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ABSTRACT

DNA methylation is an important epigenetic modi-
fication involved in many biological processes and
diseases. Recent developments in whole genome
bisulfite sequencing (WGBS) technology have en-
abled genome-wide measurements of DNA methyla-
tion at single base pair resolution. Many experiments
have been conducted to compare DNA methylation
profiles under different biological contexts, with the
goal of identifying differentially methylated regions
(DMRs). Due to the high cost of WGBS experiments,
many studies are still conducted without biological
replicates. Methods and tools available for analyzing
such data are very limited.

We develop a statistical method, DSS-single, for
detecting DMRs from WGBS data without replicates.
We characterize the count data using a rigorous
model that accounts for the spatial correlation of
methylation levels, sequence depth and biological
variation. We demonstrate that using information
from neighboring CG sites, biological variation can
be estimated accurately even without replicates.
DMR detection is then carried out via a Wald test
procedure. Simulations demonstrate that DSS-single
has greater sensitivity and accuracy than existing
methods, and an analysis of H1 versus IMR90 cell
lines suggests that it also yields the most biologi-
cally meaningful results. DSS-single is implemented
in the Bioconductor package DSS.

INTRODUCTION

DNA methylation is a covalent epigenetic modification on
the 5-carbon position of cytosine that plays important roles

in regulating gene expression. Methylation of cytosine at
promoter regions represses gene expression by interfering
with the binding of transcription factors (TFs) or binding
proteins that promote transcription (1). DNA methylation
participates in many basic biological processes such as de-
velopment and aging, and can be dysregulated in human
diseases such as cancer (2–5). Because of its regulatory po-
tential, studies of DNA methylation are of great interest.
Results from these studies enhance the understanding of
epigenetic mechanisms of many basic biological processes
and disease etiologies.

Recent developments in high-throughput technologies
such as second-generation sequencing have revolutionized
the field by enabling genome-wide profiling of DNA methy-
lation. Bisulfite conversion of DNA followed by high-
throughput sequencing (also known as ‘Bisulfite sequenc-
ing’ or ‘BS-seq’) (6) allows measurement of DNA methy-
lation at single CpG resolution, and has quickly become
the technology of choice in DNA methylation studies. Data
generated from whole-genome BS-seq (WGBS) experiments
enable the comparison of genome-wide DNA methylation
profiles under different biological contexts. Genomic re-
gions showing different levels of DNA methylation un-
der distinct biological conditions are termed ‘differentially
methylated regions’ (DMRs). DMRs can provide insights
into many important biological processes and human dis-
eases. In addition, identification of DMRs between patients
and unaffected individuals could lead to development of pu-
tative epigenetic biomarkers for early detection and diag-
nosis. For these reasons, there is great demand for methods
for optimal detection of DMRs from WGBS data, where
the goal is to define genomic regions that show statisti-
cally significant differences in methylation levels between
biological conditions. A number of statistical methods and
computational tools have been developed recently, includ-
ing BSmooth (7), MethylKit (8), GBSA (9), BiSeq (10), DSS
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(11), MOABS (12), DMAP (13), MethylSig (14) and Bisul-
fighter (15).

Similar to other sequencing experiments, the raw data
from WGBS experiments are short sequence reads. After
alignment and data processing, the data can be summa-
rized as a pair of counts for each CpG site: the number of
reads showing methylation at this site and the total num-
ber of reads covering the site. The ratio of these two num-
bers provides an estimate of the methylation level at a CpG
site. WGBS data possess several unique characteristics that
should guide the design of any rigorous method to detect
DMRs. We describe each of these characteristics below.

First, genome-wide methylation levels are characterized
by strong spatial correlation (1,6). Proper utilization of the
information from neighboring CpG sites can help improve
estimation of methylation levels at each CpG site, and hence
improve DMR detection. To incorporate this information,
it is often assumed that the underlying true methylation lev-
els can be represented by a smooth curve genome-wide, and
smoothing techniques are used to estimate the curve (7). An
additional advantage of smoothing is that it can help de-
tect relatively longer DMRs that could be fragmented into
smaller pieces if the spatial correlation is ignored.

