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In the two decades since the invention of laser-based super resolutionmicroscopy this family
of technologies has revolutionised the way life is viewed and understood. Its unparalleled
resolution, speed, and accessibility makes super resolution imaging particularly useful in
examining the highly complex and dynamic immune system. Here we introduce the super
resolution technologies and studies that have already fundamentally changed our
understanding of a number of central immunological processes and highlight other
immunological puzzles only addressable in super resolution.
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INTRODUCTION

Microscopy has a long history of enabling immunological discoveries. After likely being observed by
the ‘father of microscopy’ A. van Leeuwenhoek in 1687 in human saliva (1), the first definitive
description of leukocytes came in 1749 when Joseph Lietaud and Jean-Baptiste de Senac observed
human “globuli albicantes” and “globules blanc”, respectively (2, 3). Roughly a hundred years later
the first suggestions of immune cell function were observed when leukocytes were seen exiting the
vasculature of a frog’s tongue in response to injury (4) and ‘attacking’ a rose thorn stuck into a sea
star larva (1).

Unbeknownst to these microscopy pioneers their ability to observe microscopic structures was
limited not only by the strength of light (be it sun or candle) but also the nature of light itself. When
light passes through an aperture, such as a microscope objective, it diffracts. How widely it diffracts
is dependent on the size of the aperture and the wavelength of the light. Visible light has
wavelengths from 400-700 nm. The smaller the aperture or the longer the wavelength of the
light the greater the diffraction. When this diffracted light hits a surface, such as the sample, it forms
a ripple like pattern, known as an Airy disc (Figure 1). The size of the Airy disc is dependent on the
extent of diffraction, and importantly sets a limit on the resolution of the microscope. Put simply,
only illuminated objects that are laterally separated by more than the radius on the disc, or
approximately half the wavelength of the illuminating light, can be discerned. This resolution limit
is known as the diffraction limit.
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The diffraction limit restricted all forms of light microscopy,
including laser microscopy (albeit with a shorter and more
defined wavelength), for hundreds of years, until the invention
of revolutionary super resolution imaging technologies (5, 6). By
structuring the excitation light (Box 1) or by using modified laser
beams to ‘switch off’ select fluorophores in an illuminated sample
(Box 2) these pioneering super resolution technologies were able
to break the diffraction limit and increase resolution to ~100 nm.
Following these breakthrough technologies has a been procession
of Nobel Prize winning super resolution imaging technologies
that have improved potential resolution to as little as ~20 nm, not
only in fixed samples but in highly dynamic live cells and tissues.

The ability to observe and record the behaviour of immune
cells, both individually and in tissues, at super resolution has
enabled the interrogation of numerous long-standing cellular
immunological questions (7). However, while individual cells
have been observable for hundreds of years, it was only the super
resolution revolution that allowed the thorough examination of
single molecules. It is arguably at this molecular level, at which
single RNA transcripts (8, 9), individual gene loci (10),
chemokines (11), actin filaments (12) and transcription factors
(13), among others, can be visually disentangled, that super
resolution imaging holds its greatest utility.

Here we focus on four central immunological processes; two
of which super resolution microscopy has already fundamentally
changed the way they are understood (immune cell danger
detection and activation) and two which these technologies
FIGURE 1 | The diffraction limit. Light passing through an aperture diffracts. When hitting a surface this light forms a ripple like pattern of illumination, with a central
focus of intensity surrounded by concentric rings, known as an Airy disc. No objects laterally separated by less than the radius of this disc can be discriminated.
Frontiers in Immunology | www.frontiersin.org 2
BOX 1 | Structural Illumination Microscopy (SIM) (5) uses moveable diffraction
gratings inserted into the excitation beam path creating a striped pattern of
illumination. By acquiring multiple images with this known pattern of
structured illumination it is possible to omit out-of-focus signal to create a
super resolution image. SIM can be used to image live cells.
December 2021 | Volume 12 | Article 754200
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have the currently unrealised potential to answer key,
longs tand ing molecu la r immunolog i ca l ques t ions
(recombination and lineage decisions). In doing so we also
provide introductions to the technologies that have profoundly
altered the way not only the immune system, but all life is seen.

