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ABSTRACT

Somatic synonymous mutations are one of the most
frequent genetic variants occurring in the coding re-
gion of cancer genomes, while their contributions
to cancer development remain largely unknown. To
assess whether synonymous mutations involved in
post-transcriptional regulation contribute to the ge-
netic etiology of cancers, we collected whole exome
data from 8,320 patients across 22 cancer types. By
employing our developed algorithm, PIVar, we iden-
tified a total of 22,948 posttranscriptionally impaired
synonymous SNVs (pisSNVs) spanning 2,042 genes.
In addition, 35 RNA binding proteins impacted by
these identified pisSNVs were significantly enriched.
Remarkably, we discovered markedly elevated ratio
of somatic pisSNVs across all 22 cancer types, and a
high pisSNV ratio was associated with worse patient
survival in five cancer types. Intriguing, several well-
established cancer genes, including PTEN, RB1 and
PIK3CA, appeared to contribute to tumorigenesis at
both protein function and posttranscriptional regula-
tion levels, whereas some pisSNV-hosted genes, in-
cluding UBR4, EP400 and INTS1, exerted their func-
tion during carcinogenesis mainly via posttranscrip-
tional mechanisms. Moreover, we predicted three
drugs associated with two pisSNVs, and numerous
compounds associated with expression signature of
pisSNV-hosted genes. Our study reveals the preva-
lence and clinical relevance of pisSNVs in cancers,
and emphasizes the importance of considering post-

transcriptional impaired synonymous mutations in
cancer biology.

INTRODUCTION

Somatic synonymous mutations, which do not alter the pro-
tein sequences of their host genes (1), are one of the most
frequent but rarely investigated genetic changes that occur
in the coding regions of human cancer genomes (2). Re-
cent studies have shown that they can act as drivers of can-
cers by altering RNA splicing, RNA stability and protein
translation (3,4), which suggests the existence of uncovered
regulatory effects of these ‘silent’ mutations and highlights
the significance to adjust our focus beyond the damaging
protein-coding mutations (5). Thus, to provide a compre-
hensive landscape of cancer genome alterations, it is imper-
ative but still challenging to decipher the role of these ‘silent’
mutations genome-wide in pathogenesis of cancers.

RNA-binding proteins (RBPs) play versatile roles in
posttranscriptional RNA regulation, including splicing,
polyadenylation, mRNA stabilization, RNA structure, sub-
cellular localization and transcription (6–9), and their aber-
rant expression may lead to chaos within the whole reg-
ulation network (10). In several cancer types, the abnor-
mal expression of RBPs was associated with patient prog-
nosis (11,12), and numerous mutations occurred in cod-
ing regions of RBPs had been implicated in tumorigene-
sis and progression, such as KHDRBS1 (13) and ELAVL1
(also known as HuR) (14). Interaction between known
cancer driver genes and dysregulation of RBPs were also
demonstrated. For example, the oncogenic transcription
factor c-Myc upregulated the transcription of three het-
erogeneous nuclear ribonucleoprotein (hnRNP) proteins to
control pyruvate kinase mRNA splicing in cancer cells (15).
Additionally, in cancer cells, p53 tumor suppressor protein
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induced the expression of RNA-binding motif 38 (RBM38),
which regulated the stability of targeted mRNAs to pro-
mote cell cycle arrest (16). These studies have unveiled the
indispensable function of RBPs in carcinogenesis and pro-
gression of cancers (17).

It has been demonstrated that RBPs can recognize their
RNA substrate via sequence-specific binding motifs (18);
therefore, genetic mutations occurred in the binding motifs
may disrupt the recognition between RBPs and RNA sub-
strates, resulting in various human diseases (19). For exam-
ple, a mutation in the 3′ untranslated region of FMR1 de-
creased neuronal activity-dependent translation of FMRP
by disrupting the binding of HuR, leading to developmen-
tal delay in patients (20). However, the effect of synonymous
single nucleotide variants (SNVs) on RBP-mediated post-
transcriptional regulation in human cancers remains un-
clear.

To test whether synonymous mutations involved in post-
transcriptional regulation contribute to the genetic etiol-
ogy of cancers, we collected whole exome data from 8,320
patients across 22 cancer types. By employing our devel-
oped algorithm, PIVar, we identified a substantial num-
ber of posttranscriptionally impaired synonymous SNVs
(pisSNVs) and observed the clinical relevance of the so-
matic pisSNV ratio in 8,320 patients across 22 cancer
types. The functional effect of these pisSNVs and their host
genes, as well as significantly altered subnetworks contain-
ing pisSNV-hosted genes, were further analyzed for their
co-occurrence and relative contribution to the etiology of
cancers.