Second, the read depth of the CpG sites provides infor-
mation on precision that can be exploited to improve statis-
tical tests for DMR detection. Methods that directly test the
estimated methylation proportions (such as the t-test pro-
cedure implemented in BSmooth) lose information by ig-
noring the uncertainty in the point estimation. Moreover,
some methods perform arbitrary filtering of sites with low
depth (8), which results in loss of data. To make full use of
the available information, read depth must be taken into ac-
count. Among the existing methods, the Wald test (11), like-
lihood ratio test (14) and CDIF (12) incorporate the depth
information in DMR detection.

Finally, the variance among biological replicates provides
information necessary for a valid statistical test to detect
DMRs. Ignoring this variance––for example, aggregating
the counts from replicates and applying Fisher’s exact test
(8,13)––can lead to false positives. BSmooth (7) avoids ag-
gregating across replicates by performing a two-group t-
test across conditions using the estimated methylation pro-
portions, and thus directly computes the within-group vari-
ances. More recent approaches model the BS-seq count data
using a beta-binomial distribution (11,14), which captures
the biological variance through the dispersion parameters
of the beta distribution. Estimation of the dispersion pa-
rameters is not a trivial task for the same reason plagu-
ing differential expression analyses of RNA-seq data: the
limited number of replicates possible within most budgets
will often lead to unstable estimates. Borrowing ideas from
the methods developed for RNA-seq (16,17), an empirical
Bayes estimation procedure has been proposed and demon-
strated to have good performance (11). An important re-
quirement for these methods is that biological replicates are
needed in order to estimate within-group variance. How-
ever, since WGBS experiments are still very expensive, many
experiments performed to date only have a single replicate
per condition (18–21). In this case, the typical solution is
to ignore biological variance and perform naı̈ve analyses
based on the differences in estimated methylation levels or

Fisher’s exact test. These approaches implicitly assume that
biological variance is constant across the genome, which
is not true since it has been shown that there is substan-
tial variation in the dispersion of methylation data genome-
wide (3). Although this problem is often considered insur-
mountable, we will show below that even without replicates,
the biological variance can still be estimated.

We argue that a good DMR detection method must ac-
count for the three characteristics described above: spatial
correlation, read depth and biological variation. Of cur-
rently available methods, none account for all three char-
acteristics in a statistically rigorous way when there is no
biological replicate. In this work we propose a flexible,
efficient and comprehensive method for DMR detection
in two-group comparisons for WGBS data without repli-
cates. We extend our previously proposed method (11) by
incorporating spatial correlation into the model. Under
our model specification, within group variance can be es-
timated even without replicates. This is achieved by com-
bining data from nearby CpG sites and using them as
‘pseudo-replicates’ to estimate biological variance at spe-
cific locations. We perform extensive simulation and real
data analyses, and demonstrate that our proposed method
provides greater sensitivity, accuracy and biological plausi-
bility compared with existing methods. This method, DSS-
single (Dispersion Shrinkage for Sequencing data with
single replicates) is now implemented in the DSS Biocon-
ductor package.

MATERIALS AND METHODS

Modeling whole genome BS-seq data

For WGBS data from two groups and one replicate in each
group, we use the following notation: At the ith CpG site
and jth treatment group (j = 1, 2), let Xij be the count of
methylated reads, and let Nij be the total read count. Denote
the underlying ‘true’ methylation proportion by pij. We have
previously shown that it is reasonable to model Xik as a beta-
binomial distribution, which captures both the biological
and technical variation in the counts (11). The beta distri-
bution is parameterized by mean (μij) and dispersion (ϕij),
where ϕij represents the biological variance among repli-
cates in the same treatment group. Further, a log-normal
prior is imposed on ϕij in order to borrow information from
all CpG sites in estimating the site-specific dispersions. To
incorporate the spatial correlation in methylation levels, we
assume that the underlying mean of the beta distribution,
μij, varies smoothly across the genome. That is, we assume
μi j = f j (li ), where li denotes the genomic coordinate of the
ith CpG site, and fj is a smooth function. Putting all of these
pieces together, the data generated from WGBS experiments
can be described by the following hierarchical model:

Xi j |Ni j , pi j ∼ Binomial(Ni j , pi j )

pi j |μi j , φi j ∼ Beta(μi j , φi j )

φi j ∼ log −normal(m j0, r 2
j0)

μi j = f j (li )



PAGE 3 OF 9 Nucleic Acids Research, 2015, Vol. 43, No. 21 e141

This is a comprehensive model that captures all three of
the important characteristics in the WGBS-seq data dis-
cussed above. The binomial distribution captures the ran-
dom sampling process of the BS-seq experiment, the beta
distribution models the biological variation among repli-
cates, and the smooth function accounts for the spatial cor-
relation among nearby CpG sites. The log-normal prior
of the dispersion combines information from CpG sites
genome-wide, which provides a basis for information shar-
ing and helps the estimation of dispersion.

Smoothing procedure

We use a simple moving average procedure of the collapsed
counts to estimate fj. Specifically, at the ith CpG site, we
estimate the mean by μ̂i j = ∑

l∈Si
Xl j

/∑
l∈Si

Nl j , where S is
a set of CpG sites within a user-defined window of size w
(500 base pairs by default), e.g. Si = {m : |lm − li | < w}. We
will show below that the simple procedure performs almost
as well as more complicated, spline-based smoothing from
BSmooth, yet it is much more computationally efficient.

Dispersion estimation

With μ̂i j , the dispersion parameters ϕij are estimated
through an empirical Bayes (EB) procedure as proposed
in (11). The procedure borrows information from all CpG
sites, and provides more accurate estimates of the disper-
sion. The EB procedure does not require replicated data
as long as μij is available. This makes sense because with
the mean methylation known, even one observed data point
can provide some information for the variance. Taking ad-
vantage of the spatial correlation in methylation levels, the
means can be estimated through smoothing. So intuitively,
when there is no replicate, data from nearby CpG sites
can serve as ‘pseudo-replicates’. We will show below that
the procedure works well in both simulation and real data
analysis. Although it is still preferable to have biological
replicates, DSS-single works better than methods that com-
pletely ignore the variance, e.g. methods that use the differ-
ences in means or Fisher’s exact test to call DMRs.

DMR calling algorithm

We use the following algorithm for DMR detection from
WGBS data. The inputs for the algorithm are Xij, Nij and lj.
We first perform local smoothing on estimated methylation
proportions to obtain estimates for μij. Next, we estimate
the dispersions through the EB procedure described above.
We then identify DML (differentially methylated loci) by
performing a hypothesis test: H0 : μi1 = μi2 for the equal-
ity of mean methylation levels in two groups at each CpG
site. To do this, we adopt the Wald test procedure proposed
in (11), and modify the variance calculation to account for
smoothing effects (details provided in Supplementary Ma-
terials). The Wald test is performed at each CpG site, and
P-values are obtained from the test statistics. Finally, a user-
defined P-value threshold and additional criteria such as
minimum region length are applied to define DMRs.

WGBS data sets

We analyze several WGBS data sets generated by Roadmap
Epigenomics projects (22), including H1 (human embryonic
stem cells) and IMR90 (human fibroblasts) cell lines, as well
as human liver and hippocampus. The H1 and IMR90 data
were obtained from the Gene Expression Omnibus (GEO)
with accession number GSE16256, and the hippocampus
and liver data are also from GEO with accession number
GSE64577. There are two replicates available for each sam-
ple, but we limit our analyses to single-replicate compar-
isons. We perform analyses between H1 versus IMR90, and
liver versus hippocampus to evaluate the DMR calling re-
sults. The H1 data are also used as template to simulate re-
alistic WGBS data.

For H1-IMR90 comparison, the benchmarks are created
as follows. After obtaining the DNase-seq data for H1 and
IMR90 from ENCODE data (23), we apply MAnorm (24)
to compare them and generate differential DNase I hyper-
sensitive sites (DHSs). CpG island (CGI) data were down-
loaded from UCSC genome browser (25), with CGI shores
defined as ± 1000 base pairs of each side of a CGI. Gene
expression for H1 and IMR90 was obtained from (6), and
the RPKM values are downloaded from the Human DNA
Methylome website at the Salk Institute. We define differen-
tially expressed genes (DEGs) as regions with absolute log2
fold changes of RPKMs greater than 1. The promoter re-
gions for DEGs are defined as the regions ± 5000 base pairs
of the transcriptional start sites. The genome segmentation
by ChromHMM for H1 cells are obtained from ENCODE.