Super Resolution Imaging of Immune
Cell Receptors
The ability of immune cells to detect and respond to danger
signals is fundamental in immune function. While the receptors
involved differ across immune cells types (14) the distribution of
these receptors, and other co-stimulatory molecules, is critically
important to appropriate activation.

For many years it was thought that receptors, such as B cell
receptor (BCR) on B cells, T cell receptor (TCR) on T cells and
Frontiers in Immunology | www.frontiersin.org 3
Toll like receptors (TLRs) on macrophages, were evenly
distributed across their respective cell surfaces only to
aggregate upon activation (15). However, despite electron
microscopy results suggesting the non-random distribution of
immunoglobulin molecules on resting B cells (16) as early as
1975, it was not until the advent of super-resolution imaging
technologies that it was explicitly shown that many, if not all,
receptors cluster within the plasma membrane in the steady state
(17–19).

For example, in a seminal work using PALM imaging (Box 3)
the TCR and a key T cell signalling adaptor molecule, Linker for
Activation of T cells (Lat), were shown to reside in clusters upon
the plasma membrane, termed protein islands (21). In more
recent technically and visually stunning expansions of the
characterisation of TCR distribution it was shown that these
TCR islands are found across the whole live T cell membrane in
culture (22) and in the lymph node (23).

Using other variants of SMLM (Box 3) other immune
signalling molecules have also been shown to form clusters in
the steady state including; CD4 and Lck on T cells (24–26), IgM,
IgG and IgD on B cells (27–29), IgE on mast cells (30), TLR4
(31–33), signal regulatory protein a, Fc gamma receptor I and II
on human macrophages (34), b2 integrins on human neutrophils
(35) and NKG2D on NK cells (36).

The majority of these studies revealed not only the pre-
activation clustering of these signalling molecules, but a
consistent activation induced redistribution of these clusters.
Interestingly, evidence from STORM, PALM and FLIM/FRET
(Box 4) imaging of T and B cell membranes reveals this
redistribution to be a concatenation, but not coalescence, of
these clusters (21, 38, 39) (Figure 2). This concatenation of
protein islands, as opposed to a complete merging, is thought to
play an important regulatory function. As such, it is thought that
signalling occurs only at the boundaries of clusters that contain
distinct compositions of important signalling molecules. For
example, in B cells IgM and CD45 are found together on an
BOX 2 | Stimulated Emission Depletion (STED) (6) microscopy relies on the
interplay between two laser pulses, the first to excite fluorophores at the focal
spot, and the second a modified depleting beam that reversibly de-excites
any fluorophores surrounding the focal spot. Thus, only the excited
fluorophores in the focal spot emit light, allowing features smaller than the
diffraction limit to be visualised. STED can be used in live cells.
BOX 3 | Single Molecule Localisation Microscopy (SMLM), including Stochastic Optical Reconstruction Microscopy (STORM) (20) and Photo-Activated Localization
Microscopy (PALM) (17), use a low power beam to activate a small proportion of reversibly photoactivatable molecules within an illuminated area before a higher
power illuminating beam records the molecules position and photobleaches them. As only a small proportion of the total fluorescent molecules are activated in each
cycle the centre of mass of individual molecules can be determined in each image (a process that would be impossible if all molecules fluoresced simultaneously)
before being collated into a final super resolution image. These compiled images can achieve ~25 nm resolution. PALM generally use genetically encoded photo-
switchable fluorescent proteins, while STORM uses conventional synthetic dyes. Both can be used in live cells.
December 2021 | Volume 12 | Article 754200
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island separated from islands containing Lyn and CD19 (40, 41).
This is important as Lyn is required for some forms of signalling
via IgM (42, 43). Thus, the two islands must come together, and
exchange components, during activation, however, if complete
coalescence of the islands was allowed dysregulated activation
could result.

