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Background: Uterine corpus endometrial carcinoma (UCEC) is the sixth most common
cancer worldwide. Ferroptosis plays an important role in malignant tumors. However,
the study of ferroptosis in the endometrial carcinoma remains blank.

Methods: First, we constructed a ferroptosis-related signature based on the expression
profiles from The Cancer Genome Atlas database. Then, patients were divided
into the high-risk and low-risk groups based on this signature. The signature
was evaluated by Kaplan–Meier analysis and receiver operating characteristic
(ROC) analysis. We further investigated the relationship between this signature and
immune microenvironment via CIBERSORT algorithm, ImmuCellAI, MAF, MSI sensor
algorithm, GSEA, and GDSC.

Results: This signature could be an independent prognostic factor based on
multivariate Cox regression analysis. GSEA revealed that this signature was associated
with immune-related phenotype. In addition, we indicated the different status of immune
infiltration and response to the immune checkpoint between low-risk and high-risk
groups. Patients in the low-risk group were more likely to present with a higher
expression of immune checkpoint molecules and tumor mutation burden. Meanwhile,
the low-risk patients showed sensitive responses to chemotherapy drugs.

Conclusion: In summary, the six ferroptosis-related genes signature could be used in
molecular subgrouping and accurately predict the prognosis of UCEC.

Keywords: uterine corpus endometrial carcinoma, ferroptosis, prognostic signature, molecular subtypes,
immune checkpoint, drug sensitivity
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INTRODUCTION

Uterine corpus endometrial carcinoma (UCEC) is a huge threat
to women’s health, whose incidence is increasing year by
year in the United States (Siegel et al., 2019). Most women
diagnosed with highly differentiated endometrial histology
tend to be diagnosed early and have a favorable prognosis
(Amant et al., 2005). However, some patients have low-grade,
early stage, well-differentiated endometrioid tumors, in which
unexpected recurrence and poor prognosis have indeed occurred.
For patients with relapsed or advanced tumors and clinically
aggressive histological tumors, the clinical outcome will be
greatly worsened (Siegel et al., 2018). Such a poor prognosis
of endometrial cancer highlights the urgent need to understand
the mechanism of tumorigenesis and develop more effective
strategies for predicting patients’ prognosis.

Ferroptosis is an iron-dependent regulation of cell death
mediated by the fatal accumulation of lipid peroxides (Dixon
et al., 2012). Artificial introduction of ferroptosis is considered a
promising treatment for cancers resistant to traditional therapies
(Hassannia et al., 2019; Liang et al., 2019). Ferroptosis has
been reported to be a crucial process in human hepatocellular
carcinoma, and CDGSH iron sulfur domain 1 (CISD1) (Yuan
et al., 2016) and TP53 gene are known to be negative regulatory
effective for ferroptosis (Jennis et al., 2016). In addition, other
genes such as retinoblastoma (Rb), nuclear factor erythroid
2–related factor 2 (NRF2), and metallothionein (MT)-1G are
reported to be associated with ferroptosis and protect liver cancer
from induction of sorafenib (Louandre et al., 2015; Sun et al.,
2016a,b). In 2021, researchers have revealed that ferroptosis
process was aberrantly regulated in UCEC and an activator of
ferroptosis can induce cell death in UCEC cells (Lopez-Janeiro
et al., 2021; Zhang et al., 2021). However, the prognosis value of
ferroptosis in the endometrial carcinoma still remains blank.

In the present study, expression profiles and clinical
data of 511 UCEC patients from The Cancer Genome
Atlas (TCGA) were used. We developed a ferroptosis-related
prognostic signature. The prognostic role of the ferroptosis-
related prognosis signature (FRPS) was identified by multi-
faceted analysis. The relationships between the signature and
immune cell type fractions, immune checkpoint modulators,
mutation profile, consensus clustering, m6A regulators, mRNAsi,
and functional analyses were further evaluated to explore
underlying value of the FRPS.

MATERIALS AND METHODS

Data Collection
All these expression profiles and corresponding clinical data were
obtained from TCGA1. Then, complete clinical data of 548 UCEC
samples and 23 normal samples including survival time were
filtered for further analysis. We integrated the transcriptome and
complete clinical data to screen out 511 overall survival–related
UCEC samples. Half of them (n = 256) were randomly split into

1http://cancergenome.nih.gov/

training cohort. The entire patients (n = 511) were defined as
testing cohort to verify the signature. The baseline information is
exhibited in Supplementary Table 1. Then, 60 ferroptosis-related
genes were retrieved from the gene list provided by previous
literature (Liang et al., 2020). A total of 15 UCEC specimens
and 15 adjacent tissues were obtained from the Affiliated Tumor
Hospital of Nantong University. We obtained all the written
informed consent from patients.

Development and Validation of
Ferroptosis-Related Prognosis Signature
Firstly, we performed univariate Cox regression analysis to
screen targeted ferroptosis-related genes with prognostic values.
To reduce the risk of over-fitting, Lasso regression analysis,
and univariate and multivariate Cox regression analysis were
used to construct the prognosis model (Tibshirani, 1997). Lasso
algorithm was used to select variables, and “glmnet” R package
was used to shrink (Simon et al., 2011). The risk score of the
FRPS was calculated according to the normalized expression level
of each gene and its corresponding regression coefficient. The
formula was FRPS risk score = 6(the expression amount of each
gene multiplied by the corresponding coefficient). According
to the median risk score of the FRPS, we divided the patients
into two groups. Then, principal component analysis (PCA) was
performed by using “scatterplot3d” R package on the base of
expression. The “survminer” R package was used for survival
analysis of each gene. The R package “survival ROC” was used
to evaluate the predictive ability of the signature.

Quantitative Real-Time-PCR
Total RNA from 15 UCEC samples and 15 adjacent tissues
was extracted using TRIzol reagent (Invitrogen). The residual
genomic DNA from total RNA was removed by 4 × gDNA
wiper Mix (Vazyme R323-01). The complementary RNA was

TABLE 1 | The 17 significant prognostic genes revealed by univariate Cox
regression.