For liver-hippocampus comparisons, we also utilize avail-
able gene expression data and define DEGs using the same
approach. However, since the DNase-seq data for these
samples are unavailable, differential DHSs cannot be de-
fined. Instead, we use the list of DNase I Hypersensitivity
Clusters (DHCs) obtained from ENCODE, which is based
on the union of DNase-seq peaks from 125 cell types. We
use this list as a benchmark to assess the DMR calling ac-
curacies under the assumption that this list contains active
genomic regions for all biological conditions, and thus the
DMRs are more likely to overlap with these regions.

Simulation settings

All simulations are based on WGBS data from the H1 cell
line. In comparisons of smoothing procedures and disper-
sion estimates, we select 20,000 contiguous CpG sites on
chromosome 1, smooth the counts using BSmooth with
different spans, and treat the smoothed values as the true
μ in a hypothetical genome region. In each simulation,
we generate counts based on the beta-binomial model de-
scribed above, with ϕ independently generated from the log-
normal(−2.5,1) distribution and an average read depth of
10x.

For comparisons of DML and DMR calling in simula-
tions, data are generated for 100,000 CpG sites. We first
obtain the true μ parameters for the first treatment group
by smoothing the data from H1 ESC using BSmooth with
smoothing span of 500 bps. We then generate the true μ pa-
rameters for the second treatment group with 100 DMRs
‘spiked in’ as follows. Using the original H1 data, we ran-
domly generate 100 DMRs with lengths uniformly dis-
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tributed between 5 and 50 CpGs. To generate these DMRs,
we first randomly select 100 regions as ‘target regions’, and
then select another set of 100 random regions as ‘source re-
gions’. We obtain the counts (X and N) from the source
regions and replace values in the target regions with the
counts from the source regions. We then smooth the data
as above using BSmooth, and take the results as true μ
parameters for the second group. We use this approach to
guarantee that the true μ in the second group is smooth
even after spiking in DMRs. Under this simulation setting,
about 5% of the CpG sites lie in the DMRs. As above, we
then generate counts from the true μ’s in each group by in-
dependently simulating the dispersion parameters ϕ from
a log-normal(−2.5,1) distribution, and then generating the
counts based on the beta-binomial model.

RESULTS

Smoothing to incorporate spatial information

Smoothing is an integral part of DMR calling because it
incorporates information from spatial correlation. We per-
form simulations to compare smoothing procedures, apply-
ing these methods to estimate the mean methylation lev-
els under different scenarios (details in the Materials and
Methods section). Table 1 summarizes the correlations of
the estimated and true means for each approach.

Overall, the simulation results show that smoothing in-
creases the accuracy of the mean estimates. When the true
smoothing span is 500 bps, correctly specifying the span
gives very accurate estimates (correlations > 0.99) when
smoothing is performed via either BSmooth or a simple
moving average. However when the span is over-specified,
correlations drop significantly. For example, using a 2000-
bp smoothing span results in correlations of 0.92 and 0.96
correlations for moving average and BSmooth, respectively.
On the other hand, when the true smoothing span is 2000
bps, under-specifying the span does not hurt the results as
much: results obtained using a 500-bp span have correla-
tions greater than 0.99. It also shows that BSmooth per-
forms slightly better than moving average, especially when
the smoothing span is over-specified. However BSmooth is
much more computationally intensive, so the slight gain in
precision does not justify the computational burden. For
these reasons, we elect to take a simple moving average of
the collapsed counts for smoothing, and use a conservative
smoothing span (500 bps) by default.

