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Abstract 
Background: Magnetic resonance imaging (MRI) is an important yet 
complex data acquisition technology for studying the brain. MRI 
signals can be affected by many factors and many sources of variance 
are often simply attributed to “noise”. Unexplained variance in MRI 
data hinders the statistical power of MRI studies and affects their 
reproducibility. We hypothesized that it would be possible to use 
phantom data as a proxy of scanner characteristics with a simplistic 
model of seasonal variation to explain some variance in human MRI 
data. 
Methods: We used MRI data from human participants collected in 
several studies, as well as phantom data collected weekly for scanner 
quality assurance (QA) purposes. From phantom data we identified 
the variables most likely to explain variance in acquired data and 
assessed their statistical significance by using them to model signal-
to-noise ratio (SNR), a fundamental MRI QA metric. We then included 
phantom data SNR in the models of morphometric measures obtained 
from human anatomical MRI data from the same scanner. 
Results: Phantom SNR and seasonal variation, after multiple 
comparisons correction, were statistically significant predictors of the 
volume of gray brain matter. However, a sweep over 16 other brain 
matter areas and types revealed no statistically significant predictors 
among phantom SNR or seasonal variables after multiple comparison 
correction. 
Conclusions: Seasonal variation and phantom SNR may be important 
factors to account for in MRI studies. Our results show weak support 
that seasonal variations are primarily caused by biological human 
factors instead of scanner performance variation. The phantom QA 
metric and scanning parameters are useful for more than just QA. 
Using QA metrics, scanning parameters, and seasonal variation data 
can help account for some variance in MRI studies, thus making them 
more powerful and reproducible.
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Introduction
Magnetic resonance imaging (MRI) is an important data 
acquisition technology used to unravel the mysteries of the 
brain, and it is very complex. The exact constitution of MRI  
signals is not entirely known since it could also potentially be 
affected by factors such as temperature and humidity varia-
tions across seasons1. Notably, a study by Meyer et al. noted 
that seasonal variations may not even correspond to the four  
seasons, indicating a complicated relationship between envi-
ronmental factors and brain functions2; thus, whether or not 
this variance in MRI is due to scanner effects or biological  
causes is unclear. This unexplained variance in MRI data hin-
ders the statistical power of MRI studies and affects their  
reproducibility.

MRI quality assurance (QA) metrics are indicators of the 
condition of the scanner at the time of a given scan, and are  
used for quality control in MRI centers3. In cases of signifi-
cant deviation from the norm, MRI personnel look into resolv-
ing underlying hardware or software issues. Otherwise, QA  
results are not used for anything else, and not shared alongside  
large shared datasets, such as Human Connectome Project 
(HCP)4 or the ABCD study where data is acquired across dif-
ferent scanners and potentially affected by scanner idiosyn-
crasies. It is typically unknown how seasonal and operational  
factors affect different types of scanning (on phantom and real 
subjects). We hypothesize that there may be a relationship  
between the QA metrics of a scanner (obtained on a phantom) 
and the characteristics of the MRI scans (on human participants), 
which affect the consecutive data analysis results and drawn  
conclusions.

The purpose of this study was to evaluate if phantom data 
could be used as a useful proxy for overall scanner operational 
characteristics that can help explain variance in real human  
subject data acquired using the same MRI scanner on dates 
nearby phantom QA scans. The first stage of this study ana-
lyzed the influence of phantom scanning parameters on signal-
to-noise ratio (SNR), which is known to be a fundamental QA  
metric for MRI. The second stage of this study used SNRs from 
stage one from phantom data to model morphometric measures 
obtained using human MRI data.

Methods
Ethical statement
This study was approved by the Dartmouth Committee for the 
Protection of Human Subjects (CPHS 31408). Data collection 
in the individual studies was approved by the same commit-
tee (CPHS 17763, 28486, 29780, 21200 and 30389). All par-
ticipants gave written informed consent for participation and  
re-analysis of data.