MATERIALS AND METHODS

Pipeline for detecting posttranscriptionally impaired SNVs
(piSNVs)

To evaluate the impact of mutations on posttranscriptional
regulation, we developed a heuristic scoring system, PIVar
(https://github.com/WeiWenqing/PIVar), which is inspired
by RegulomeDB (21) and centered on the disruption of a
protein-RNA interaction via alteration of RNA secondary
structure and regulation of gene expression, to identify piS-
NVs. Firstly, we identified the putative regulatory SNV set
as those situated in RBP-binding sites detected by CLIP-
seq (crosslinking immunoprecipitation sequencing). Then,
functional confidence of specific regulatory SNV was cat-
egorized based on their impact on RNA expression, RBP
binding, alterations of RNA secondary structure (namely
riboSNitch) and miRNA binding (Figure 1A, Supplemen-
tary Table S1).

In details, expression quantitative trait loci (eQTLs) and
RBP binding sites of 112 CLIP-seq datasets derived from
26 human cell lines or tissues were collected from starBase
(22), CLIPdb (23) and extracted sequencing data from Gene
Expression Omnibus (GEO) (24). As the RNA-binding do-
mains initially determined the binding specificity and pref-
erences of RBPs on RNA substrate via specific sequence
motifs (25), all position weight matrices (PWMs) from the
catalog of inferred sequence binding preferences of RBPs
(25,26) deposited in the AURA database (27) were used to
call motif (match score > 0 and P-values < 0.0001) across

human transcriptome. For single-base mutations, we em-
ployed the RNAsnp (28) with default parameters to esti-
mate the mutation effects on local RNA secondary struc-
ture. For insertions and deletions, we evaluated their effects
on RNA secondary structure using the minimal free en-
ergy generated by RNAfold (29). In addition, we employed
LS-GKM (30) and deltaSVM (31) to predict the impact of
SNVs on the binding of specific RBPs by calculating the
delta SVM scores. Only the SNVs that produced a change
of >5 in the gkm-SVM scores, P-values < 0.05 and free en-
ergy changes >1 were regarded as SNVs who are likely to
affect the binding of RBP. Moreover, we collected response
elements for all human microRNAs curated in miRanda
(32) and TargetScan v7.0 (33). The mutation effects of spe-
cific SNV on microRNA binding were predicted using miR-
NASNP v2 (34). Finally, SNVs with functional categories
1–2 listed in Supplementary Table S1 were determined to
be piSNVs.

To evaluate the efficiency of our workflow, based on the
downloaded RNA-seq and CLIP-seq (103 RBPs) data of
HepG2 cell line from the ENCODE (Encyclopedia of DNA
Elements) database, we compared the piSNV and pisSNVs
we identified with allele-specific RBP-RNA interaction sites
predicted by ASPRIN (35), which inferred the interactions
by observing the allelic preference of RBPs from CLIP-seq
as well as RNA-seq experimental data.

Identification of pisSNVs from somatic mutation data of 22
cancer types and human normal cells

We downloaded the somatic mutation data of 8,320 patients
across 22 cancer types, including skin cutaneous melanoma
(SKCM), lung squamous cell carcinoma (LUSC), lung
adenocarcinoma (LUAD), esophageal carcinoma (ESCA),
head and neck squamous cell carcinoma (HNSC), bladder
urothelial carcinoma (BLCA), cervical squamous cell car-
cinoma and endocervical adenocarcinoma (CESC), stom-
ach adenocarcinoma (STAD), rectum adenocarcinoma
(READ), glioblastoma multiforme (GBM), liver hepato-
cellular carcinoma (LIHC), uterine corpus endometrioid
carcinoma (UCEC), colon adenocarcinoma (COAD), kid-
ney renal clear cell carcinoma (KIRC), pancreatic adeno-
carcinoma (PAAD), sarcoma (SARC), kidney renal papil-
lary cell carcinoma (KIRP), ovarian serous cystadenocarci-
noma (OV), breast invasive carcinoma (BRCA), brain lower
grade glioma (LGG), prostate adenocarcinoma (PRAD),
thyroid carcinoma (THCA), from the Broad Institute/The
Cancer Genome Atlas (TCGA) data portal (http://gdac.
broadinstitute.org/). Taking samples from the DSMNC
database (Database of Somatic Mutations in Normal Cells)
(36) as a control, we got 0.77 million somatic SNVs oc-
curring in over 579 human normal cells from the DSMNC
database. The piSNVs and pisSNVs that could destroy the
binding between RNA and RBPs were identified from all
these somatic mutation data using PIVar, and the distribu-
tion of pisSNV ratio (ratio of pisSNV to synonymous SNV)
between control and each cancer type was compared us-
ing Wilcoxon rank-sum test. For a given sample, the ratio
of posttranscriptionally impaired non-synonymous SNV
(pinsSNV) to non-synonymous SNV was also calculated,
and then the distribution of pinsSNV ratio within each can-
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Figure. 1 Posttranscriptional impaired synonymous SNVs (pisSNVs) identified in TCGA pan-cancer. (A) Workflow for identifying posttranscriptionally
impaired SNVs. (B) Evaluation of the impact of piSNVs identified by PIVar on posttranscriptional regulation through allele-specific binding activity
(inferred by ASPRIN (35)) of 103 RBPs based on the CLIP-seq and RNA-seq data of the HepG2 cell line. (C) Genome-wide distribution of pisSNVs
identified in 22 TCGA cancer types. The circle adjacent to the karyotypes and the innermost circle show lines representing the distribution of pisSNVs
identified in SKCM and THCA, respectively. Other circles from outermost to innermost are arranged according to the order of cancer types listed in (D)
(from left to right). (D) Elevated ratio of somatic pisSNVs in TCGA pan-cancer compared with that of control from the DSMNC database (*** P<0.001).
For a given sample, the ratio of pisSNV to synonymous SNV was calculated, and then the distribution of pisSNV ratio within each cancer type was
compared with that in control samples using Wilcoxon rank-sum test.
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cer type was compared with that in pisSNV ratio using
Wilcoxon rank-sum test.