Gene Hazard ratio 95% CI P-value

HMOX1 1.003 1.001–1.004 0.000

GOT1 1.023 1.010–1.037 0.001

SAT1 0.997 0.995–0.999 0.001

HSBP1 0.906 0.851–0.966 0.002

ATP5MC3 1.032 1.011–1.055 0.004

KEAP1 1.018 1.005–1.031 0.006

GPX4 0.995 0.991–0.999 0.007

AKR1C3 1.006 1.001–1.011 0.015

CISD1 1.096 1.017–1.182 0.016

ACSF2 1.067 1.012–1.124 0.017

CHAC1 1.028 1.003–1.053 0.025

GCLM 1.058 1.007–1.112 0.026

GCLC 1.034 1.003–1.067 0.031

AKR1C1 1.021 1.001–1.041 0.038

CBS 2.544 1.050–6.165 0.039

CS 1.038 1.001–1.076 0.042

HSPB1 0.999 0.998–1.000 0.047
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synthesized using PrimeScript RT reagent kit. The SYBR Premix
Ex Taq Kit (TaKaRa DRR041) was used to perform real-
time quantification. The relative expression levels of target
genes were normalized by GAPDH and estimated using the
2−11Ct method. The primers used in this research are listed in
Supplementary Table 2.

Establishing and Validating a Nomogram
for Prognosis Prediction
Nomogram involving prognostic clinicopathological factors (age,
stage, histological type, grade, and FRPS) was carried out for
prognosis prediction. In validation, we used the calibration plots
for calibration of the nomogram. The “rms,” “foreign,” and

“survival” package in R were used to establish and validate a
nomogram (Park, 2018).

Assessment of Immune Cell Infiltration in
Tumors
CIBERSORT algorithm was used to obtain the fraction of 22
immune cell types based on RNA-Seq data (Newman et al.,
2015). The correlation between FRPS and these immune cells was
analyzed by Spearman.

Immunotherapy Response Prediction
We used an online tool Immune Cell Abundance Identifier
(ImmuCellAI) to estimate the abundance of 24 immune cells in
UCEC (Miao et al., 2020). The datasets including RNA-Seq and

FIGURE 1 | Construction of the FRPS. (A) A cross-validation for tuning parameter selection in the LASSO model. (B) LASSO coefficient profiles of 17 prognostic
immune-related genes. (C–E) The distribution of risk score, PCA and survival status in training set. (F) Kaplan-Meier survival curves of overall survival between
high-risk and low-risk patients in training set. (G) 1-year, 3-year, and 5-year ROC curve of the predictive power of the FRPS in training set.
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microarray data were used to predict the patient’s response to an
existing immune checkpoint blockade therapy.

mRNAsi, Mutation Analysis, and
Functional Enrichment Analysis
The results of mRNAsi in TCGA-UCEC were obtained from a
previous study (Malta et al., 2018). The mutation data of UCEC
patients were downloaded from TCGA. The mutation annotation
format (MAF) and MAF tool helped us to obtain somatic
variation data (Mayakonda et al., 2018). The tumor mutation
burden (TMB) score was obtained as follows: TMB = (total
mutant bases/total covered bases) × 106 (Robinson et al.,
2017). The functional enrichment analysis was conducted by
single-sample gene set enrichment analysis (ssGSEA) using the
infiltrating score of 16 immune cells and the activity of 13
immune-related pathways.

Microsatellite Instability Analysis
Microsatellite instability sensor algorithm is a program
that can report the percentage of unstable microsatellites

(Niu et al., 2014). We used this algorithm to obtain the MSI
status for all cases based on somatic mutation data downloaded
from TCGA. The relationship between FRPS and MSI was
analyzed using Spearman’s rank correlation coefficient.

Gene Set Enrichment Analysis
Gene set enrichment analysis is a method used to determine
whether a set of marker genes can predict a statistically significant
difference between two different cohorts. Here, we analyzed the
significant difference in survival between the two cohorts in
the entire TCGA cohort divided by the risk score. Normalized
p-values less than 0.05 and false discovery rate (FDR) less
than 0.05 are considered significantly enriched (Canzler and
Hackermuller, 2020).

Prediction of Chemotherapy Response
To evaluate the response to chemotherapy drugs, we used public
pharmacogenomics database Genomics of Drug Sensitivity in

FIGURE 2 | (A) HOMOX1 expression level. (B) KEAP1 expression level. (C) HSBP1 expression level. (D) SAT1 expression level. (E) CIDS1 expression level. (F)
GPX4 expression level. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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Cancer (GDSC)2. The half-maximal inhibitory concentration
(IC50) is estimated by R package “pRRophetic” (Yang et al., 2013).

Consensus Clustering and Survival
Analysis
To identify the molecular subtypes in endometrial cancer,
the TCGA UCEC cohort was divided into different groups
by R package “Consensus Cluster Plus, 1000 iterations and
resampling rate of 80%” (Yu et al., 2015). We performed
the log-rank test and Kaplan–Meier curve to assess the
overall survival (OS) difference between different groups. Chi-
square test was a good assistant helping us to compare the
distribution of age, grade, stage, and histologic type between
different clusters.

2https://www.cancerrxgene.org

Statistical Analysis
All statistics and figures were analyzed using R 3.6.2. Wilcoxon’s
test allowed us to evaluate the differential expression of genes
related to ferroptosis between UCEC patients and controls. We
used the χ2 test to assess the relationship between FRPS and
clinicopathological factors. P-value < 0.05 was considered to be
statistically significant.

RESULTS

Construction of Ferroptosis-Related
Prognosis Signature in the Cancer
Genome Atlas Training Cohort
First, the expression profiles and survival data of UCEC
patients in training cohort were filtered based on 60 ferroptosis-
related genes through the univariate Cox regression analysis

FIGURE 3 | Construction of the FRPS in the testing cohort. (A) The distribution of the risk score among patients. (B) PCA analysis confirmed that patients in two
subgroups were distributed in discrete directions. (C) The distribution of the survival status among patients. (D) The distribution of stage, grade, histological type,
age, and the expression of six genes in high-risk and low-risk groups. (E) Kaplan–Meier survival curves of overall survival between high-risk and low-risk patients in
testing set. (F) 1-year, 3-year, and 5-year ROC curve of the predictive power of the FRPS in testing set.
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TABLE 2 | Univariate and multivariate Cox regression analysis of the clinical factors and overall survival in different patient sets.