Dispersion estimation to model biological variance

Accurate estimation of the within group variance is cru-
cial in statistical tests for DMR detection. Existing meth-
ods characterize the variance via the dispersion parameter
in the beta-binomial model (11,14). However, these meth-
ods were developed for data with biological replicates. DSS-
single can estimate dispersion for data without replicates,
using information from nearby CpG sites. To evaluate the
accuracy of dispersion estimates, we simulate data for sce-
narios with either three or one replicate in each condition
(details in Materials and Methods). Dispersions at all CpG
sites are estimated using an empirical Bayes (EB) method
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Figure 1. Comparison of dispersion estimates from different methods.
For each simulation, MSE of dispersion estimates is obtained. The figure
shows the boxplots of MSEs from 100 simulations. Methods compared are:
our previously published empirical Bayes estimation procedure (11), using
data from three replicates; DSS-single, using data from one replicate; and
genome-wide constant dispersion of 0.08.

developed in (11) for data with three replicates, or DSS-
single for data with a single replicate. The mean squared
errors (MSEs) of the estimates (compared to the true disper-
sions) are computed as measurements of accuracy. Figure 1
compares the dispersion estimates obtained using three ver-
sus one replicate, and a constant dispersion of 0.08, which
is the median of all true simulated dispersions. As expected,
using three replicates provides the most accurate dispersion
estimation. However when there is only one replicate, us-
ing DSS-single to estimate dispersion produces much more
accurate results than using a genome-wide constant disper-
sion.

We also explore the effects of sequencing depth on the
estimation of dispersion using simulations. Table 2 summa-
rizes the Pearson correlations between estimated and true
dispersions under different depths, for scenarios with both
three and one replicate per condition. Similar to Figure 1,
it shows that dispersion estimates are more accurate with
three replicates, but using one replicate yields reasonable re-
sults, especially with deeper sequencing depth.

We further evaluate the dispersion estimation from the
single-replicate scenario in real data, using the cancer-
normal comparison data distributed with the bsseqData
Bioconductor package (7). Since the true dispersions are
unavailable, we estimated the dispersions using all three
replicates from the cancer sample and then use them as the
baseline for comparison. We then pick data from each indi-
vidual replicate and applied DSS-single to estimate disper-
sions. The Pearson correlations between the three-replicate
and the single-replicate estimated dispersions are 0.42, 0.51
and 0.46, respectively. We also calculated the MSEs of dis-
persion estimates compared to baseline, and compared that
with genome-wide constant values (using the median of
three-replicate dispersions). The MSE is 0.026 for DSS-
single, compared to 0.034 using genome-wide constant val-
ues.



PAGE 5 OF 9 Nucleic Acids Research, 2015, Vol. 43, No. 21 e141

Table 1. Correlation between estimated and true mean methylation levels using different methods and smoothing spans

True smoothing span 500 bps True smoothing span 2000 bps

Smoothing span (bp) used in estimation 500 1000 2000 500 1000 2000

No smoothing 0.966 0.966 0.965 0.960 0.959 0.961
Moving average 0.992 0.973 0.922 0.996 0.995 0.979
BSmooth 0.996 0.989 0.960 0.997 0.998 0.997

Table 2. Pearson correlation between estimated and true dispersions un-
der different average read depth, for three or one replicate in each condition

Coverage = 10x Coverage = 20x Coverage = 30x

1 rep 0.33 0.42 0.46
3 reps 0.55 0.62 0.67

All simulation-based and real data results demonstrate
that estimation of dispersion in data without biological
replicates is possible using DSS-single, and the estimation
is reasonably accurate. More accurate dispersion estimation
will improve the accuracy and power of downstream DMR
detection.

Comparison of DMR calling from simulation

We next conduct simulations to compare the results of
DMR calling from several methods (see Materials and
Methods for simulation details). We first examine the dis-
tributions of the test statistics and P-values of all CpG sites
estimated via DSS-single. Figure 2 shows that the test statis-
tics follow a Gaussian distribution very well under the null
hypothesis, and the distribution of P-values behaves well
with a near-uniform distribution for most values and a spike
close to 0 representing the 5% of CpG sites lying within
DMRs.