It has been known for over a decade that the network of
cortical actin just under the cell membrane plays a critical role in
the separation of protein islands (44, 45). However, it was the
application of super resolution imaging technologies that allowed
elucidation of the underlying molecular mechanism of control.
As such, STORM imaging has shown that treatment of B cells
with an actin-depolymerizing compound (latrunculin A)
increases the proximity of the aforementioned IgM and IgD
Frontiers in Immunology | www.frontiersin.org 4
containing islands (28) and the lateral mobility of BCR and
CD19 containing islands (27, 46, 47).

Immune Cell Activation at Super Resolution
Once a danger signal is detected, immune cells undergo dramatic
cellular and molecular changes in order to play their part in the
immune response. In addition to revealing previously unseen
mechanisms of immune cell danger detection, super resolution
imaging has also added to our understanding of the molecular
changes during immune cell activation.

Some immune cells, such as cytotoxic T cells and natural
killer (NK) cells, respond to activation with the release of lytic
granules at a synapse between them and their target cell. These
granules are designed to induce apopotosis in the target cell.
Unsurprisingly, given their lethality, the formation, trafficking
and release of these modified lysosomes is tightly controlled. The
ability of sub-diffraction limit imaging to visually untangle the
dense, intricate and highly dynamic network of cortical actin and
lytic granules underlying the synapse and the plasma membrane
in general has revolutionised our understanding of immune cell
killing (48).

For example, in recent years a number of super-resolution
imaging technologies, including 3D-SIM (49), STED (50, 51),
SMLM and TIRF (Box 5) (53, 54), and Lattice light sheet
microscopy (Box 6) (12, 56) have all been used to observe the
rapid and intricate movement of actin and lytic granules towards,
and within, the immune synapse of both T and NK cells. As such,
it was revealed that upon activation the network of actin that
normally forms a mesh too dense for lytic granules to traverse
dilates or dissolves at the immune synapse allowing microtubule-
guided granule release (Figure 3) This process takes
approximately one or thirty minutes in T and NK cells,
respectively (50, 54, 57).
BOX 4 | Fluorescence-lifetime imaging microscopy (FLIM) (37) images the
decay rate of fluorescence of a tagged donor molecule of interest after
excitation. This rate of decay is impacted by the proximity of an acceptor
molecule. The closer the molecules of interest, the faster the decay. As such,
FLIM-FRET techniques provide high temporal resolution of tagged protein-
protein interactions in live cells.
A

B

FIGURE 2 | (A) Activation induces actin-mediated concatenation of cell surface protein islands on the surface of immune cells to facilitate signalling. (B) FRET
imaging data from Ma et al. (38), showing CD3z clustering on a Jurkat cell before and after activation. Image used under the terms of the Creative Commons licence.
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Furthermore, not only is the intricate actin network important
for facilitating degranulation, it also appears to play an important
role in regulating the number of granules released. This control is
critically important as it minimises healthy by-stander cell killing
(58) and potentially also influences the number of target cells an
Frontiers in Immunology | www.frontiersin.org 5
individual cytotoxic lymphocyte can kill (59). Recent imaging
studies have shown that T and NK cells do not release their
entire granule payload during initial degranulation. In fact, they
may release as little as one tenth of their total granules (60, 61).
Actin likely regulates degranulation via two mechanisms; one, it
limits the transport of granules to the immune synapse (60) and
two, TIRF imaging recently observed the reformation of the dense
actin network underlying the immune synapse soon after
degranulation, restricting further granule release (12).

While cytotoxic lymphocytes respond to activation with the
direct killing of target cells, B lymphocytes direct killing via the
mass production of specific antibodies. This requires
transformation into ‘antibody factories’, including dramatic
increases in cell size, proliferation and RNA synthesis (62).
The process also involves the spreading of chromatin from its
naïve location, predominantly at the nuclear periphery, to a more
dispersed configuration. This chromatin spreading is thought to
promote transcription factor binding and gene expression
important in the transformation to antibody secreting cells
(63, 64).