Variables Univariable model Multivariable mode

HR 95% CI P-value HR 95% CI P-value

Train set

Age 1.875 0.941–3.738 0.074

Histological type 3.849 2.081–7.117 <0.001 2.665 1.377–5.160 0.004

Grade 4.237 1.024–17.542 0.046 1.645 0.367–7.370 0.515

Stage 4.714 2.540–8.746 <0.001 3.034 1.551–5.933 0.001

FRPS 1.029 1.017–1.042 <0.001 1.027 1.014–1.040 <0.001

Entire set

Age 1.778 1.112–2.843 0.016 1.695 1.031–2.788 0.038

Histological type 3.044 2.003–4.624 <0.001 1.748 1.104–2.768 0.017

Grade 3.363 1.467–7.710 0.004 1.509 0.622–3.660 0.362

Stage 4.116 2.700–6.275 <0.001 3.286 2.078–5.194 <0.001

FRPS 1.024 1.014–1.034 <0.001 1.022 1.011–1.033 <0.001

FIGURE 4 | The AUC for FRPS and the existing ferroptosis-related signatures.

and 17 genes were correlated with overall survival (Table 1).
Then, LASSO analysis (Figures 1A,B), and univariate and
multivariate Cox regression analysis narrowed the screened
scope to six genes (HMOX1, KEAP1, HSBP1, SAT1, CISD1,
and GPX4) (Supplementary Material). The risk score of FRPS
for OS = (0.002907 × HMOX1) + (0.013486 × KEAP1) +
(−0.089640 × HSBP1) + (−0.001665 × SAT1) + (0.148239 ×
CISD1) + (−0.003060 × GPX4). Meanwhile, patients in the
training cohort were divided into high-risk and low-risk groups
according to the median risk score of the FRPS (Figure 1C). PCA
indicated the patients in different risk groups were distributed
in two directions (Figure 1D). The distribution of FRPS and
survival status of patients in OS signature are shown in Figure 1E.
The OS of patients in the low-risk group was significantly longer
than those in the high-risk group according to the Kaplan–
Meier curve (Figure 1F). Besides, the 1-year, 3-year, and 5-year

ROC curves based on training cohort are plotted as Figure 1G,
suggesting satisfactory prognostic value of the signature.

Then, the mRNA expression of these genes was validated
by qPCR using the samples from the Nantong Third People’s
Hospital Affiliated to Nantong University (Figure 2). The mRNA
expression of KEAP1, HSBP1, SAT1, CISD1, and GPX4 were
significantly different between tumor and the adjacent tissues.
KEAP1 and HOMOX1 were low expressed in tumor than the
para-carcinoma tissues, and the high expression of these two
genes increased the risk of FRPS, which suggested the poor
prognosis of patients. These results suggested the potential
feasibility of this signature for clinical usage. Expression and
Kaplan–Meier survival analysis of each gene in the signature
were also performed and four genes were output significantly
(Supplementary Figure 1).

Validation of Ferroptosis-Related
Prognosis Signature in the Cancer
Genome Atlas Testing Cohort
To test the robustness of the aforementioned signature, the
entire TCGA patients were divided into high-risk and low-risk
groups by the same risk score (Figure 3A). PCA confirmed the
similar results obtained from the training cohort; the patients
in the two subgroups were distributed in discrete directions
(Figure 3B). Similarly, patients in the high-risk group showed
worse prognosis (Figure 3C). The expression of six genes in the
signature are exhibited in Figure 3D. Kaplan–Meier survival
analysis claimed the reduced survival time of patients in the
high-risk group compared with those in the low-risk group
(Figure 3E). Furthermore, subgroup analyses in age, grade,
stage, and histological type in the signature were performed,
demonstrating that patients with high-risk scores shared shorter
OS in all the subgroups (p < 0.05) (Supplementary Figure 2).
Besides, the 1-year, 3-year, and 5-year AUC of signature was
0.705, 0.676, and 0.713, respectively (Figure 3F). According
to the Cox regression analysis, the histological type, tumor
stage, and this signature were independent prognostic factors
(Table 2). We further compared the prediction value of this
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FIGURE 5 | Construction and validation of the nomogram. (A) Nomogram to predict the probability of 1-, 3-, and 5-year OS of UCEC patients. (B) Calibration curves
of the nomogram to predict the probability of OS at 1, 3, and 5 years. (C) 1-, 3-, and 5-year ROC of FRPS and the other clinical characteristics. (D) 1-, 3-, and
5-year ROC of the combination of FRPS and clinical factors.

signature with other existing signatures. As shown in Figure 4,
the AUC for this signature was 0.705, which was higher than
the existing ferroptosis-related signatures. This result revealed
that our established signature was superior to other signatures
in predicting patient’s survival information (Yu et al., 2015; Liu
et al., 2021; Yang et al., 2021; Zhu et al., 2021).

Establishment of Nomogram
To better predict overall survival time, we integrated
clinicopathological factors related to prognosis (age, stage,

histological type, and FRPS) to establish a nomogram prediction
model (Figure 5A). We compared the relationship between
FRPS and clinicopathological factors (Supplementary Table 3).
Quantifying the aforementioned variables as numerical points,
1-year, 3-year, and 5-year survival rates of UCEC patients
can be calculated based on the total points of all risk factors.
A calibration chart was also constructed to show the consensus
of the predicted and observed results (Figure 5B). Meanwhile,
ROC curve demonstrated the better predictive ability of FRPS
in 1-year, 3-year, and 5-year OS than other clinical factors
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FIGURE 6 | Correlation between FRPS and immune cell infiltration. (A–D) The correlation between FRPS and (A) ESTIMATE Score, (B) Immune Score, (C) Stromal
Score, and (D) Tumor Purity. (E) The association between FRPS and immune cell infiltration. (F) The association between IRPS and each type of immune cell.
(G) The landscape of immune cell infiltration in low-risk and high-risk groups. The low-risk and high-risk groups are represented via blue and red violin, respectively.

(Figure 5C). Combining clinical factors and FRPS accessed
optimal predicting effect in UCEC patients based on 1-year,
3-year, and 5-year OS (Figure 5D).

Ferroptosis-Related Prognosis Signature
and Immune Cell Type Fractions
Using ESTIMATE algorithm, patients in the high-risk group
were found to have lower immune scores, stromal scores, and
ESTIMATE scores (Figures 6A–C). On the contrary, patients
accessed higher tumor purity scores in the high-risk group
(Figure 6D). The aforementioned findings suggested that the
tumor immune microenvironment was closely associated with
the FRPS in UCEC patients. To find the major immune cells
between the high-risk groups and low-risk groups, CIBERSORT
algorithm was employed. The results showed that macrophages
M1, macrophages M2, T cell follicular helper, and B cells
naive were positively correlated with FRPS while NK cells

activated, T cells regulatory (Tregs), neutrophils, and dendritic
cells resting were negatively correlated with FRPS (Figure 6E).
The distribution of immune cells and scores for each patient
is exhibited in Figure 6F. In the present research, we also
focused on the tumor infiltrating cells between subgroups.
We found that B cells naive, macrophages M1, macrophages
M2, T cells CD4 memory activated, T cells follicular helper,
T cells gamma delta, NK cells activated, T cells regulatory
(Tregs), and neutrophils infiltrated differently in different
groups (Figure 6G).