Human participants
We used the data from 206 participants (261 scans) collected 
from October 30, 2017 to August 28, 2018 who participated 
in five studies17–20 of three labs at the Dartmouth Brain Imaging  
Center (DBIC). Participants ranged from 18–64 years of age. 
There were 78 male and 128 female participants. The MRI  

scanner used was the 3.0 Tesla Siemens MAGNETOM Prisma 
whole-body MRI system from Siemens Medical Solutions. 
Human participant and phantom data were collected using a  
32-channel head coil.

Phantom
The DBIC collects MRI QA data weekly (typically each  
Monday) on an agar phantom. For the purposes of this study 
we did not use DBIC QA estimates but carried out QA using  
MRIQC BIDS-App7.

QA data, converted to a BIDS dataset (including original 
DICOM data under sourcedata/), is available as a ///dbic/QA  
DataLad dataset8. Subject “qa” within that dataset contains data 
for the agar phantom used in weekly QA scans. QA scans con-
tain a single T1 weighted anatomical image (192×256×256 
matrix at 0.90×0.94×0.94mm) and two functional T2* weighted  
echo planar imaging (EPI) scans (80×80×30 matrix at 
3.00×3.00×3.99mm with 200 volumes acquired with time of  
repetition (TR) of two seconds; not used in this study).

Data preparation
All data at the DBIC is collected following the ReproIn  
convention on organizing and naming scanning protocols9. 
To guarantee that the data would not contain variance caused 
by different conversion software versions through time, data 
from all phantom and human subjects was reconverted from 
raw DICOMs into BIDS datasets using consistent versions of  
ReproIn/HeuDiConv and dcm2niix10. All phantom QA data 
was re-converted using ReproIn/HeuDiConv with dcm2niix 
(v1.0.20171215 (OpenJPEG build) GCC6.3.0), and human data 
from different studies re-converted using ReproIn/HeuDiConv  
(v0.5.3) with dcm2niix (v1.0.20181125 GCC6.3.0). HeuDiConv  
is programmed to automatically extract many acquisition 
and scanner operation parameters from DICOMs and place 
them alongside neuroimaging files in the BIDS dataset. For 
the purposes of this study, a subset of those parameters was 
selected as variables of interest for analysis based on prior 
knowledge regarding which variables could potentially affect  
the collected data (see Table 1). Furthermore, we added  
seasonal effects by using NumPy 1.18.4 inserting sine and 
cosine waves into the model with a period of one year to 
roughly estimate the four seasons; arguably, this was a very 
simplistic model due to our data’s short duration of under two  
years. Our data’s limited time range precluded us from using 
more elaborate seasonal models, and as noted in the intro-
duction, seasonal effects may not exactly correspond to the 
four seasons. Still, we felt a simplistic representation of  
seasonal effects could help indicate the possibility of further  
investigation.

We used MRIQC (v0.14.2)7 on both the QA phantom and 
the human data from October 30, 2017 to August 28, 2018. 
MRIQC provided us with proxy measures of scanner operation  
characteristics, such as total SNR for anatomicals. Figure 1 
presents a correlation structure between all variables of inter-
est for phantom MRI data visualized using Seaborn 0.10.1.  
DataLad11 with the datalad-container extension12 was used for  
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version control of all digital objects (data, code, singularity 
containerized environments), and all code and shareable data 
were made available on GitHub (see Data availability22 and  
Code availability21) with containers and data available from the 
///con/nuisance DataLad dataset. At the moment we have con-
centrated on analysis of anatomical data, so only T1w images  
from phantom and human participants were used. 

We used DataLad to run a modified version of the simple_work-
flow container and script13, which extracts certain segmenta-
tion statistics of the brain from real human MRI data. These 
include metrics relating to the accumbens area, amygdala, 
caudate, hippocampus, pallidum, putamen, thalamus proper,  
cerebrospinal fluid, and the gray and white matter in the brain. 