We then compare DMR calling results from several dif-
ferent methods. For most methods, DMRs are detected
based on statistical tests performed at each CpG site. The
accuracy in calling DML is crucial in the success of DMR
calling, so we first evaluate the DML calling results. We
compare DSS-single to Fisher’s exact test (which is the most
straightforward method for data without replicates, and im-
plemented in both methylKit and BSmooth), and the sim-
plistic approach of using the difference of estimated methy-
lation levels (from BSmooth) of two groups. Figure 3(A)
compares the true discovery rate (TDR, defined as the per-
centage of top-ranked CpG sites that are truly DML) of sets
of top ranked CpG sites from different methods, showing
that DSS-single performs the best in terms of true discov-
ery rate at the CpG site level. We next compare the DMR
calling results at the region level. We define the region-level
TDR as the percentage (in terms of base pairs) of the called
DMRs that are truly differentially methylated, versus the
total length of the top ranked DMRs. Figure 3(B) shows
the region level TDR curves comparing different methods.
Again, DSS-single provides the best results.

Real data analysis

We next apply our method to public data sets for compar-
isons between H1 versus IMR90 and liver versus hippocam-

pus. We identify DMRs in both data sets using the four
methods currently available for the single-replicate case:
DSS-single, methylKit and MOABS (including two DMR
lists termed ‘M1’ and ‘M2’ by MOABS), and then compare
the DMRs using different criteria.

Extensive public data are available for H1 and IMR90
cell lines that can be used to create benchmarks for method
comparison. We evaluate the DMRs from different meth-
ods based on their overlap with the following genomic fea-
tures: (1) Differential DNase I hypersensitive sites (DHSs)
from DNase-seq data. DHSs are known to mark active ge-
nomic regions such as protein binding sites (26). We have
previously observed a strong correlation between DHS and
DNA methylation levels, where the peaks from DNase-
seq experiment are usually hypomethylated (27). Thus, true
DMRs are more likely to overlap with differential DHSs. (2)
Promoter regions of differentially expressed genes (DEGs).
It is well established that DNA methylation correlates with
gene expression (4,28), suggesting that the promoters of
DEGs are more likely to be DMRs. (3) CpG island (CGI)
shores, since it has been reported that many DMRs are
found at CGI shores (29). We create lists of these regions
based on public data sets (details in Materials and Meth-
ods).

We first assess the sensitivity of the DMR calling results.
For each of the above genomic features, we count the num-
ber covered by the top 5000, 10,000 and 20,000 DMRs,
and use these number as measurement for sensitivity. To en-
sure a fair comparison, we make all DMRs the same length
at 300 bps by extending or truncating from the center of
the reported DMRs. Figure 4 (A)–(C) show these numbers
for DMRs called from different methods. Compared with
other methods, the DMRs from DSS-single overlap more
differential DHSs, promoters of DEGs and CGI shores.
For example, ∼2500 differential DHSs overlap the top 5000
DMRs from DSS-single, compared to ∼1500 for MOABS
and ∼1700 for methylKit. Next, we assess the accuracy of
DMRs called by different methods. We take the union of
all three genomic features, and obtain a list of 134 945 re-
gions occupying a total of 163 Mbp of genome. We use
these regions as a gold standard for DMRs, and compute
the percentage of top ranked DMRs overlapping these re-
gions. Figure 4(D) shows these percentages, demonstrating
that the DMRs from DSS-single are more likely to lie in
these regions than other methods. For the top 1000 DMRs
from DSS-single about 72% fall in these regions, compared
to around 56%, 45% and 46% for methylKit, MOABS M1
and MOABS M2, and 5.4% for randomly selected 300-bp
regions.

We also explore the locational distribution of DMRs
called by different methods (Figure 4E). Compared with
other methods, DMRs from DSS-single are enriched for
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transcriptional start site (TSS), transcriptional end site
(TES), and exonic regions, and relatively depleted in in-
tronic and intergenic regions. Further, we compare the over-
lap of DMRs with different genome segmentation defined
by ChromHMM (30). ChromHMM segments the genome
into 15 types of regions. Supplementary Figure S1 shows
the number of different regions overlapped with top ranked
DMRs. In general, DMRs identified by DSS-single have
greater overlap with promoters, enhancers and transcrip-
tional regions, and decreased overlap with heterochromatin
and repetitive regions. These results suggest that the DMRs
identified via DSS-single tend to lie in more important ge-
nomic locations.