Ferroptosis-Related Prognosis Signature
and Immune Checkpoint Modulators
Immune checkpoint proteins, playing important roles in the
immune response, aroused our great interest to explore the
relationship between FRPS and immune checkpoint modulators.
The results demonstrated that CD40, PD-L1, and PD-L2 showed
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FIGURE 7 | Correlation between FRPS and immune checkpoint molecules and the predicted response to immunotherapy. (A) The association between FRPS and
immune checkpoint molecules. (B) The association between FRPS and several immune checkpoint molecules in detail. (C) The landscape of the expression of
immune checkpoint molecules in low-risk and high-risk groups. (D) The different immunotherapy response rates in low-risk and high-risk groups.

a positive correlation with FRPS while CD270, CD27, and CTLA4
were negatively related to FRPS (Figure 7A). The distribution
of immune checkpoint proteins and risk scores for each patient
is exhibited in Figure 7B. Immune checkpoint proteins between
high-risk groups and low-risk groups were evaluated, and results
demonstrated that CD27, CTLA4, PD-L2, B7-H4, CD40, PD-
L1, and CD270 expressed differently between high- and low-risk
groups (Figure 7C). Potential response to immunotherapy in
each patient was further assessed by the online tool ImmuCellAI
and patients in the low-risk group showed better reactivity to
immunotherapy than those in the high-risk group (p = 0.016;
Figure 7D).

Ferroptosis-Related Prognosis Signature
and Mutation Profile
Tumor mutation burden (TMB) is an important cause of tumor
occurrence and development, can be used to predict the efficacy
of immune checkpoint blockade, and has been shown to be a
biomarker for patients who benefit from immunotherapy. In this
study, we declared that FRPS was negatively correlated with TMB
(Figure 8A). Lower TMB was observed in the high-risk group
(Figure 8B). In addition, the mutant genes that showed the most
significant difference in their mutation frequency between the

two groups are shown in Figure 8C. TP53 and PPP2R1A were
found to have higher mutation frequency in the high-risk group,
and the rest of the genes showed higher mutation frequency in
the low-risk group. Therefore, somatic mutation data were used
to assess the TMB of patients. The order of somatic mutation
frequency in the high-risk group was TP53 > PTEN > PIK3CA
> TTN > ARID1A > PIK3R1 > KMT2D > CHD4 > MUC16 >
PPP2R1A (Figure 8D); in the low-risk group, PTEN > ARID1A
> PIK3CA > TTN > CTCF > PIK3R1 > CTNNB1 > KMT2D
> ZFHX3 > KRAS (Figure 8E).

Ferroptosis-Related Prognosis Signature
and Microsatellite Instability
Several researches had illustrated that MSI can affect the
effect of immunotherapy in several cancers. In this research,
we also investigated the MSI status between groups. The
results revealed that MSI status was negatively correlated with
FRPS (Figure 8F). Besides, according to ImmuCellAI, higher
immunotherapy response rate was observed in the low-risk group
compared with patients in the high-risk group (Figure 8G),
which implied that patients in the low-risk group might benefit
from immunotherapy.
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FIGURE 8 | The TMB, mutation profile, and MSI in high-risk and low-risk groups. (A) The correlation between TMB and FRPS. (B) The TMB status in high-risk and
low-risk groups. (C) The most frequently mutated genes in high-risk and low-risk groups. (D,E) The top 10 mutated genes in high-risk and low-risk groups. (F) The
relationship between MSI and FRPS. (G) The rate of response to immunotherapy in high-risk and low-risk groups. Red line to provide a brief tendency of association
between TMB, MIS and riskscore. *P < 0.05, **P < 0.01, ***P < 0.001.

m6A Regulators, mRNAsi, and
Functional Analyses in Two Groups
In recent years, the role of m6A methylation in cancer
has attracted widespread attention. More and more evidence
showed that the genetic changes and expression disorders
of m6A RNA are associated with the tumor occurrence,
progression, and treatment resistance. The expression levels
of HNRNPC, YTHDC1, ZC3H13, YTHDF2, FTO, YTHDF1,
YTHDF3, METTL14, RBM15, WTAP, KIAA1429, FMR1, and
HNRNPA2B1 were dramatically higher in UCEC high-risk
group (p < 0.05) (Supplementary Figure 3A). In addition,
the expression levels of mRNAsi (p = 3.52e-10) and EREG-
mRNAsi (p = 0.032) in high-risk group were also higher
(Supplementary Figure 3B). To further explore the correlation
between FRPS and immune status, we used ssGSEA to quantify
the enrichment scores of various immune cell subgroups,
related functions, or pathways (Supplementary Figures 3C,D).
Interestingly, the antigen presentation process (aDC and iDC)
was significantly different, and the enriched cytokine–cytokine
receptor interaction in the KEGG analysis scored higher in the
high-risk group (p < 0.05, Supplementary Figure 3D).

Gene Set Enrichment Analysis Identifies
a Signaling Pathway Related With
Ferroptosis-Related Prognosis Signature
In addition, GSEA analyzed the transcription information of
patients in the high-risk and low-risk subgroups. Based on
normalized p-value < 0.05, FDR < 0.05, and NES, we filtered the
most significant enrichment biological approach. Representative

KEGG pathways were related to some essential signaling
pathways including cell cycle, DNA replication, mismatch repair,
alpha linolenic acid metabolism, and ribosome and tyrosine
metabolism (Supplementary Figure 4). The aforementioned
results suggested the potential mechanism of the occurrence and
development of UCEC.

Response to Chemotherapy in Two
Groups
Using the pRRophetic algorithm, IC50 of 35 common
chemotherapeutic agents was predicted in high- or low-
risk group (PD.0332991, Nutlin.3a, X17.AAG, Bryostatin.1,
PD.0325901, SB.216763, Bicalutamide, AZD6244, PF.02341066,
LFM.A13, Temsirolimus, NVP.BEZ235, FTI.277, RDEA119,
BMS.536924, MG.132, PF.562271, Roscovitine, AZ628,
Vinblastine, EHT.1864, Tipifarnib, BMS.754807, Lapatinib,
KIN001.135). All 25 drugs had higher IC50 in high-risk patients,
indicating that the low-risk patients were more sensitive to these
25 drugs (Wilcoxon test, all p < 0.05; Supplementary Figure 5).