Clinical survival analysis

We downloaded corresponding clinical data of each cancer
type from cBioPortal (http://www.cbioportal.org/). Then,
the function ‘surv cutpoint’ from R package ‘survminer’
was applied to determine the optimal pisSNV ratio based
on disease-free survival (DFS) information of the patients.
DFS in patients with high or low pisSNV ratio was com-
pared using the Kaplan–Meier method and the log-rank
test. Multivariate Cox proportional regression analysis ac-
counting for age, gender, TNM stage and race of patient was
also performed to analyze the association between pisSNV
ratio and clinical outcome.

RBP motif enrichment of pisSNV loci and their impact on
RBP binding

Many RBPs interact with mRNAs via a limited set of mod-
ular RNA-binding domains (37), which initially determine
the specificity and preferences of RNA binding with spe-
cific sequence motifs (25). Therefore, 247 PWMs from the
catalog of the inferred RNA binding motif deposited in the
AURA database (27) were used to call motif matches in
the transcribed regions of the genome. After the integrative
analysis of the RBP motif and CLIP-seq-derived RBP bind-
ing for all identified pisSNVs, Fisher exact tests were used
to explore the RBPs impacted by pisSNVs (FDR < 0.05
and OR > 1). To further evaluate the impact of pisSNVs on
RBP binding, the crystal structures of the RBP-RNA com-
plex (PDB ID: 5EN1 and 2LEC) were downloaded from
the Protein Data Bank (https://www.rcsb.org/) and visual-
ized by PyMOL (https://pymol.org).

Chemiluminescent electrophoresis mobility shift assays

To assess the effect of RNA mutation on binding of RBP,
electrophoresis mobility shift assays were performed us-
ing LightShift Chemiluminescent RNA EMSA kit (Cat-
alog # 20158; Thermo Scientific, Rockford, USA). Two
purified RBPs were used in the assay. Of which, PCBP3
was purchased from OriGene Technologies (Catalog #
TP329176; Rockville, USA), and PTBP1 was kindly pro-
vided by Dr Yuanchao Xue (Institute of Biophysics, Chi-
nese Academy of Sciences, Beijing, China). Then, 200
ng RBP was pre-incubated with 100 �g ml−1 tRNA in
1× RNA EMSA binding buffer for 10 minutes at room
temperature. After that, 80 fmol synthesized 3′-biotin-
labeled wild-type or point-mutated RNA oligos (Supple-
mentary Table S2) were respectively added to the mix-
ture (15 �l final volume) and incubated for 20 minutes
at room temperature. Then, 3.75 �l 5× loading buffer
was added to the 15 �l RBP-RNA mixture and immedi-
ately loaded into the pre-run TBE polyacrylamide gel, and
ran at 100 V for 45–60 min in cooled 0.5× TBE buffer.
Samples were then transferred to positively charged ny-
lon membrane (Thermo Scientific, Rockford, USA), and
crosslinked with UV-light crosslinking instrument equipped

with 254 nm bulbs. The subsequent blocking, washing and
detection were performed according to the manufacturer’s
instructions.

Differential expression analysis

We downloaded the RNA-seq read count data of 22 can-
cer types and corresponding normal tissues from the Broad
Institute. The R package ‘DESeq2’ was used to assay the
expression of 2,042 pisSNV-hosted genes and 35 enriched
RBPs identified in the previous step, and only genes with
fold-change >2 and FDR <0.05 were considered to be dif-
ferentially expressed genes.