We further evaluate the single-replicate DMR calling re-
sults by comparing them to the DMRs called using two
replicates, since there are two biological replicates for both
H1 and IMR90. We call DMRs from two replicates using
BSmooth, and use that as our gold standard. Note that it
is important to use independent software to generate the
gold standard in order to avoid method-specific bias (e.g.
DSS-single will be more similar to DSS with two repli-
cates, and MOABS with a single replicate will be more sim-
ilar to MOABS with two replicates, etc.). Using BSmooth
provides an objective gold standard and ensures the fair-
ness in such comparison. We compare the degree of overlap
between the gold standard and the single-replicate DMRs
called using each method. Figure 4(F) shows the percent-
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Figure 4. Comparison of DMR calling results for H1 versus IMR90. A-C shows comparisons of sensitivities of different DMRs, where Y-axis shows the
number of different genomic features overlapping the DMRs: (A) differential DHSs; (B) promoter regions of differentially expressed genes; (C) CpG island
shores. (D) Accuracies of top ranked DMRs from different methods. (E) Locational distribution of DMRs from H1-IMR90 comparison. Y-axis represents
the percentage of DMRs overlapping different genomic features. TSS: transcriptional start site. TES: transcriptional end site. (F) Compare with DMRs
called from using two replicates. X-axis is the total length of different number of top ranked DMRs. Y-axis is the percentage of overlaps (in terms of base
pairs).

age of top ranked DMRs overlapping gold standard DMRs
(in terms of base pairs) versus the total length of the top
ranked DMRs. DSS-single has the greatest overlapping per-
centages, suggesting that DSS-single produces results most
similar to results obtained using two replicates.

For the liver-hippocampus comparison, we perform sim-
ilar analyses and evaluations. Since the DNase-seq data are
unavailable for these samples, we use the DNase I Hyper-
sensitivity Clusters (DHCs) provided by ENCODE as a
proxy for differential DHSs. The DHCs can be viewed as
active genomic regions for all biological conditions, and are
thus more likely to overlap with DMRs. Although using
DHCs is not an ideal proxy for differential DHSs and may
overestimate accuracy, it still provides an objective bench-
mark for evaluating different methods. The results for these
analyses are shown in Supplementary Figure S2. As shown
in Supplementary Figure S2 (A)–(C), the DMRs from DSS-
single have greater overlap with DHC, DEGs and CGI
shores compared with other methods. Supplementary Fig-
ure S2(D) shows that the accuracy for top ranked DMRs
is similar for DSS-single and methylKit and is somewhat
lower for MOABS. Supplementary Figure S2(E) shows the
locational distribution of DMRs called via different meth-

ods, and DMRs from DSS-single again have greater enrich-
ment in TSS, TES and exons. Finally Supplementary Figure
S2(F) shows the comparison with the DMRs called from
BSmooth using two replicates, and DSS-single again shows
the best performance. Overall, these results are consistent
with those from H1-IMR90 comparison, and demonstrate
the superior performance of DSS-single compared to other
methods. Taken together with the simulation results above,
DSS-single identifies DMRs with greater sensitivity and ac-
curacy, resulting in a set of findings that is more plausible
and interpretable biologically.

Implementation and computational performance

DSS-single is implemented in the R package DSS, which
is freely available on Bioconductor (31). DSS provides ex-
cellent computational performance. For 100,000 CpG sites
and one replicate in each group, it takes ∼29 s to call DMRs
on a Macbook Pro laptop with 2.7 GHz i7 CPU and 16G
RAM. The computational time of DSS is linear in the num-
ber of CpG sites, so for a typical WGBS data set with 25
million CpG sites, it will take ∼2 h to finish on a computer
with similar settings.
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DISCUSSION