The original simple_workflow container is fully reproducible  
(frozen to the state of NeuroDebian as of 20170410  
using nd_freeze) and uses FSL 5.0.9-3~nd80+1.

The free open source software facilitating our data preparation  
was Pandas 1.0.4.

Data modeling
Ordinary least squares (OLS) regression, as implemented in 
StatsModels Python package (v 0.9.0)15, was used to model  
target variables of interest. As part of the modeling, certain inter-
dependent variables were orthogonalized to account for pos-
sible covariance (in the order presented in Figure 1; seasonal 
variation data was orthogonalized last) using NumPy 1.18.4.  

Table 1. Quality assurance metrics of interest in this study, categorically divided by interest.

Category Variable description (variable name)

 
MR scanner operation characteristics 
(outside of operator control)

Transmission amplifier reference amplitude (TxRefAmp)

Specific absorption rate (SAR)

Scanner software version (SoftwareVersions)

Acquisition specifics 
(affected directly or indirectly by operator 
for any given acquisition)

Day time of acquisition (AcquisitionTime)

Patient position in the scanner 
(ImageOrientationPatientDICOM, abbreviated as IOPD)

Proxy measures of scanner operation 
characteristics 
(possibly affected by all other variables)

Total signal-to-noise ratio (snr_total)

Figure 1. Pearson correlations between different variables on phantom MRI phantom data. Refer to Table 1 for explanation of 
abbreviated variables.
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The extent to which an independent variable affects the 
dependent variable was assessed using a t-test for single-val-
ued variables, and using an F-test for arrayed values (such as  
patient position in the scanner). Subsequently, the explanatory 
power of the scanning parameters and characteristics on the 
phantom QA metric (snr_total) as the dependent variable was  
evaluated.

Next, a segmentation statistic - gray brain matter on human  
participant data - was modeled using a proxy QA measure  
from phantom data (snr_total) and a scanner characteristic of 
the human participant scanning session (IOPD), demographics  
(age, gender), and seasonal effects. Gray brain matter was cho-
sen because either gray or white brain matter were deemed 
likely to yield a statistically significant relationship. Because 
phantom QA data was acquired typically only each Monday,  
its value was interpolated in time to obtain values for the dates 
of human participants scanning. After modeling gray brain 
matter, other structures (such as white matter, cerebrospinal 

fluid, and subcortical regions) were analyzed. Our reasoning 
was that if gray brain matter yielded a significant result, then  
other brain segmentation statistics could also yield significant 
results, which could subsequently be investigated.

The free open source software facilitating the visualization of  
our model was Matplotlib 3.2.1.

Results
Statistical significance of variables
We found that we could describe the total SNR of phantom  
data well with just a limited set of scanner operational char-
acteristics. The R2 value of the model shown in Figure 2 was 
0.533. Multiple variables (day time of acquisition, subject posi-
tion, and SAR) were statistically significant and all survived  
false discovery rate (FDR) correction, as shown in Table 2.

Given that certain scanning parameters and a QA metric 
were determined to have significant explanatory power in the  

Table 2. Independent variables’ original and corrected p-values 
from the model in Figure 2. FDR, false discovery rate.

Independent variable
p-value

Original FDR-corrected

Day time of acquisition 0.019 0.031

Specific absorption rate (SAR) 0.003 0.017

Transmission amplifier reference 
amplitude (TxRefAmp)

0.382 0.477

Patient position in the scanner (IOPD) 0.015 0.031

Seasonal variation 0.669 0.669

Figure 2. Model of total signal-to-noise ratio using scanning parameters from phantom data. R2 value was 0.533, indicating 
scanning parameters have explanatory power.
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phantom scans, we decided to proceed to model human  
participants’ gray brain matter volume using participants’ 
basic demographic data, variables we found significant from 
phantom data (IOPD), and total SNR. Gray (or white) brain  
matter was deemed likely to be affected as they are two large  
“structures”.