Identification of co-existed protein damaged mutations in
pisSNV-hosted genes

All genetic mutations occurred in 2,042 pisSNV-hosted
genes across 22 cancer types were curated, and their func-
tional consequences on protein were predicted using Var-
cards (38). Protein damage mutations were then defined by
loss-of-function mutations or missense mutations with a
damaging score ≥0.8 predicted using ReVe (39). After that,
gene-length corrected occurrence frequency of these genes
with protein damaging mutations and posttranscriptional
impaired synonymous mutations in all 8,320 cancer patients
were analyzed.

Network analysis

We used the HotNet2 workflow (40) to mine significantly
mutated subnetworks according to the literature-based Hu-
man Protein Reference Database (HPRD) network (http://
www.hprd.org/), and the sample frequency of each pisSNV-
hosted gene was taken as the network heat score to identify
significant subnetworks with default parameters.

KEGG enrichment analysis

To explore the function of pisSNV-hosted gene within each
subnetworks, we analyzed KEGG enrichment using the R
package ‘clusterProfiler’ (41), with a Bonferroni correction
test, and identified significant pathways with FDR values
<0.05.

Potential clinical drug analysis

We downloaded somatic mutation data for 1,001 cancer cell
lines and natural log IC50 of the dose–response curve for all
screened cell line/drug combinations from the Genomics of
Drug Sensitivity in Cancer (http://www.cancerrxgene.org/).
Next, we used analysis of variance (ANOVA) to identify the
associations between posttranscriptionally impaired syn-
onymous mutations and drug responses according to pre-
vious publication (42). Cohen’s d was used to quantify the
effect size, and the resulting P values were corrected by
FDR. To further explore the therapeutic effects of pisSNV-
hosted genes, the gene expression profiles of each identi-
fied pisSNV-hosted gene in each cancer type were com-
pared with drug response signatures listed in the Connec-
tivity Map (CMAP) build 02 (Broad Institute) (43).

http://www.cbioportal.org/
https://www.rcsb.org/
https://pymol.org
http://www.hprd.org/
http://www.cancerrxgene.org/
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RESULTS

Pipeline for detecting posttranscriptionally impaired SNVs
(piSNVs)

To investigate the potential impact of genomic mutations
on posttranscriptional regulation, we developed PIVar ac-
cording to the functional confidence of variants based on
multi-omic experimental data (Figure 1A). As a pilot study,
we first analyzed the mutation data of HepG2 cell line
from the ENCODE database using PIVar, and identified
27 piSNVs and 15 pisSNVs in the cell line. A recently de-
veloped computational method, ASPRIN (35), could infer
RBP-RNA interactions by observing the allelic preference
of RBPs from CLIP-seq as well as RNA-seq experimen-
tal data, which provided us a method to evaluate the effi-
ciency of our workflow. We used it to analyze allele-specific
binding of 103 RBPs based on the CLIP-seq and RNA-
seq data from the same cell line, and identified 987 allele-
specific RBP–RNA interaction sites in the exon regions.
Seventeen (62.96%) piSNVs and 11 (73.33%) pisSNVs ob-
tained through our pipeline were overlapped with the allele-
specific RBP–RNA interaction sites identified by ASPRIN
(Figure 1B; Supplementary Table S3), which suggests that
PIVar was more stringent for identifying the impact of ge-
netic mutations on posttranscriptional regulation network.

Elevated ratio of somatic pisSNVs across cancer types

Inspired by previous studies in which genetic mutations
can disrupt the RBP recognition of RNA substrates (20,44)
and many RBPs play important roles in tumorigenesis (11–
16,35), we then employed PIVar (Figure 1A) to analyze the
somatic mutation spectrum of 22 cancer types to explore
the correlation between mutations and binding of RBPs. In
total, we identified 98,260 nonredundant piSNVs across 22
cancer types that could destroy the binding between mRNA
and the corresponding RBP. Synonymous mutations can
function as driver mutations in human cancers by disrupt-
ing RNA splicing or RBP binding instead of altering the
sequence of encoded proteins directly (4); thus, we focused
on the previously neglected ‘silent’ mutations and observed
a total of 22,948 synonymous piSNVs (pisSNVs) across 22
cancer types (Figure 1C; Supplementary Table S4). Tak-
ing samples from the DSMNC database as a control, we
observed a significantly higher ratio of pisSNVs in TCGA
pan-cancer compared with that of the control (Figure 1D).
Also, we observed synonymous mutations had a higher mu-
tation load on posttranscriptional regulation comparing to
non-synonymous mutations in 15 cancer types (Supplemen-
tary Figure S1). The significant distinction between cancer
and normal control samples unveiled the prevalence of post-
transcriptionally impaired synonymous mutations in cancer
genomes, implying their contribution to cancer etiology.