Ferroptosis-Related Prognosis Signature
and Consensus Clustering
Consensus clustering was analyzed based on the expression levels
of six targeted genes. We chose K = 2 as the most optimal
clustering because the clustering was suboptimal when divided
into more than two clusters (Figures 9A–C). UCEC patients in
clusters 1 and 2 showed significant differences in age, stage, and
histological type, but did not show any significant differences
in grade (Figures 9D,E). Moreover, the OS was significantly
shorter in the UCEC patients of cluster 1 based on Kaplan–Meier
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FIGURE 9 | Consensus clustering for ferroptosis-related genes in UCEC patients. (A) Consensus clustering CDF for k = 2 to k = 9. (B) Relative change in area under
CDF curve for k = 2 to k = 9. (C) Consensus clustering matrix of UCEC samples from TCGA dataset for k = 2. (D) Heat map of two clusters defined by the six
variable expression genes. (E) The proportion of clinical factors in two clusters. (F) K–M survival curve of patients in two clusters. (G) The significantly enriched KEGG
pathways in two clusters.

curve compared with those of cluster 2 (Figure 9F). We also
compared the significantly enriched KEGG pathways between
two clusters; four pathways were identified, including fatty
acid metabolism, graft-versus-host disease, protein export, and
ribosome. These mechanisms may involve in the pathogenesis of
UCEC (Figure 9G).

DISCUSSION

The incidence rate of uterine corpus endometrial carcinoma
(UCEC) is increasing in recent years, becoming a global problem

threatening women’s health. To date, therapeutic regimens,
such as immunological therapy and chemotherapy, are applied
according to the clinical stages of the tumor. However, some
patients cannot benefit from the current therapeutic regimens
even if they are in the same clinical stage. To overcome this
challenge, in this research, we developed a model for predicting
the survival and therapeutic response of UCEC patients using
ferroptosis-related genes.

Ferroptosis is emerging as an iron-dependent regulation of
cell death mediated by the fatal accumulation of lipid peroxides.
Previous studies had reported that several genes can serve as
regulators of ferroptosis and plays a crucial role in HCC. In
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this study, we systematically identified the expression of 60
ferroptosis-related genes and then filtered out six prognosis-
related genes (HMOX1, KEAP1, HSBP1, SAT1, CISD1, and
GPX4) to construct a signature for overall survival prediction
in patients with UCEC. The AUC values of the training and
testing cohort were greater than 0.7. The FRPS showed a higher
prognostic value compared with other clinical factors.

This signature was constructed based on six HMOX1
prognosis-related genes (HMOX1, KEAP1, HSBP1, SAT1,
CISD1, and GPX4). HMOX1 is a cell-protective enzyme that is
important in maintaining the dynamic balance of REDOX and
provides an effective antioxidant defense mechanism in response
to cellular stress by breaking down toxic heme into carbon
monoxide, biliverdin, and iron (Nath, 1999; Lever et al., 2016).
Although HMOX1 expression is upregulated in the process of
ferroptosis in cancer cells, it is not clear whether HMOX1 is
induced in this context to enhance ferroptosis or as a protective
response (Kwon et al., 2015). Based on our results, the imbalance
of the expression of HMOX1 suggested the poor prognosis of
patients. KEAP1, a component of Nrf2-Keap1 pathway, acts as
a molecular switch to activate Nrf2, and KEAP1 senses and
delivers the oxidizing challenge (Lau et al., 2008). Nrf2-Keap1
pathway can act as a switch for malignancy in gliomas promoting
cell proliferation and resistance to cell death processes such
as ferroptosis (Fan et al., 2017). HSBP1 is an evolutionarily
conserved heat shock factor binding protein that can directly
bind to the DNA of heat shock factor 1 (Hsf1) and inhibit
its transcriptional activity (Satyal et al., 1998). There are no
large data to prove the function of HSBP1 as a ferroptosis
regulator. The transcriptional activation of SAT1 mediated by
p53 is essential for ROS-induced ferroptosis because knocking
out SAT1 can significantly eliminate the p53-induced ferroptosis
under ROS stress (Ou et al., 2016). CISD1, also known as
mitoNEET, is an iron-containing mitochondrial outer membrane
protein with a size of 13 kDa (Geldenhuys et al., 2014). It was
first identified as a target for the treatment of diabetes drug
pioglitazone (Colca et al., 2004). Functionally, CISD1 regulates
iron uptake and respiration in mitochondria (Wiley et al., 2007;
Tamir et al., 2015). CISD1 deficiency leads to iron accumulation
and subsequent oxidative damage in mitochondria, which are
involved in fat and glucose metabolism (Kusminski et al., 2012).
In addition to diabetes, CISD1 expression impairment is also
associated with tumor growth (such as breast cancer and liver
cancer) and has been considered as a potential chemotherapy
target (Salem et al., 2012; Sohn et al., 2013). GPX4 has been
determined as a central regulator of ferroptosis (Yang et al., 2014).
In models where GPX4 deficiency leads to death or cell loss, iron
prolapse is likely to occur. In fact, embryonic fibroblasts (MEF)
in conditional Gpx4 knockout mice died of lipid peroxidation
after Gpx4 deletion. Supplementation of vitamin E in the medium
of the MEF saved cell death (Seiler et al., 2008). In normal cell
physiology, the increase in lipid peroxidation caused by GPX4
inhibition raises the question of the origin of lipid peroxidation
(Yang and Stockwell, 2008).

We further investigated the biological function of this FRPS.
We found this signature was closely related to the tumor
immune microenvironment. Several studies had demonstrated
that tumor played important role in the developing and

prognosing of tumor (Hinshaw and Shevde, 2019). Immune
cells are important constituents of the tumor stroma and
take part in this process. Immune cells like macrophages M1,
macrophages M2, T cell follicular helper, and B cells naive
were positively correlated with this signature while NK cells
activated, T cells regulatory (Tregs), neutrophils, and dendritic
cells resting were negatively correlated with this signature, which
hinted the strong immunoreaction in patients from the low-risk
group. Apart from the immune cell infiltration, results from the
ImmuCellAI showed that patients in the low-risk group may
exhibit sensitive response to immunotherapy, thus, may benefit
from immunotherapy. This conclusion was also supported by
the results from immune checkpoint modulators, TMB, and MSI.
Meanwhile, chemotherapy was another important treatment for
UCEC patients. According to the estimated IC50 results from
the GDSC database, the patients in low-risk group were more
sensitive to 25 chemotherapy drugs including bicalutamide,
temsirolimus, roscovitine, vinblastine, tipifarnib, lapatinib, and
other drugs.