After correction, the phantom’s total SNR was found to be a  
statistically significant (p=0.002 and FDR-corrected=0.003) 
predictor of gray brain matter, as shown in Table 3. Other 
scanning parameters and subject characteristics found sig-
nificant were subject age, sex, weight, as well as seasonal  
variation in data. Note that the orthogonalization carried out for 
the model in Table 3 was carried out in the order shown from  
top-to-bottom.

After modeling gray brain matter, we modeled the other  
structures (background, subcortical regions, etc.), and assessed 
statistical significance for two independent variables of interest  
in each model: phantom’s total SNR, and seasonal variables. 
Results in Table 4 show no statistically significant results 
after FDR correction across structures except phantom total  
SNR in gray brain matter; notably, seasonal variables in gray  
brain matter were not significant. 

Model selection: investigation of QA metric vs seasonal 
effects
Given that scanning characteristics, a QA metric and seasonal  
effects seem to have a statistically significant effect on gray 
brain matter volume estimates (see Table 3), we decided to  
compare the fit of the model with and without those independ-
ent variables. We did so by removing one of either the QA 
metric or seasonal effects from the list of independent vari-
ables in the model for gray brain matter and observing the 
fit of the resulting model. From the initial R2 value of 0.242 
(Akaike Information Criterion, AIC = 7044; Bayesian Informa-
tion Criterion, BIC = 7091) with both QA metric and seasonal 

effects shown in Figure 3, removing the QA metric dropped  
the model’s R2 value to 0.208 (AIC = 7054, BIC = 7097), and 
removing seasonal effects resulted in an R2 value of 0.207  
(AIC = 7052, BIC = 7092), thus showing that the QA met-
ric and seasonal effects both have similar effects on the fit of 
the model. However, after removing both the QA metric and 
seasonal effects, the R2 value drops to 0.185 (AIC = 7058,  
BIC = 7093), which suggests that they are complementary in  
terms of explanatory power.

Discussion
Our results have indicated that the QA metric of the phantom 
data can be useful beyond routine monitoring of MRI scan-
ner health. Specifically, our use case demonstrates the viability  
of using a QA metric to predict variance in estimates derived 
from human MRI scan data. Our results show also that the  
following scanning parameters: “patient” (in this case, phan-
tom) position in scanner, day time of acquisition, and specific 
absorption rate; were statistically significant predictors of the 
phantom QA metric: total SNR. In turn, the phantom total SNR 
ratio was a statistically significant predictor of gray brain matter  
volume, even in the presence of actual data parame-
ters relating to the patient such as age, sex, and weight. It 
seems that effects depend on the scale of data; in our data  
sample the uncorrected phantom QA metric provided an expla-
nation for coarse “structures” (such as all of the gray brain  
matter) but failed to significantly explain any subcortical structure  
estimate.

Furthermore, we provide further support for the idea that  
seasonal variations affect human data. The initial R2 value of 
the QA metric-human data model was 0.242; yet, by remov-
ing seasonal effects from the model, the R2 value dropped to  
0.207, suggesting that including seasonal effect data is use-
ful for attributing variance in MRI data. It should be noted 
that the effect of the proxy scanner health metric seems to  
have a similar magnitude as that of seasonal variation effects, 
given that the removal of the QA metric from the model also 
results in a similar decline in the R2 value to 0.208. However, 
we determined that this effect of seasonal variation is distinct  
from that from the QA metric, as can be seen by the fact 
that after removing both the QA metric and seasonal  
variation from the model, the R2 value declines further to 
0.185. This result indicates that both the QA metric and sea-
sonal variations may be important variables to account for 
when seeking to explain variance in MRI data, given that using  
the MRI scanner’s phantom QA metric was not sufficient to 
account for all seasonal variance (at least when gray brain  
matter was the dependent variable). This result weakly sup-
ports the idea that seasonal variation in human data is caused by  
biological, rather than scanner, effects due to the fact that sea-
sonal variation was not significant for phantom data (i.e. 
scanner-only) but was significant for gray brain matter in  
human data.