Clinical relevance of the pisSNV ratio across cancer types

To further identify the clinical relevance of the elevated
pisSNV ratio in cancers, we stratified the patients in each
cancer type according to the ratio of pisSNV to synony-
mous SNVs identified in a given sample. We found that
DFS of patients with seven cancer types, namely, BLCA,

CESE, LUAD, OV, SKCM, STAD and THCA, had a signif-
icant correlation with the pisSNV ratio (Figure 2; Supple-
mentary Figure S2), and the patients with a high pisSNV
ratio in each cancer type had a worse survival situation
than those with a low pisSNV ratio. Additionally, the as-
sociation between the increased ratio of pisSNV and the
DFS of cancer patients remained statistically significant
in five cancer types, namely, BLCA, LUAD, OV, SKCM
and STAD, even after adjusting for age, gender and TNM
stage of patient in the multivariate Cox regression analysis.
These results further revealed the contribution of pisSNVs
to survival of cancer patients and provided clinical evidence
that the pisSNV ratio could serve as a potential prognostic
biomarker for several types of cancers.

Functional effect of pisSNVs on RBP binding

After obtaining the association between clinical outcome
and pisSNV ratio, we wanted to determine the functional
effect of these pisSNVs on posttranscriptional regulation,
especially on RBP binding. It has been demonstrated that
genetic mutations on RNA substrates can disrupt the RBP
recognition toward them (20). To provide experimental evi-
dence that pisSNVs disrupt the binding of RBPs, we per-
formed EMSA on three randomly selected pisSNVs who
predicted to alter the binding of PCBP3 or PTBP1 (Figure
3A, B; Supplementary Figure S3). As shown in Figure 3A,
the binding of PCBP3 to unmutated RNA probe of DAB2,
a tumor suppressor by dictating the TGF-� responses of
tumor cells (45), was stronger, while the probe with the
pisSNV occurring in DAB2 showed visible differences in
their binding to PCBP3. Similar results were also found in
pisSNV of ZFHX3 or USP9X on binding of PTBP1 (Figure
3B; Supplementary Figure S3).

In addition, our analyses of the crystal structure of the
RBP-RNA complex supported the effect of some identi-
fied pisSNVs on RBP bindings. For example, a pisSNV
that occurs in the gene ADCY7 might influence the bind-
ing with hnRNP A2/B1, a key player in the posttran-
scriptional regulation of the maturation, transport, and
metabolism of long noncoding RNAs/mRNA (46) and an
essential regulator in the development and progression of
breast cancer (47). Specifically, the co-crystal structure of
the hnRNPA2B1-RNA complex (PDB ID: 5EN1) revealed
that hnRNPA2B1 could bind to 5′-AGGACUG-3′ RNA
oligonucleotide (46) (Figure 3C). By screening the identified
pisSNVs, we found that ADCY7, whose expression signifi-
cantly correlated with the overall survival of acute myeloid
leukemia patients (48), had a mutation from G to A at
the second position of the above motif. Another RBP af-
fected by a pisSNV is SRSF2, the RBP that plays an impor-
tant role in the regulation of alternative splicing events (49),
and it was demonstrated that SRSF2 could bind to the 5′-
UGGAGU-3′ RNA oligonucleotide (PDB ID: 2LEC) (50)
(Figure 3D). We inferred that two pisSNVs in UGGAGU
sequence motif residing in DAB2 and ZFHX3 could de-
stroy the binding between SRSF2 and their corresponding
RNAs.

To gain an overall insight into the impact of these pisS-
NVs on RBP binding, we performed motif and binding site
enrichment analysis. The integrative analysis of the RBP
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Figure 2. Disease-free survival related to the pisSNV ratio across cancer types. Subjects from the BLCA (A, B), LUAD (C, D), OV (E, F) and STAD (G,
H) cohort were stratified according to the pisSNV ratio. Multivariate Cox regression analysis of the pisSNV ratio after taking into account age, gender
and TNM stage of patients.
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Figure 3. Functional effects of pisSNVs on RBP binding. Electrophoretic mobility shift assays (EMSA) results show the impact of pisSNVs on the recog-
nition of PCBP3 (A) and PTBP1 (B) to their RNA targets. The co-crystal structure of the hnRNPA2B1 (C; PDB ID: 5EN1) or SRSF2 (D; PDB ID:
2LEC)-RNA complex displayed the binding locations of certain RBPs on specific RNA motifs. (E) RBP motif enrichment and CLIP-seq-derived RBP
binding site analysis of pisSNVs identified 35 significantly enriched RBPs. (F) Expression of RBPs in different cancer types.