While super resolution investigations confirmed chromatin
spreading (13, 65), the ability to visualise the chromatin fibre to
<20 nm resolution revealed that not only do the fibres spread within
the nucleus, they also decompact, meaning there is more accessible
DNA between normally tightly compacted nucleosomes. These
processes were shown to be regulated independently, and
furthermore it was chromatin decompaction, not spreading, that
was important in regulating transcription factor binding (13). By
inserting a fluorescent Halo-Tag downstream of two transcription
factors, CTCF and JunD, almost unimaginably detailed three-
dimensional single molecule tracking revealed the binding and
diffusion behaviours of these factors during their DNA
interrogations. As such, in a naïve B cell JunD collides with DNA
roughly 130 times before finding a suitable and accessible binding
site. This search time is roughly halved upon B cell activation (13).
This was elegantly shown to be independent of chromatin spreading
and reliant upon nucleosome decompaction using drug treatment
or energy depletion, respectively (13). The dwell or residence times
of CTCF determined by single molecule tracking was confirmed
using FRAP imaging (Box 7).

These studies are examples of how super resolution imaging
has already fundamentally changed our understanding of central
immunological processes, in this case by revealing the molecular
underpinnings of immune cell activation. While earlier
technologies did elude to many of these mechanisms, the fact
that actin fibres, nucleosomes and indeed protein islands (22) are
frequently separated by less that 200 nm means they can only be
meaningfully visualised, and thus more completely understood,
in super resolution.
THE FUTURE OF SUPER RESOLUTION IN
MOLECULAR IMMUNOLOGY

The works outlined thus far highlight the impact of super
resolution imaging on our understanding of immune cell
BOX 5 | Total internal reflection fluorescence microscopy (TIRF). When light
encounters the interface of two transparent materials with different refractive
indices (such as a live cell and a cover slip, as below), it will most often be
both diffracted and reflected. However, at a certain angle of incidence the
light will be totally reflected in a phenomenon called total internal reflection.
Total internal reflection creates an electromagnetic field that passes through
the interface between the two materials to form an evanescent wave. TIRF
imaging (52) exploits this evanescence to excite fluorophores only in close
proximity to the interface to achieve sub-diffraction limit axial resolution.
BOX 6 | Lattice light sheet fluorescence microscopy (55) uses a combination

of techniques from light sheet, Bessel beam and structural illumination
microscopy (SIM). As such, it uses a two-dimensional lattice of non-diffracting
Bessel beam light sheets that are spaced such that they cause destructive
interference and removal of the ‘out of field’ illumination which hampers
traditional Bessel beam light sheet microscopy. This allows lattice light sheet
microscopy to achieve unparalleled resolution and penetrance, while
minimising phototoxicity.
December 2021 | Volume 12 | Article 754200
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function. While these explorations have already yielded fruit,
below we outline two incompletely understood, but essential,
molecular immune processes in which super resolution imaging
has the potential to answer longstanding questions.

Antigen Receptor Recombination
Recombination of the antigen receptor genes (Igh, Igk and Igl in
B cells and Tcrg, Tcrd, Tcrb and Tcra in T cells) is key to
generating a wide antigen receptor repertoire. The tightly
controlled process involves removal of the intervening DNA
between genes from three segment pools, known as variable (V),
diversity (D) and joining (J). The result is in an exon that encodes
the antigen-binding domain of an antigen receptor.
Frontiers in Immunology | www.frontiersin.org 6
Recombination relies on a series of remarkable genomic
manoeuvres, including relocalisation of the antigen receptor
gene from the periphery to the centre of the nucleus (67, 68),
removal of genomic domain boundaries within the gene (69) and
a contraction of the gene to bring linearly distant V regions into
close physical proximity with the D-J region for recombination
(68, 70–72). These processes have been extensively examined
using molecular and genetic manipulations, but also imaging
technologies. For example, DNA FISH has been used to quantify
the nuclear position and contraction of the Igh locus in B cell
progenitors (67).