Whole genome BS-seq is a new technology for measur-
ing genome-wide DNA methylation. An important goal in
WGBS data analysis is the detection of DMRs. Due to the
high cost, many WGBS experiments are performed with-
out biological replicates, which makes DMR calling via ex-
isting methods difficult or impossible. In this work, we use
a hierarchical model to characterize the unique features of
data from WGBS experiments, and develop an algorithm
for DMR detection for data without replicates. The method
considers three important characteristics of the data: spatial
correlation between methylation levels from nearby CpG
sites, read depth and biological variation. We use a smooth-
ing procedure to capture the spatial correlation of methy-
lation levels, followed by an empirical Bayes shrinkage es-
timating procedure to estimate the biological variance. Fi-
nally, we develop a Wald statistic to provide a formal test
for differential methylation, based on our Bayesian hierar-
chical model that accounts for precision differences due to
read depth.

A key feature of DSS-single is to estimate biological vari-
ation when replicated data are not available. The method
takes advantage of the spatial correlation of methylation
levels: since the methylation levels from nearby CpG sites
are similar, we can use nearby CpG sites as ‘pseudo-
replicates’ to estimate dispersion. By accurately estimating
dispersion, DSS-single is able to call DMRs with greater ac-
curacy than simpler approaches based on Fisher’s exact test
or between-sample methylation differences. To assess the
performance of our method, we conducted extensive simu-
lations and analyses of existing WGBS data. The simulation
results show that DSS-single provides better dispersion es-
timates, and hence more accurate DMR calling results. Re-
sults from our real data analyses also suggest that the DMR
detected from DSS-single are more sensitive and accurate,
leading to results that are more consistent with biological
expectations.

In comparison to our previously developed DSS method
(11), DSS-single has several important distinctions and
contributions. First, we adopt local smoothing, and care-
fully investigate the effects of smoothing method and span.
The smoothing procedure is very important and makes the
single-replicate dispersion estimation possible. Second, we
propose the idea of using nearby CpG sites as ‘pseudo-
replicates’ for estimating dispersions, and show by simula-
tion and real data that this approach provides satisfactory
results. Moreover, we carefully derive the variance used in
Wald statistics for testing DML, with the consideration of
smoothing procedure. Finally, we implement the methods
into the DSS Bioconductor package, making them easily
accessible to the epigenomics research community.

It is important to note that correctly specifying the
smoothing span is very important in the estimation of mean
methylation levels. Based on our simulation results, over-
specifying the span is more harmful than under-specifying;
thus, we recommend using a relatively smaller span in
smoothing. Exploration of the data shows that the methy-
lation levels contain high- and low-frequency signals, so
an adaptive smoothing method (with variable spans) might
provide the best solution. However currently available adap-

tive smoothing methods such as penalized splines (32) are
computationally too intensive to be applied to the typical
WGBS analysis. Moreover, in data with weaker spatial cor-
relations (e.g. hydroxymethylation data), the smoothness
assumption is likely to be too strong. We hope to develop
novel methods to account for spatial correlations in differ-
ent scenarios in our future work.

Although DSS-single was designed and tested for appli-
cation to WGBS data, it can be used to analyze RRBS
data in some genomic regions, depending on CpG density.
The estimation of dispersion requires borrowing informa-
tion from nearby CpG sites, so the procedure can be im-
plemented as long as local smoothing can be performed.
When analyzing RRBS data with the DSS package, DSS-
single will analyze regions with densely clustered CpG sites,
and skip the regions with sparse CpG sites.

Another important consideration in clinical practice is
potential sample heterogeneity. Solid tissues such as tu-
mor, whole blood or brain are often a mixture of differ-
ent cell types. Such mixture can mask methylation signals
and weaken the power and accuracy of DMR calling. Even
though a number of methods have been developed for es-
timating the mixing proportion and adjusting for sample
heterogeneity in other settings (33–36), rigorous methods
for DMR calling for BS-seq data that also consider sample
heterogeneity are not yet available. We hope to focus on this
important problem in our future work.

In summary, we have developed a novel method for DMR
detection in whole genome BS-seq data that can be used
when biological replicates are unavailable, and our results
from simulations and real data analysis demonstrate the im-
proved performance of the method compared to existing ap-
proaches. Our method, DSS-single, is implemented in the
latest version of DSS, a computationally efficient R pack-
age which is freely available through Bioconductor.
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