motif and CLIP-seq-derived RBP binding for all identified
pisSNVs revealed 35 significantly enriched RBPs (Figure
3E; Supplementary Table S5). As previous studies demon-
strated that abnormal expression of RBPs contributed to
cancer development (11,12), we screened the differential
expression values of these RBPs between tumor and cor-
responding normal tissues in different cancer types (Fig-
ure 3F). The expression data suggest that dysregulation of
these RBPs occurs ubiquitously in cancers. For example,

IGF2BP1, a posttranscriptional regulator required for tu-
mor cell proliferation, invasion, and chemoresistance (51),
was differentially upregulated in 14 cancer types. ENOX1,
a critical mediator of endothelial cell radiosensitization and
a potential cancer therapy target (52), was differentially
downregulated in 10 cancer types. Collectively, these data
provide evidence to support the hypothesis that the identi-
fied pisSNVs contribute to cancer pathogenesis by affecting
the binding of some cancer-associated RBPs.
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Figure 4. The co-occurrence and expression of pisSNV-hosted genes in TCGA pan-cancer. The co-occurrence (A) and expression (B) of the top 5% (102)
gene-length corrected frequently occurred pisSNV-hosted genes in different cancer types. (C) The scatter plot shows the gene-length corrected occurrence
frequency of genes with posttranscriptional impaired synonymous mutations and protein damaging mutations.
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Figure 5. Significantly altered subnetworks and pathways containing pisSNV-hosted genes. (A) HotNet2 consensus subnetworks are arranged according
to the enriched cancer types. Colored outlines surrounding each network indicate the cancer types that are enriched, with the color corresponding to the
cancer types of the outmost circle. Protein interactions between a subnetwork are derived from the HPRD networks. The co-occurrence (B) and enriched
pathways (C) of the pisSNV-hosted genes from different subnetworks.

The co-occurrence of pisSNV-hosted genes in TCGA pan-
cancer

To explore the influence of pisSNVs at the gene level, we
summarized the somatic pisSNVs obtained in each can-
cer type and obtained 2,042 nonredundant pisSNV-hosted
genes. A large proportion of pisSNV-hosted genes occurred
in a cancer-specific manner, and the top three gene-length
corrected frequently occurred pisSNV-hosted genes were
LRP1B, LAMA1 and HERC2, which occurred in at least 17
cancer types (Figure 4A). In total of 8,320 patients, the per-
centage of patients with pisSNVs of LRP1B and LAMA1
was 2.16 and 0.81, respectively. LRP1B was thought to

function as a tumor suppressor (53), and microRNA-
mediated inactivation of LRP1B could increase the growth
and invasive capacity of cancer cells (54). Altered protein
expression of LAMA1, posttranscriptionally regulated by
miR-202, contributed to cell proliferation and migration of
ESCC (55). Our data provide evidence that LRP1B and
LAMA1 may contribute to tumorigenesis through post-
transcriptional regulation at another level. We also down-
loaded RNA sequencing data from TCGA to evaluate
the differential expression values of these pisSNV-hosted
genes between tumor and corresponding normal tissues
in different cancer types. From the bubble chart of the
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Figure 6. Drugs identified based on pisSNV and expression of pisSNV-hosted genes in different cancer types (A–C) Significant pharmacogenomic inter-
actions for mutant (Mut) versus wild-type (WT) cell lines identified by ANOVA. (D) Drugs identified using CMAP in different cancer types.

top 5% frequently occurred pisSNV-hosted genes (Figure
4B), we found that the majority of them were differen-
tially expressed in each cancer type. For example, IQGAP3
and CENPE were upregulated in 15 cancer types, while
ITGA8 and MYH11 was downregulated in 16 and 15 can-
cer types, respectively, which, from the perspective of ex-
pression, reveals the functional relevance of these pisSNV-
hosted genes in cancer tumorigenesis. When we summa-
rized the gene-length corrected frequency of occurrence of
2,042 genes based on the status of posttranscriptional im-
pact and/or function damage (Figure 4C), we found that
470 of 8,320 cancer patients carried protein-damaging mu-
tations in LRP1B, the highest frequently occurred pisSNV-
hosted gene. Thus, we inferred that LRP1B contributed to
tumorigenesis at both the protein function and posttran-
scriptional regulation levels. This was supported by another
evidence that some identified pisSNV-hosted genes are well-
established cancer genes with a high deleterious mutation
rate, such as PTEN, RB1, COL11A1, PIK3CA, CSMD3

and DNAH5. Interestingly, we found that some pisSNV-
hosted gene, such as UBR4, EP400 and INTS1 (Supple-
mentary Table S6), function during carcinogenesis mainly
via posttranscriptional manner. The identification of these
pisSNV-hosted genes highly expands our understanding of
cancer biology.