While these studies have added to our understanding of
antigen receptor recombination there are still significant gaps
BOX 7 | Fluorescence recovery after photobleaching (FRAP) (66) measures the recovery of local photodestruction of a tagged molecule via diffusion to determine the
molecules dynamics within the local molecular environment.
A

B

FIGURE 3 | (A) Dynamic cortical actin regulates the accumulation and release of cytotoxic granules at the immune synapse of cytotoxic immune cells. (B) Data from
Brown et al. (57), comparing F-actin (white) at human NK cell synapses using confocal, widefield and structured illumination reconstruction imaging. Image used
under the terms of the Creative Commons licence.
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in our knowledge of the process. For example, while locus
contraction brings the V region into proximity with the D-J
region, how the V region that will ultimately form part of the
functional exon is ‘selected’ from numerous candidates within
the distal region is unclear. Diffusion fitting a fractional Langevin
motion model (73) within the viscoelastic nuclear environment
is currently the best explanation of how this process may work
(74, 75).

Recent super resolution imaging breakthrough technologies
provide an opportunity to reveal the mechanics of this long-
standing immunological puzzle. These technologies, including
ORCA and Hi-M (Box 8) (80, 81), leverage the development of
complex pools of synthet ic fluorescent ly labe l l ed
oligonucleotides (OligoPaint) alongside sequential super
resolution STORM imaging to reveal the nanoscale
configuration of genomic regions. In visually stellar works
building on super resolution examinations of chromosome
scale genome organisation (83–85), both ORCA and Hi-M
have been used to visualise the nanoscale (2-15 kB resolution)
organisation of specific genomic regions (up to 700 kB in size)
within individual cells of whole Drosophila embryo sections.
These works revealed previously undetectable relationships
between genome organisation, epigenetic states and
transcription (80, 81).

Given the unprecedented resolution, throughput and
applicability of these new super resolution technologies it is
conceivable that they could be used to examine the nanoscale
genome organisation of antigen receptor loci in thousands of
adaptive immune cell progenitors of any species. Taking mouse
Igh as an example 700 probes would be sufficient to cover the
entirety of the expansive 2 million base pair locus at a 3 kb
resolution. Given the 113 VH region gene segments are mostly
separated from each other by at least 5 kb (86), 3 kb resolution
would be sufficient to reveal the location of all VH gene
segments, along with the rest of the locus, within thousands
of individual cells. While fixation required by sequential
imaging prohibits a live view of the recombination process, a
compilation analysis from the thousands of single cells could
reveal an unparalleled view of the local genomic environment
in which recombination occurs (80, 84, 87). This could reveal
patterns of order, indicative of stable, consistent position or
interactions, or disorder, potentially revealing regions
undergoing random diffusion. For example, it could be that
locus contraction consistently brings particular regions into
physical proximity, relative to all others. Alternatively, it could
be that the entire locus diffuses with minimal physical
constraints and no discernible patterns of interaction. Either
way these breakthrough super resolution technologies could
enable a greater understanding of the role of diffusion and
physical proximity during recombination.

As for live imaging, the fixation required for ORCA and Hi-
M would also obstruct downstream examination of the
physiological impacts of the visualised genomic organisation.
For example, even if as hypothesised the distal VH gene
segments are revealed to contract to, then diffuse near, the D-
J region, the ultimately selected segment could not be
Frontiers in Immunology | www.frontiersin.org 7
confirmed within fixed cells. However, here it is worth
remembering that the near universal applicability of these
technologies mean they can not only expand our
understanding of steady state conditions, but also be applied
to the genetic and molecular manipulation systems used
previously to understand recombination. Thus, perturbations
to antigen receptor loci genomic organisation could be re-
examined using these novel technologies validating and
expanding previous conclusions.
Immune Cell Lineage Decisions
Immune cells make up arguably the most diverse cellular
system in complex organisms. This diversity requires
numerous lineage decisions as an immune cell differentiates
from a haematopoietic stem cell. Be they step-wise and
absolute or fluid and continuous (88), these decisions are
directed by transcription factors (89). Some of these factors as
so influential that the expression of a single transcription
factor gene can alter a cells lineage fate (90, 91). The cellular
consequences of these lineage decisions have been well
explored, in part using imaging (7). However, the molecular
events underlying immune cell lineage decisions remain
largely unexplored.