To supplement our findings on seasonal variation effects, it 
should be noted that our seasonal model was very simplis-
tic and was composed of sine and cosine waves. Given that we  

Table 3. Independent variables’ original and FDR-
corrected p-values from the model for gray brain 
matter volume (Figure 3). FDR, false discovery rate; 
SNR, signal-to-noise ratio.

Independent variable
p-value

Original FDR-corrected

Subject age 0.0008 0.002

Subject sex 0.003 0.005

Subject weight 0.0000001 0.0000009

Phantom’s total SNR 0.002 0.003

Subject position in 
scanner (IOPD)

0.056 0.056

Seasonal 0.029 0.035
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Table 4. Brain segmentation statistics results where bolded values are statistically significant. 
FDR, false discovery rate; SNR, signal-to-noise ratio; CSF, cerebrospinal fluid.

Structure\Model
Phantom total SNR 

p value
Seasonal variables 

p value Model 
R2 value

Original FDR-corrected Original FDR-corrected

0 Background 0.269 0.722 0.182 0.328 0.467

1 Left-Accumbens-area 0.981 0.981 0.879 0.973 0.104

2 Left-Amygdala 0.462 0.722 0.639 0.820 0.328

3 Left-Caudate 0.088 0.396 0.955 0.973 0.216

4 Left-Hippocampus 0.464 0.722 0.168 0.328 0.218

5 Left-Pallidum 0.563 0.722 0.160 0.328 0.520

6 Left-Putamen 0.464 0.722 0.087 0.225 0.262

7 Left-Thalamus-Proper 0.301 0.722 0.214 0.351 0.428

8 Right-Accumbens-area 0.569 0.722 0.044 0.211 0.146

9 Right-Amygdala 0.748 0.842 0.973 0.973 0.334

10 Right-Caudate 0.079 0.396 0.893 0.973 0.165

11 Right-Hippocampus 0.277 0.722 0.055 0.211 0.313

12 Right-Pallidum 0.453 0.722 0.081 0.225 0.544

13 Right-Putamen 0.602 0.722 0.362 0.543 0.289

14 Right-Thalamus-Proper 0.533 0.722 0.480 0.665 0.434

15 CSF 0.031 0.278 0.059 0.211 0.148

16 gray 0.002 0.028 0.029 0.211 0.242

17 white 0.862 0.912 0.004 0.067 0.276

Figure 3. Model of gray brain matter using patient age, patient position in scanner, patient sex, patient weight, total signal-to-
noise ratio, and seasonal variation. R2 value was 0.242. The full fit plot (in red) shows the plot of all independent variables, whereas the 
partial fit plot (in pink) shows the plot of only the statistically significant variables. The black plot shows the actual fit of the real data.
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noticed that it affected our models to some extent, we antici-
pate developing a more sophisticated model of seasonal effects  
for a more accurate model.

An unsurprising observation we made is that positioning of 
the patient (or phantom) in the scanner accounted for some 
variance. In the case of the phantom, its significance did not  
pass the significance threshold after FDR correction, but was 
very significant for human participants. Meanwhile, patient 
weight was a very statistically significant predictor for gray 
matter volume (Table 2); conversely, the size of the phantom  
remained constant while SNR was affected by position in 
the scanner. However, prior studies have indicated that brain 
size strongly correlates with patient height and thus weight16.  
This result suggests that it is still beneficial to add patient  
position in the scanner into the models to account for position- 
specific variance in addition to patient size (weight).

One interesting negative side-effect of establishing a fully 
reproducible pipeline, as we have done, is that we cannot 
share even highly compressed derivatives of the human data,  
such as morphometric estimates, with the subjects’ participa-
tion dates. This information could potentially be used to cross-
reference with datasets where such anonymized MRI data 
is fully shared, albeit with their dates stripped, and thereby 
used to violate the confidentiality of these subjects’ data.  
Unfortunately, to our knowledge, no large public datasets are 
accompanied with phantom QA data scans from the participat-
ing sites, which made it impossible to reuse publicly available  
datasets.