Significantly altered subnetworks containing pisSNV-hosted
genes

To further assess the interactive relationship among the
2,042 pisSNV-hosted genes, we employed HotNet2 (40) to
mine the subnetwork in the HPRD network according to
the occurrence frequency of each gene, and identified 4
significantly altered subnetworks (Figure 5). Overall, the
altered subnetworks included several well-known cancer
pathways, such as the phosphoinositide 3-kinase (PI3K)-
AKT, mTOR and NOTCH signaling pathways. Subnet-
work 1 consisted of ITPR1, ITPR3, RYR2 (2.25% of 8,320
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samples), RYR3 and TRPM2, which are involved in thy-
roid hormone synthesis, pancreatic secretion, and apelin
signaling. This subnetwork also contained OBSCN (2.21%
of all samples), which co-occurred as pisSNV-hosted genes
in >20 cancer types. Subnetwork 2 was related to five
cancer types, UCEC, LUAD, COAD, SKCM and STAD,
and the genes included were COL1A1, COL4A1, COL4A4,
FN1, LAMA5, LAMC1 and LAMA1, which are enriched in
PI3K-Akt signaling pathway, suggesting the shared etiology
of these cancer types at post-transcriptional level. Subnet-
work 3 contained multiple members of the NOTCH signal-
ing pathway in four cancer types, BRCA, UCEC, COAD
and SKCM, including NOTCH1, NOTCH2, MAML2,
JAG1, JAG2 and MAML3. The last most posttran-
scriptionally impaired pan-cancer subnetwork consisted
of MTOR, RPTOR, CLASP2, CLIP1, RICTOR and
CLIP2, which are enriched in the mTOR signaling path-
way, AMPK signaling pathway, insulin signaling path-
way and PI3K-Akt signaling pathway. Posttranscription-
ally impaired synonymous mutations of MTOR, a re-
ported oncogene in multiple cancers (56), co-occurred in
14 cancer types. Interestingly, we also identified some newly
cancer-relevant genes within these subnetworks. Our find-
ings indicated that these pisSNV-hosted genes group to-
gether with well-established cancer genes, contributing to
the carcinogenesis of cancers at the posttranscriptional
level.

Therapeutic implications of pisSNVs and pisSNV-hosted
genes

To investigate the therapeutic implications of these iden-
tified pisSNVs, we analyzed pairwise interactions between
mutation data of pisSNVs and dose–response curve from
the 1,001 cancer cell lines, and identified two drug-response
associated pisSNVs (Figure 6A–C). As shown in Figure
6A, high sensitivity (low IC50 value) for CAY10566, a
steroyl-CoA desaturase 1 (SCD1) inhibitor which inhibits
the conversion from saturated to monounsaturated, long-
chain fatty acyl-CoAs (57), was significantly associated
with IGSF3 c.891 G>A mutation. In addition, Ara-G and
SGC0946 had higher response to TTN c.22323 C>T mu-
tated cell lines in comparison with wild-type cell lines (Fig-
ure 6B). To further explore the potential therapeutic effects
of the identified cancer-associated pisSNV-hosted genes,
we employed the CMAP workflow (43) to identify clinical
drugs based on the expression signature of these pisSNV-
hosted genes. In total, 60 compounds were identified, and
the majority of them were identified to have an effect on
a specific type of cancer (Figure 6D). Two inhibitors of
histone deacetylase, namely, MS-275 and vorinostat, were
identified as highly ranked compounds with antagonistic ef-
fects on gene expression signatures associated with 9 cancer
types (Figure 6D). In addition, compound 5182598 and car-
teolol were found to be able to induce the biological state
encoded in the signature associated with five and four can-
cer types, respectively (Figure 6D). Collectively, the iden-
tification of above drugs and compounds might be poten-
tially beneficial for treating patients with specific cancer
types.

