al. from S. cerevisiae and
three closely-related species [34], we searched the 1,500 base pairs
upstream of the start codon of each gene of interest. One of the
motifs identified by Kellis et al. was excluded because of its variable
length. We required exact matching across all motifs, a conservative
approach that should not bias our analysis of relative motif density
between partitions or between partitions and random genes. We also
analyzed our matches after excluding the two most common motifs.

Simulation of network evolution. We proposed simple models of
network evolution to compare to the real data. We chose to evolve
networks to achieve the same redundancy as an extant network. Thus,
after duplication, the network evolves strictly by loss of interactions.
Although this is clearly over-simplistic [11], we note that previous
work has suggested that loss of network interactions after duplication
is indeed more common than gain [10].

Simulations were initiated with a fully redundant network (i.e. all
edges present in four copies). All of our models then iterate over the
number of remaining redundant edges until that number is equal to
that seen in the input network. At each step, the total probability of
edge loss is scaled to 1.0 and a uniform random number on this
interval is used to select the edge to be lost. The models differ in the
probability of loss assigned to a given redundant edge.

Uniform loss. This simple null model makes the probability of loss
of any redundant edge equal to that of any other redundant edge. We
use this model as a basis of comparison to the more complex models
below.

Poor-get-poorer. Several types of biological networks show a
power-law scaling of interaction degree (e.g. protein-protein inter-
action [10] and metabolic networks [51]). For such networks, the

preferential attachment of new interactions to nodes with many
existing interactions is critical to yielding this degree distribution
[52]. By analogy to this ‘‘rich-get-richer’’ phenomena, we propose a
‘‘poor-get-poorer’’ mode of interaction loss after duplication. For
two nodes i and j sharing an edge, the probability of the loss of that
edge scales as:

exp k � 1� Eci

2Eai

� �� �
� exp k � 1�

Ecj

2Eaj

� �� �
ð1Þ

where Eax is the number of edges seen in the corresponding ancestral
node (x ¼ fi,jg) and Ecx is the current number of edges for node x.
Here, k is a scalable parameter greater than 0. Thus, when all edges
have been retained, we have a minimal value of this expression:
exp(k�0)¼ 1.0.

Co-loss. The final model attempts to incorporate some regional
properties into the loss of interactions (see above). One way to do this
is to make the loss probabilities depend on the neighbors of each
node. Thus, we make edge loss scale as:

expðk � ð1� SpÞÞ ð2Þ

where Sp is given by

Sp ¼
Sði; jÞ

MaxðSði; jÞ; SðpðiÞ; jÞ; Sði; pðjÞÞ; SðpðiÞ; pðjÞÞÞ ð3Þ

S is the number of other nodes k which are connected to both i and
j, and p(x) gives the paralog of node x in our dataset.

Supporting Information

Figure S1. Distribution of Pair-Wise Expression Correlations for the
Genes in the Dataset H07

Plotted are four distributions: those for pairs of genes within each
group (‘‘Group 1,’’ ‘‘Group 2’’), one for pairs of genes where one
member of the pair is in Group 1 and the other in Group 2 (‘‘Cross-
group’’), and one for the 201 duplicate gene pairs in this dataset
(‘‘Dupl. Pairs’’). The means for the four distributions are 0.054, 0.015,
0.002, and 0.271, respectively. Note that Group 1 in particular is
enriched with high correlation values (the blue ‘‘hump’’ on the right
of the distribution), whereas the cross-group distribution has a mean
closest to zero, indicating little enrichment of co-expressed genes, but
rather merely the random correlation value of 0.0, which would be
expected. The duplicate gene pairs from WGD show higher
correlations, which is presumably an indication of their recent
common ancestry.

Found at DOI: 10.1371/journal.pbio.0040109.sg001 (1.2 MB EPS).

Figure S2. Density of Shared Motifs among Two Pairs of Inferred
Partitions

Values of k on the y-axis are the average number of shared motifs per
gene pair estimated by maximum likelihood for the two partitions (kp
in the text) and for random pairs of genes (kr in the text). For each of
the datasets (x-axis) two values are given: the density of shared motifs
in the motif-poor partition (light bars) and the density of shared
motifs in the motif-rich partition (dark bars). The black line indicates
the density of shared motifs in pairs of genes drawn at random from
our 2n¼1,102 genes of interest. Vertical black bars connecting to this
line indicate a significant difference from the random value.
(A) All motifs used. (B) The two motifs with highest frequency
excluded.

Found at DOI: 10.1371/journal.pbio.0040109.sg002 (1.2 MB EPS).
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