However, this research also has several limitations. First, the
research is conducted mainly based on online Public Database.
To verify our model, the external data were necessary. Second,
we mainly focused on the ferroptosis-related genes, and there
might be more precise genes which can reflect patient’s prognosis.
Finally, the response to chemotherapy was predicted by online
database, and some drugs were not the major drugs for UCEC,
which should be verified in future search.

CONCLUSION

In summary, based on six selected ferroptosis-related genes,
we constructed a prognostic signature possessing independent
predictive value of UCEC patients in TCGA datasets. Through
internal verification, the versatility of the signature was proven
and the nomogram was showed to be suitable for clinical use.
With the help of FRPS, clinical factors can predict a patient’s
response to immunotherapy and chemotherapy, which can
provide valuable information on designing a therapeutic regimen.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Affiliated Tumor Hospital to Nantong
University. The patients/participants provided their written
informed consent to participate in this study. Written informed
consent was not obtained from the individual(s) for the
publication of any potentially identifiable images or data included
in this article.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 October 2021 | Volume 9 | Article 735013

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-735013 September 30, 2021 Time: 16:12 # 13

Liu et al. A Ferroptosis-Related Prognostic Signature

AUTHOR CONTRIBUTIONS

TN and HZ conceived the study. JL, YW, HM, and YY
participated in the design, analysis, and draft of the study. JL and
YW plotted all figures in this article. HM and YY helped in the
data analysis. All authors approved the final version of this article
and agreed to be accountable for all aspects of the work.

ACKNOWLEDGMENTS

We would like to thank the researchers and study participants for
their contributions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
735013/full#supplementary-material

Supplementary Figure 1 | The mRNA expression level of (A) CISD1, GPX4,
HSBP1, SAT1, and their (B) Kaplan–Meier plot. **P < 0.01 and ***P < 0.001.

Supplementary Figure 2 | Kaplan–Meier plot of the high- and low-risk groups
under diverse situations by classifying the patients into different subgroups
according to (A) age, (B) tumor grade, (C) tumor pathological pattern, and
(D) stage.

Supplementary Figure 3 | m6A regulators, mRNAsi, and functional analyses in
two groups. (A) The expression levels of HNRNPC, YTHDC1, ZC3H13, YTHDF2,
FTO, YTHDF1, YTHDF3, METTL14, RBM15, WTAP, KIAA1429, FMR1, and
HNRNPA2B1 were dramatically higher in UCEC high-risk group than in low-risk
group. (B) The expression levels of mRNAsi and EREG-mRNAsi in high-risk and
low-risk groups. (C) The correlation between the FRPS and scores of 16 immune
cells determined by ssGSEA. (D) The enriched cytokine–cytokine receptor
interaction determined by ssGSEA. The low-risk and high-risk groups are
represented via blue and red violin, respectively.

Supplementary Figure 4 | Significantly enriched KEGG pathway related to FRPS
identified by GSEA analysis.

Supplementary Figure 5 | The predicted chemotherapeutic response in the
high-risk and low-risk groups.

Supplementary Table 1 | The basic clinical information of the involved
patients in TCGA.

Supplementary Table 2 | Primers used in PCR application.

Supplementary Table 3 | The correlation between the signature and
clinical factors.

REFERENCES
Amant, F., Moerman, P., Neven, P., Timmerman, D., Van Limbergen, E., and

Vergote, I. (2005). Endometrial cancer. Lancet 366, 491–505. doi: 10.1016/
S0140-6736(05)67063-8

Canzler, S., and Hackermuller, J. (2020). MultiGSEA: a GSEA-based pathway
enrichment analysis for multi-omics data. BMC Bioinformatics 21:561. doi:
10.1186/s12859-020-03910-x

Colca, J. R., McDonald, W. G., Waldon, D. J., Leone, J. W., Lull, J. M.,
Bannow, C. A., et al. (2004). Identification of a novel mitochondrial protein
(“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe. Am.
J. Physiol. Endocrinol. Metab. 286, E252–E260. doi: 10.1152/ajpendo.00424.
2003

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason,
C. E., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell
death. Cell 149, 1060–1072. doi: 10.1016/j.cell.2012.03.042

Fan, Z., Wirth, A. K., Chen, D., Wruck, C. J., Rauh, M., Buchfelder, M., et al. (2017).
Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis.
Oncogenesis 6:e371. doi: 10.1038/oncsis.2017.65

Geldenhuys, W. J., Leeper, T. C., and Carroll, R. T. (2014). MitoNEET as a novel
drug target for mitochondrial dysfunction. Drug Discov. Today 19, 1601–1606.
doi: 10.1016/j.drudis.2014.05.001

Hassannia, B., Vandenabeele, P., and Vanden, B. T. (2019). Targeting ferroptosis to
iron out cancer. Cancer Cell 35, 830–849. doi: 10.1016/j.ccell.2019.04.002

Hinshaw, D. C., and Shevde, L. A. (2019). The tumor microenvironment innately
modulates cancer progression. Cancer Res. 79, 4557–4566. doi: 10.1158/0008-
5472.CAN-18-3962

Jennis, M., Kung, C. P., Basu, S., Budina-Kolomets, A., Leu, J. I., Khaku, S.,
et al. (2016). An African-specific polymorphism in the TP53 gene impairs
p53 tumor suppressor function in a mouse model. Genes Dev. 30, 918–930.
doi: 10.1101/gad.275891.115

Kusminski, C. M., Holland, W. L., Sun, K., Park, J., Spurgin, S. B., Lin, Y., et al.
(2012). MitoNEET-driven alterations in adipocyte mitochondrial activity reveal
a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med.
18, 1539–1549. doi: 10.1038/nm.2899

Kwon, M. Y., Park, E., Lee, S. J., and Chung, S. W. (2015). Heme oxygenase-1
accelerates erastin-induced ferroptotic cell death. Oncotarget 6, 24393–24403.
doi: 10.18632/oncotarget.5162

Lau, A., Villeneuve, N. F., Sun, Z., Wong, P. K., and Zhang, D. D. (2008). Dual roles
of Nrf2 in cancer. Pharmacol. Res. 58, 262–270. doi: 10.1016/j.phrs.2008.09.003

Lever, J. M., Boddu, R., George, J. F., and Agarwal, A. (2016). Heme oxygenase-1 in
kidney health and disease. Antioxid. Redox. Signal. 25, 165–183. doi: 10.1089/
ars.2016.6659