Our use of ReproIn for “turnkey” collection of MRI data into 
BIDS datasets at DBIC was a highly beneficial methodology  
shown in our approach. An example of such a dataset is the  
phantom QA dataset we used in our study. The standardized 
structure of our dataset collection, from filenames to data for-
mat, facilitated our establishment of “meta-datasets” comprising  
data from multiple studies.

Future directions
Our investigation has used phantom and human data for the 
period from October 30, 2017 to August 28, 2018. We are going 
to compare the model’s predictions on additional data (from  
other studies and later dates) with actual data to check the gen-
eralizability of our established models on future data and feed  
new data into the model to make it more robust.

As mentioned in the Methods/Phantom section, we will con-
sider using DBIC QA estimates such as T2* weighted EPI scans 
instead of MRIQC estimates to evaluate the significance of  
other sources of QA metrics in reducing variance.

In this study we used only anatomical (T1 weighted) data. 
We will investigate temporal SNR, which is a QA metric only 
available for functional data. Functional QA metrics are an  
interesting area of investigation in the future, as there is some 
notion of functional connectivity in resting state data, and  

statistical estimates from GLM on task data. Functional  
phantom QA and other scanner characteristics could provide  
explanatory power to analyses.

The software we used to derive morphometric estimates of 
the brain could have been affected by the software used, and 
an investigation into the effects of conversion software (e.g., 
FSL) and their versions on morphometric estimates could yield  
valuable insights.

Conclusions
We showed that the scanning parameters and QA metric of 
phantom data are useful for more than just QA. To maximize 
the statistical power of MRI studies, we propose using scanning  
parameters and a QA metric, total SNR, from an MRI scanner’s 
phantom data to reduce the unexplained variance that exists  
in MRI data.

Furthermore, we have found that our simple representation of 
seasonal variation can help explain gray brain matter volume  
in human MRI data, and deserves further investigation to  
determine if this effect is truly of a biological origin, as our 
results weakly suggest. The incorporation of seasonal variables  
can also help reduce variance in MRI data.

Data availability
The human participants’ data used in this study cannot be 
shared, either in its anonymized form or in the form of deriva-
tive estimates of the brain structure volumes, due to the nature  
of the study which relies on the dates of scanning. As  
outlined in HIPAA, “The following identifiers of the individ-
ual or of relatives, employers, or household members of the  
individual must be removed to achieve the “safe harbor” method 
of de-identification: […](C) All elements of dates (except 
year) for dates directly related to the individual, including  
[…] admission date, discharge date.” To apply for access 
to the human participant data, you may contact either of the 
authors (cheng1928c@gmail.com and yoh@dartmouth.edu) 
and request a Data User Agreement (DUA) to fill out; upon  
approval, you will be granted access subject to the conditions  
of the DUA.

Harvard Database: Phantom MRI (Quality Assurance) Data  
From October 2017 to August 2018 at DBIC. https://doi.
org/10.7910/DVN/PFH4FL22.

This project contains the following underlying data:

-      JSON files contain quality assurance metrics to be used 
as independent variables (AcquisitionTime, SAR, TxRe-
fAmp, & ImageOrientationPatientDICOM) and as the 
dependent variable (snr_total) for logistic regression  
analysis

-      NII.GZ files that contain a compressed version of an 
MRI scan in the NIfTI-1 Data Format, and is the basis 
from which the quality assurance metrics of the JSON 
file were extracted. These nii.gz files were obtained from 
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the original DICOM files using the HeuDiConv conver-
sion program, which you may use to validate the JSON  
file’s metrics.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

Code availability
Code available from: https://github.com/proj-nuisance/nuisance

Archived code at time of publication: https://doi.org/10.5281/ 
zenodo.386544121.