Recent application of cutting-edge super resolution imaging
technologies in other systems have demonstrated the power of
these technologies to reveal molecular insights into
transcriptional regulation, and thus potentially lineage
decisions. For example, in a recent technical masterpiece single
molecule tracking combined with target loci locking microscopy
was used to reveal the single molecule resolution, real time
kinetics of transcription and its regulators in mouse embryonic
stem cells (92). As such, phage genome sequences that can be
recognised by fluorescently tagged phage coat proteins were
engineered into the 3’ UTR of two pluripotency transcription
factor genes (Box 8). This allowed single molecule visualisation
of nascent mRNA. In the same cells, RNA polymerase II or other
transcriptional regulatory factors (Sox2, Cdk9, Brd4 or
Mediator) were fluorescently labelled. This allowed a
phenomenally detailed examination of the relationship between
the numbers, dynamics and positioning of these factors relative
to transcription, revealing hierarchical, highly dynamic (2-10
second turnover) but relatively small clusters (<20 molecules) of
all factors at sites of transcription.

As mentioned above single molecule tracking has been
previously performed in immune cells (13). However, these
experiments were not in the context of lineage decisions or
concurrent with transcriptional visualisation. Here we outline
experiments applying the visualisation systems used in
Drosophila transcriptional regulation to immune cell lineage
decisions. While ultimately these experiments could be
conducted in genetically engineered primary cells, there are
numerous in vitro systems in which immune cells can be
induced to make lineage decisions. For example, the monocytic
cell line THP-1 can be induced to differentiate into M1 or M2
macrophages by treatment with propidium monoazide (93).
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F

BOX 8 | While visualisation of total RNA or DNA is relatively trivial, identification of specific RNA species or DNA regions within the vast cellular pool of both is far
from it (76). The visualisation of RNA is most frequently used to identify transcriptional activity based upon concentrations of specific RNA species. For many years,
RNA Fluorescence In Situ Hybridization (FISH) (77) was the method of choice. However, the number of different RNA species detected was limited by fluorescence
spectra. Recent multiplexing technologies resolved this issue using sequential imaging allowing visualisation of over a thousand RNA species in a single cell (8, 9).
While FISH requires sample fixation, there are a number of imaging technologies that allow visualisation of RNA in live cells. These utilise small molecule fluorescent
dyes (molecular beacons, nanoflares and dye aptamers) or fluorescent proteins fused to RNA aptamer binding proteins (MS2, PP7 or pumilio1) or single stranded
RNA-binding Cas9 (rCas9) (78). The aptamer strategies require genetic engineering of the RNA of interest to insert aptamer sequences while beacons, nanoflares
and rCas9 bind native RNA species. Similar to RNA visualisation, DNA FISH (79) has traditionally been the method used to view locus position within fixed cells, with
the same spectral constraints. Recent technological advances have allowed both sequential imaging in fixed cells [ORCA (80), Hi-M (81)] and imaging DNA in live
cells (10, 82). Similar to the multiplexed RNA-FISH technologies the DNA sequential imaging technologies use successive rounds of imaging separated by fluorescent
stranddisplacement to reveal the location of, and relationship between, numerous regions of DNA. Imaging DNA regions of interest in live cells currently relies upon
the binding of tagged and catalytically dead Cas9 (dCas9) to these loci. This creates challenges in delivering sufficient guide RNAs to target labelled dCas9 to the
regions of interest. One recent solution includes the development of molecular assembly strategies that allow the introduction of up to 36 guide RNAs into a single
cell providing sufficient guide to visualise non-repetitive DNA regions in live cells (10).
ro
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Within this system expression of lineage defining transcription
factors, such as STAT1, 3 or 6, could be visualised (94). When the
expression of these transcription factors is first detected the locus
could be target locked and the relationship between transcription
and single molecules of select regulatory factors could be
examined. This could reveal how single molecules can regulate
expression of these lineage defining transcription factors, and
thus influence the fate of the immune lineage.