DISCUSSION

Recent studies have shown that synonymous mutations
could function as cancer drivers by altering RNA splicing,
RNA stability and protein translation (3,4,58–60). How-
ever, it is still challenging to decipher the role of these muta-
tions genome-wide in the carcinogenesis of cancers. Numer-
ous studies have found that RBPs play an important role
in posttranscriptional regulation (6–8,35), and in the can-
cer genome, abnormal expression of RBPs has a significant
effect on cancer phenotype (10–12). Therefore, we specu-
lated that the synonymous mutations present in the cancer
genome may disrupt the binding of RBPs by altering the
secondary structure of RNA, thereby affecting the trans-
lation, transportation or degradation of the RNA and ul-
timately resulting in the carcinogenesis and progression of
cancer. To verify this, we presented a new approach, PIVar,
according to the functional confidence of variants based
on multi-omic experimental data, for identifying pisSNVs
from pan-cancer genome data. When we used the allele-
specific binding preference of 103 RBPs derived from the
CLIP-seq and RNA-seq data of the HepG2 cell line, we ob-
served that 73.33% of the pisSNVs identified in the cell line
could be validated. Also, our EMSA results on three ran-
domly selected pisSNVs provide experimental evidence that
the identified pisSNVs could disrupt the binding of their
corresponding RBPs. Thus, we provided an efficient and re-
liable tool for genome-wide deciphering of the role of these
synonymous mutations in the development of cancers at the
posttranscriptional regulation level.

By employing PIVar, we identified approximately twenty-
three thousands nonredundant pisSNVs spanning 2,042
genes across 22 cancer types. Compared with that of con-
trol samples from the DSMNC database, an elevated ratio
of somatic pisSNVs across cancer types was observed, and
a high ratio of pisSNVs could worsen the patients’ survival
of five cancer types, including BLCA, LUAD, OV, SKCM
and STAD, even when adjusted by multivariate Cox re-
gression. The results provided clinical evidence of the abil-
ity of the pisSNV ratio to serve as a potential prognos-
tic biomarker for these five kinds of cancers. It should be
noted that some identified pisSNV-hosted genes were well-
established cancer-relevant genes with a high deleterious
mutation rate, including PTEN, RB1, COL11A1, PIK3CA,
CSMD3, DNAH5 and LRP1B. For example, LRP1B, a
member of low density lipoprotein receptor-related protein
family, had the highest gene-length corrected frequency of
occurrence as a pisSNV-hosted gene, while 470 of 8,320 can-
cer patients was also identified to carry protein damaging
mutations of LRP1B. Down-regulation of LRP1B was re-
ported to promote the growth and migration of colon can-
cer cells (61), and its deletion was associated with acquired
chemotherapy resistance to liposomal doxorubicin in high-
grade serous ovarian cancers (62). Thus, the pisSNV-hosted
genes tend to contribute to tumorigenesis at both the pro-
tein functional and posttranscriptional regulation levels. In-
terestingly, we found that some pisSNV-hosted gene, such
as UBR4, EP400 and INTS1 (Supplementary Table S6),
might exert their function during carcinogenesis mainly via
posttranscriptional mechanisms. The identification of these
pisSNV-hosted genes that were not previously well charac-
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terized based on missense mutation or expression, highly
expands our understanding of cancer biology. It should be
mentioned that only impaired structure and posttranscrip-
tional regulation of pisSNV-hosted genes were considered
into the current discussion, while some genes may work as
transcription factors or epigenetic regulators and exert their
function at transcriptional level, thus comprehensive func-
tions of these identified pisSNV-hosted gene and their func-
tional validation is still needed in the future study.

Clinical implication analysis unveiled two drug-response
associated pisSNVs and three pisSNV-associated com-
pounds including CAY10566, Ara-G and SGC0946. Of the
compounds responding to TTN c.22323 C>T synonymous
mutation, Ara-G is a metabolite of nelarabine, which could
be used for chemotherapy in T-cell acute lymphoblastic
leukemia (63). In addition, SGC0946 can work as an in-
hibitor of histone lysine methyltransferase for H3K79 and
selectively kill mixed lineage leukemia cells (64). Drug sus-
ceptibility predictions based on the expression signature of
identified pisSNV-hosted genes revealed two highly ranked
compounds, that is, MS-275 and vorinostat, with effects
on 9 cancer types. MS-275, also known as entinostat and
SNDX-275, is a benzamide histone deacetylase inhibitor
and was undergoing clinical trials for the treatment of vari-
ous cancers (65). A recent study suggested that vorinostat
(also known as suberanilohydroxamic acid, SAHA) pos-
sesses some activity against recurrent glioblastoma multi-
forme, resulting in a median overall survival of 5.7 months
(66). Moreover, combination of vorinostat and carboplatin
as well as paclitaxel in the treatment of advanced non-small-
cell lung carcinoma (NSCLC) showed improved response
rates and increased median progression-free survival and
overall survival (67). The identification of these compounds
might be beneficial for patients with specific cancer types.

In summary, for the first time, our study reveals the preva-
lence and clinical relevance of pisSNVs in cancers, and pro-
vides valuable resource for future post-transcriptional regu-
lation researches, which may facilitate prognosis of specific
cancer types and development of new therapeutic strategies
for cancers.
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