License: Apache License 2.0

The aforementioned git repositories are also DataLad datasets 
that provide the complete computing environments used in the 

study (via git-annex), and contain full history of the analyses  
recorded in git commits history.
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The article describes in a very reasonable way how to estimate previously unexplained variance of 
MRI studies using data from the regular QA procedure of the radiology department. As the QA 
procedure is only run once a week the authors interpolate QA data or QA parameters to fit the 
dates of subject measurements. 
The original subject data is not available as the combination of individual measurement dates and 
mri data could disclose details about the subjects. But all of the procedures are available and 
described in sufficient detail, so it is possible to reproduce the study with local mri data. 
 
Right now I expect that the article could benefit if you would include more details about the QA 
procedure of the radiology department. Is the procedure described somewhere? If not, what gel 
phantom is used (FBIRN)? Do you use a mount for reproducible positioning? Has the phantom 
been replaced during the study period? 
 
Have there been any modifications or replacement of parts of the scanner hardware or software? 
 
Did all subjects undergo the same structural scan protocol, i.e. MPRAGE with identical TR, TI, TE, 
bandwidth? What kind of filters were applied? Was the volume of interest automatically or 
manually aligned? 
As you use some of the positional data for your analysis, it would also be nice to get an idea of the 
value ranges. Could you add a table or histogram to display the positional data? 
 
For the segmentation you used FAST from FSL 5.0.9 (described in Gosh et al., your reference #13). 
My former colleague L. Eggert found FAST to be more sensitive to varying image quality than 
other algorithms (Eggert et al.1). In his study he used FAST 4.1 from FSL 4.1.6.  I did not check the 
FAST version used in the container you used but according the FSL version history FSL 5.0.9 should 
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have also included FAST 4.1. 
 
I would be glad if in a further analysis the statistics would still remain significant when grey matter 
volume is based on a different segmentation algorithm. But even without this analysis your idea of 
QA data usage is interesting. 
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Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval, Quebec City, 
QC, Canada 

This is a great study addressing the subject of image quality and its influence on brain 
morphometric measurements. While most investigators assume that these measurements are 
indeed near infaillible, work of this kind serves to improve our collective ability at making these 
measurements ever more robust.  
 
The authors have used a longitudinal series of AGAR phantom scans as well as human participants 
being recruited and scanned over the course of one year on a single (Siemens Healthcare 
Magnetom Prisma) machine. The statistical analysis is strong and demonstrate a possible effect of 
seasonal variations on the main outcome, namely grey matter segmentation. 
 
The paper has a lot of merit, and hopefully these comments will serve to further improve it. 
 
Major comments:

The choice of the segmentation technique matters a lot. The inherent reliability of the 
technique may be the biggest inherent contributor to the variability in the results; further, 
this can be nonlinearly influenced by the scan characteristics. Speaking to the first point, the 
authors have chosen to use FSL, by which it is assumed they used the FAST technique. The 
authors are encouraged to read (and cite!) our recent publication on this topic (Dadar et al., 
NeuroImage 20201 in which we compared various segmentation algorithms (FAST amongst 
them) on a human phantom dataset composed of repeat scans on multiple scanners of the 
same individual (albeit without correcting for time of day, SNR, and other metrics discussed 
here). In this work FAST was shown to be at the lower range of reliability, when compared to 
other publicly available techniques (an expedited review can be promised if the authors use 
our own technique!)(these open reviews allow for such clarity in reviewer motivations...). To 
speak to the second point, it becomes hard to dissociate without further experiments how a 
software segmentation tool may be more able (i.e. robust) than another at glossing over 
image quality variations in order to produce results with high reliability. Thus it may be that 
all of the quality metrics measured do influence the image; but the segmentation technique 
is able to remove these differences. Thus the agar phantom data is of greater importance 
here. 
 