One obvious weakness of this methodology is the inability to
visualise regulatory events prior to transcription initiation.
Many of these events are likely just as lineage defining as
those after transcription begins. As previously outlined, there
are a number of technologies that allow visualisation of specific
loci in cells (Box 8), however, none have yet been combined
with live single molecule tracking of regulatory factors and
transcription. Like so many recent molecular technologies one
recent breakthrough in visualising loci in live cells utilises
catalytically dead Cas9 (dCas9). As such, in a system known
as Chimeric Array of gRNA Oligonucleotides (CARGO),
numerous guide RNAs are introduced into the cell to guide
fluorescently tagged dCas9 to a locus of interest (10) (Box 8).
While the presence of dCas9 was shown not to dramatically
impact local genome organisation (10), it is likely that dCas9
will obstruct other regulatory factors at sites of interest. Thus,
other methods of visualising loci of interest prior to
transcription will be required if the regulatory events prior to
transcription are to be studied at the nanoscale.

While there is still work to be done, recent developments in
super resolution imaging have revealed the behaviours of lineage
defining molecules, be it transcriptional regulators or genomic
loci, in almost unimaginable detail. If, or perhaps when, they are
ultimately applied to immune cells, these single molecule scale
technologies will provide an unprecedented view of entire
antigen receptor gene loci and potentially allow us to watch as
a single transcriptional regulator changes the fate of an
entire lineage.
CONCLUSION

In the two decades since the invention of laser-based super
resolution imaging, scientists have used these technologies to
continue the long tradition of using microscopy to understand
the immune system.

However, while impactful, all of these discoveries have been
made using in vitro systems. This is because in vivo super
resolution technologies still face major technological hurdles.
The solution will likely come by emulating current high-
resolution in vivo imaging systems. These high-resolution
systems, such as confocal microscopy, have used surgically
implanted windows (95, 96) or simply exteriorized, though still
living, organs and tissues in reveal important insights into
immune cells in vivo. Among many insights, high-resolution
imaging has revealed distinct waves of cancer-induced immune
cell infiltrates (97) and the role of neutrophils (98, 99),
Frontiers in Immunology | www.frontiersin.org 9
macrophages (100) and dendritic cells (101) in combatting, but
also at times inadvertently aiding, cancer progression.
Furthermore, the speed of high-resolution imaging
technologies has allowed the imaging of interactions between
immune cell types in real time. For example, using intravital
microscopy in exteriorized lymph nodes of anesthetized mice,
Mempel et al. tracked how cytotoxic T cells interacted with
antigen-presenting B cells in the presence or absence of
regulatory T cells in real time (102). Other examples include
interactions between NK cells and dendritic cells (103),
macrophages and dendritic cells (104), macrophages and
cytotoxic T cells (105), among many others (106).

Finally, and perhaps most clinically relevant, high-resolution
in vivo imaging has allowed tracking of the immune cell response
to drug treatment. For example, Hawkins et al. imaged the
retraction of T cell leukaemia in the calvarium of the mouse
skull upon dexamethasone treatment (95), while Lohela et al.
imaged the reduction in macrophages and dendritic cells in the
mouse mammary gland during anti-colony stimulating factor 1
treatment (107).

Expanding these types of studies to super-resolution imaging
has significant further challenges. These include scattering of
structured light by dynamic tissues (108) to balancing excitation
power to detect nanoscale structures while avoiding lethal
phototoxicity. However, new technologies continue to push
these boundaries (80, 81), often by combining the strengths of
existing systems, such as lattice light sheet microscopy and
adaptive optics (109). Currently the financial and technical
thresholds of these technologies mean they are not widely
available; however, excitingly, it is likely that immunologists
will soon be able to use these and other, as yet unimagined,
technologies to explore nanoscale structures within living tissues.
Thus, the future of super resolution imaging is bright and will
continue to shed (structured) light on molecular immunology
well into the future.
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