Liang, C., Zhang, X., Yang, M., and Dong, X. (2019). Recent progress in ferroptosis
inducers for cancer therapy. Adv. Mater. 31:e1904197. doi: 10.1002/adma.
201904197

Liang, J. Y., Wang, D. S., Lin, H. C., Chen, X. X., Yang, H., Zheng, Y., et al.
(2020). A novel ferroptosis-related gene signature for overall survival prediction
in patients with hepatocellular carcinoma. Int. J. Biol. Sci. 16, 2430–2441. doi:
10.7150/ijbs.45050

Liu, Y., Guo, F., Guo, W., Wang, Y., Song, W., and Fu, T. (2021). Ferroptosis-
related genes are potential prognostic molecular markers for patients with
colorectal cancer. Clin. Exp. Med. 21, 467–477. doi: 10.1007/s10238-021-
00697-w

Lopez-Janeiro, A., Ruz-Caracuel, I., Ramon-Patino, J. L., De Los, R. V., Villalba,
E. M., Berjon, A., et al. (2021). Proteomic analysis of low-grade, early-stage
endometrial carcinoma reveals new dysregulated pathways associated with
cell death and cell signaling. Cancers (Basel) 13:794. doi: 10.3390/cancers1304
0794

Louandre, C., Marcq, I., Bouhlal, H., Lachaier, E., Godin, C., Saidak, Z., et al. (2015).
The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib
in human hepatocellular carcinoma cells. Cancer Lett. 356(2 Pt B), 971–977.
doi: 10.1016/j.canlet.2014.11.014

Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein,
J. N., et al. (2018). Machine learning identifies stemness features associated with
oncogenic dedifferentiation. Cell 173, 338–354. doi: 10.1016/j.cell.2018.03.034

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28, 1747–1756. doi: 10.1101/gr.239244.118

Miao, Y. R., Zhang, Q., Lei, Q., Luo, M., Xie, G. Y., Wang, H., et al. (2020).
ImmuCellAI: a unique method for comprehensive T-Cell subsets abundance
prediction and its application in cancer immunotherapy. Adv. Sci. (Weinh)
7:1902880. doi: 10.1002/advs.201902880

Nath, K. A. (1999). Heme oxygenase-1: a redoubtable response that limits
reperfusion injury in the transplanted adipose liver. J. Clin. Invest. 104, 1485–
1486. doi: 10.1172/JCI8827

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 October 2021 | Volume 9 | Article 735013

https://www.frontiersin.org/articles/10.3389/fcell.2021.735013/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.735013/full#supplementary-material
https://doi.org/10.1016/S0140-6736(05)67063-8
https://doi.org/10.1016/S0140-6736(05)67063-8
https://doi.org/10.1186/s12859-020-03910-x
https://doi.org/10.1186/s12859-020-03910-x
https://doi.org/10.1152/ajpendo.00424.2003
https://doi.org/10.1152/ajpendo.00424.2003
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1038/oncsis.2017.65
https://doi.org/10.1016/j.drudis.2014.05.001
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1101/gad.275891.115
https://doi.org/10.1038/nm.2899
https://doi.org/10.18632/oncotarget.5162
https://doi.org/10.1016/j.phrs.2008.09.003
https://doi.org/10.1089/ars.2016.6659
https://doi.org/10.1089/ars.2016.6659
https://doi.org/10.1002/adma.201904197
https://doi.org/10.1002/adma.201904197
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.1007/s10238-021-00697-w
https://doi.org/10.1007/s10238-021-00697-w
https://doi.org/10.3390/cancers13040794
https://doi.org/10.3390/cancers13040794
https://doi.org/10.1016/j.canlet.2014.11.014
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1002/advs.201902880
https://doi.org/10.1172/JCI8827
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-735013 September 30, 2021 Time: 16:12 # 14

Liu et al. A Ferroptosis-Related Prognostic Signature

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y. et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12, 453–457.

Niu, B., Ye, K., Zhang, Q., Lu, C., Xie, M., McLellan, M. D., et al. (2014). MSIsensor:
microsatellite instability detection using paired tumor-normal sequence data.
Bioinformatics 30, 1015–1016. doi: 10.1093/bioinformatics/btt755

Ou, Y., Wang, S. J., Li, D., Chu, B., and Gu, W. (2016). Activation of SAT1 engages
polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl.
Acad. Sci. U.S.A. 113, E6806–E6812. doi: 10.1073/pnas.1607152113

Park, S. Y. (2018). Nomogram: an analogue tool to deliver digital knowledge.
J. Thorac. Cardiovasc. Surg. 155:1793. doi: 10.1016/j.jtcvs.2017.12.107

Robinson, D. R., Wu, Y. M., Lonigro, R. J., Vats, P., Cobain, E., Everett, J., et al.
(2017). Integrative clinical genomics of metastatic cancer. Nature 548, 297–303.
doi: 10.1038/nature23306

Salem, A. F., Whitaker-Menezes, D., Howell, A., Sotgia, F., and Lisanti, M. P.
(2012). Mitochondrial biogenesis in epithelial cancer cells promotes breast
cancer tumor growth and confers autophagy resistance. Cell Cycle 11, 4174–
4180. doi: 10.4161/cc.22376

Satyal, S. H., Chen, D., Fox, S. G., Kramer, J. M., and Morimoto, R. I. (1998).
Negative regulation of the heat shock transcriptional response by HSBP1. Genes
Dev. 12, 1962–1974. doi: 10.1101/gad.12.13.1962

Seiler, A., Schneider, M., Forster, H., Roth, S., Wirth, E. K., Culmsee, C., et al.
(2008). Glutathione peroxidase 4 senses and translates oxidative stress into
12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8,
237–248. doi: 10.1016/j.cmet.2008.07.005

Siegel, R. L., Miller, K. D., and Jemal, A. (2018). Cancer statistics, 2018. CA Cancer
J. Clin. 68, 7–30. doi: 10.3322/caac.21442

Siegel, R. L., Miller, K. D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer
J. Clin. 69, 7–34. doi: 10.3322/caac.21551

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization Paths
for Cox’s Proportional Hazards Model via coordinate descent. J. Stat. Softw. 39,
1–13. doi: 10.18637/jss.v039.i05

Sohn, Y. S., Tamir, S., Song, L., Michaeli, D., Matouk, I., Conlan, A. R., et al.
(2013). NAF-1 and mitoNEET are central to human breast cancer proliferation
by maintaining mitochondrial homeostasis and promoting tumor growth. Proc.
Natl. Acad. Sci. U.S.A. 110, 14676–14681. doi: 10.1073/pnas.1313198110