○

Time of day seems indeed to matter a lot, possibly more than shown here. It would appear 
that most of the phantom scans were taken at the beginning of the week. It is rather typical 
to do these scans early on the first day of scans (i.e. Monday AM). Yet, multiple reports have 
shown that there is quite a lot of variability in image quality due to the scanner “warming 
up” after repeated activity, i.e. over the course of the day. Trefler and colleagues 
(NeuroImage 2016;2) have done a nice study of this (you could cite them too). Thus in this 
study this effect may not have shown up in the phantom data, but could possibly affect the 
human results. Scattering phantom scans could address this issue. 
 

○

More generally, it is hard to draw conclusions on these effects with the choice of population. 
Studying GM in such a large number of different individuals on such a large age range is 
bound to be highly variable. It would be much better to focus on a subset of individuals (at 
the very least, only the young adults) and preferably only those with repeated measures, so 
that we can have a reasonable assumption that the scan-rescan variability should be very 

○
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low. 
Minor comments:

It is unclear what kind of interpolation between time points was done on the phantom data 
QC metric to estimate its value at the time of human scanning; 
 

○

The notion of IOPD is not quite clear. Does this mean some individuals were scanned 6 
times? Otherwise, what goes into this metric? Patient position in the scanner is mentioned, 
but the position should always be the same (not like other techniques (e.g. chest x-ray) 
where you could have supine or prone, etc.) 
 

○

It should be discussed that the choice of “seasonal effect” as a variable on participants being 
recruited over a year masks realities that may bias the study irrespective of the seasonal 
effect on the MRI scanner itself. For example, a competing hypothesis could be that seasons 
generated a recruitment bias, with young participants being more available in the summer, 
while older participants in the winter. One would need to better define seasonal variations 
and what they entail in terms of signal characteristics that are related to the scanner - yet as 
independent as possible to the SNR. For example, seasonal effects could serve as a proxy of 
room temperature, which can be measured (and may even be retrospectively available, 
depending on the building information system). The latter would affect cooling of the main 
field - which in turn would affect the main B0 but possibly other sources of thermal noise in 
the RF apparati. Thus a metric such as room temperature would be better suited than a 
sinusoidal model of season. Unpublished data from a colleague (J. Doyon, Montreal 
Neurological Institute) have showed a distinct relationship between room temperature and 
phantom SNR.

○
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This article explores the relationship between various factors (SNR on a QA phantom, patient 
positioning, time of year, etc) and the results of quantitation of anatomic MRI images. 
 
This is a solid piece of work, well executed and described, which demonstrates a useful method for 
reducing unexplained variance in MR data, in order to reveal underlying biological phenomena. 
The methods are very clearly described and reproducible, and all data is available for replication. I 
look forward to the companion paper on fMRI data. I would recommend accepting the paper as is 
(other than correcting Figure 2). 
 
Specific comments: 
It would be worth explaining why different versions of dcm2niix were used for the phantom and 
human data. This is not a major issue - each dataset was processed consistently. It is a little odd 
however. 
 
Figure 2 shows a legend and y scale for a partial model fit, however no partial model fit appears in 
the graph, nor is there any mention of one in the text. 
 
While the correlation between gray matter volume and QA SNR is shown to be significant, it would 
be useful to mention the sign of the interaction - does apparent GM volume increase or decrease 
with increasing SNR? This would be an interesting thing to know. 
 
It would be a nice addition to the paper to see if there were any correlations between day of the 
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week and any of the patient measures (not possible for the phantom data, since it was done once 
a week) to complement the Time-of-day and season metrics.
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This is an interesting topic and has great practical application for the MRI studies. 
My major concern is the conclusion about effect of variables, such as day time of acquisition, 
subject position, and SAR, on the brain tissue volume. It is easy to understand the potential effect 
of these variables on the phantom SNR, while it sounds a big jump to claim the effect on tissue 
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volume. Even if other biological variables are included as confounds, the variability among 
participants is too large to be accounted by the potential minor effect of the phantom SNR. 
A better approach may be to test the effect of the phantom SNR on the volume of the same brain, 
but it seems there is not enough repeats for a single brain in the dataset.
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