Sun, X., Niu, X., Chen, R., He, W., Chen, D., Kang, R., et al. (2016a).
Metallothionein-1G facilitates sorafenib resistance through inhibition of
ferroptosis. Hepatology 64, 488–500. doi: 10.1002/hep.28574

Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., et al. (2016b). Activation
of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular
carcinoma cells. Hepatology 63, 173–184. doi: 10.1002/hep.28251

Tamir, S., Paddock, M. L., Darash-Yahana-Baram, M., Holt, S. H., Sohn, Y. S.,
Agranat, L., et al. (2015). Structure-function analysis of NEET proteins uncovers
their role as key regulators of iron and ROS homeostasis in health and disease.
Biochi Biophy Acta 1853, 1294–1315. doi: 10.1016/j.bbamcr.2014.10.014

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Stat. Med. 16, 385–395. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-
sim380<3.0.co;2-3

Wiley, S. E., Paddock, M. L., Abresch, E. C., Gross, L., van der Geer, P., Nechushtai,
R., et al. (2007). The outer mitochondrial membrane protein mitoNEET
contains a novel redox-active 2Fe-2S cluster. J. Biol. Chem. 282, 23745–23749.
doi: 10.1074/jbc.C700107200

Yang, L., Tian, S., Chen, Y., Miao, C., Zhao, Y., Wang, R., et al. (2021). Ferroptosis-
related gene model to predict overall survival of ovarian carcinoma. J. Oncol.
2021:6687391. doi: 10.1155/2021/6687391

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S.,
et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource
for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41,
D955–D961. doi: 10.1093/nar/gks1111

Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R.,
Viswanathan, V. S., et al. (2014). Regulation of ferroptotic cancer cell death by
GPX4. Cell 156, 317–331. doi: 10.1016/j.cell.2013.12.010

Yang, W. S., and Stockwell, B. R. (2008). Synthetic lethal screening identifies
compounds activating iron-dependent, nonapoptotic cell death in oncogenic-
RAS-harboring cancer cells. Chem. Biol. 15, 234–245. doi: 10.1016/j.chembiol.
2008.02.010

Yu, Z., Chen, H., You, J., Liu, J., Wong, H. S., Han, G., et al. (2015). Adaptive
fuzzy consensus clustering framework for clustering analysis of cancer data.
IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 887–901. doi: 10.1109/TCBB.
2014.2359433

Yuan, H., Li, X., Zhang, X., Kang, R., and Tang, D. (2016). CISD1 inhibits
ferroptosis by protection against mitochondrial lipid peroxidation. Biochem.
Biophys. Res. Commun. 478, 838–844. doi: 10.1016/j.bbrc.2016.08.034

Zhang, Y. Y., Ni, Z. J., Elam, E., Zhang, F., Thakur, K., Wang, S., et al. (2021).
Juglone, a novel activator of ferroptosis, induces cell death in endometrial
carcinoma Ishikawa cells. Food Funct. 12, 4947–4959. doi: 10.1039/d1fo00790d

Zhu, L., Yang, F., Wang, L., Dong, L., Huang, Z., Wang, G., et al.
(2021). Identification the ferroptosis-related gene signature in patients with
esophageal adenocarcinoma. Cancer Cell Int. 21:124. doi: 10.1186/s12935-021-
01821-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Liu, Wang, Meng, Yin, Zhu and Ni. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 October 2021 | Volume 9 | Article 735013

https://doi.org/10.1093/bioinformatics/btt755
https://doi.org/10.1073/pnas.1607152113
https://doi.org/10.1016/j.jtcvs.2017.12.107
https://doi.org/10.1038/nature23306
https://doi.org/10.4161/cc.22376
https://doi.org/10.1101/gad.12.13.1962
https://doi.org/10.1016/j.cmet.2008.07.005
https://doi.org/10.3322/caac.21442
https://doi.org/10.3322/caac.21551
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1073/pnas.1313198110
https://doi.org/10.1002/hep.28574
https://doi.org/10.1002/hep.28251
https://doi.org/10.1016/j.bbamcr.2014.10.014
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380<3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380<3.0.co;2-3
https://doi.org/10.1074/jbc.C700107200
https://doi.org/10.1155/2021/6687391
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1016/j.cell.2013.12.010
https://doi.org/10.1016/j.chembiol.2008.02.010
https://doi.org/10.1016/j.chembiol.2008.02.010
https://doi.org/10.1109/TCBB.2014.2359433
https://doi.org/10.1109/TCBB.2014.2359433
https://doi.org/10.1016/j.bbrc.2016.08.034
https://doi.org/10.1039/d1fo00790d
https://doi.org/10.1186/s12935-021-01821-2
https://doi.org/10.1186/s12935-021-01821-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Identification of the Prognostic Signature Associated With Tumor Immune Microenvironment of Uterine Corpus Endometrial Carcinoma Based on Ferroptosis-Related Genes
	Introduction
	Materials and Methods
	Data Collection
	Development and Validation of Ferroptosis-Related Prognosis Signature
	Quantitative Real-Time-PCR
	Establishing and Validating a Nomogram for Prognosis Prediction
	Assessment of Immune Cell Infiltration in Tumors
	Immunotherapy Response Prediction
	mRNAsi, Mutation Analysis, and Functional Enrichment Analysis
	Microsatellite Instability Analysis
	Gene Set Enrichment Analysis
	Prediction of Chemotherapy Response
	Consensus Clustering and Survival Analysis
	Statistical Analysis

	Results
	Construction of Ferroptosis-Related Prognosis Signature in the Cancer Genome Atlas Training Cohort
	Validation of Ferroptosis-Related Prognosis Signature in the Cancer Genome Atlas Testing Cohort
	Establishment of Nomogram
	Ferroptosis-Related Prognosis Signature and Immune Cell Type Fractions
	Ferroptosis-Related Prognosis Signature and Immune Checkpoint Modulators
	Ferroptosis-Related Prognosis Signature and Mutation Profile
	Ferroptosis-Related Prognosis Signature and Microsatellite Instability
	m6A Regulators, mRNAsi, and Functional Analyses in Two Groups
	Gene Set Enrichment Analysis Identifies a Signaling Pathway Related With Ferroptosis-Related Prognosis Signature
	Response to Chemotherapy in Two Groups
	Ferroptosis-Related Prognosis Signature and Consensus Clustering

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


