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Targeting RNA structure in SMN2 reverses spinal
muscular atrophy molecular phenotypes
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Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal

muscular atrophy (SMA). However, a target-based approach to identify small-molecule

E7 splicing modifiers has not been attempted, which could reveal novel therapies with

improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2,

which overlaps with the 5′ splicing site of E7. A small-molecule TSL2-binding compound,

homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic

levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR

combined with molecular modelling revealed that PK4C9 binds to pentaloop conformations

of TSL2 and promotes a shift to triloop conformations that display enhanced E7 splicing.

Collectively, our study validates TSL2 as a target for small-molecule drug discovery in SMA,

identifies a novel mechanism of action for an E7 splicing modifier, and sets a precedent for

other splicing-mediated diseases where RNA structure could be similarly targeted.
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Spinal muscular atrophy (SMA, OMIM #253300) is an
autosomal recessive disorder that causes degeneration of α-
motor neurons in the spinal cord. There is at present no

cure or effective therapy for this disease, which is the most
common genetic cause of infant mortality. SMA is primarily
caused by deletions or homozygous mutations in the survival
motor neuron 1 (SMN1) gene1. This gene encodes a ubiquitous
38-kDa protein (SMN) present in the cytoplasm and the nucleus,
with a direct role in mRNA metabolism2, 3. From a clinical point
of view, five types of SMA (0, I, II, III and IV) have been
described, ranging from complete absence of motor function and
infant mortality, to minor motor defects with no significant
reduction in lifespan. The severity of symptoms in SMA strongly
correlates with the levels of SMN protein, with 30% variations
being sufficient to transition from mild to severe forms of the
disease4.

A second copy of the SMN1 gene called SMN2 is present in the
human genome. However, SMN2 has never been found mutated
in SMA patients. SMN1 and SMN2 are nearly identical. The only
difference in their coding region is a translationally silent C>T
transition at position +6 of exon 7 (E7) in SMN25, which results
in different alternative splicing patterns. In SMN1, E7 is included
giving a full-length SMN transcript that encodes a functional
SMN protein. However, the C>T transition in SMN2 causes E7
exclusion in the majority of cases, producing a C-terminally
truncated SMN protein that is not active. Only ~10% of the
SMN2 mRNAs include E7 and give full-length SMN protein6.

Promoting SMN2 E7 inclusion to increase the amount of full-
length SMN that this gene can generate has been demonstrated to
functionally compensate for the lack of SMN1 in vivo7–9, vali-
dating the therapeutic potential of targeting SMN2 splicing. Some
approaches employed to date to modify SMN2 splicing include
antisense oligonucleotides (ASOs) and a variety of small mole-
cules identified through splicing-reporter phenotypic screenings8–
14. However, despite the current good understanding on the cis
and trans-acting factors that regulate SMN2 E7 splicing15, target-
based approaches to screen for SMN2 splicing modifier com-
pounds have not yet been attempted. Such target-based strategies
have the potential to identify new chemical entities for SMA, the
development of which would be facilitated by their associated
mechanistic insight. Among the cis-regulatory elements that
regulate E7 inclusion, a 19-nt RNA hairpin known as TSL2
(terminal stem-loop 2) located at the exon 7/intron 7 junction of
the SMN transcripts plays a key role (Supplementary Fig. 1)16, 17.
It was previously proposed that the 3′ end of the TSL2 hairpin
partially sequesters the 5′ splice site (5′ ss) of E7, negatively
affecting the recruitment of the splicing machinery and exon
inclusion16, 17. Consistently, point mutations in SMN2 that dis-
rupt TSL2 promote E7 splicing to levels that in some cases match
SMN116.

Despite recent efforts18, 19, RNA remains an underexploited
target for small-molecule drug discovery, mainly due to the
limited information available on RNA–ligand interactions and
the poor suitability of current high-throughput screening assays
for RNA20. However, during the last decade, it has become
apparent that RNA structure determines the outcome of mRNA
processing in a growing number of examples, and is now
recognised as a key player in many human diseases21. In this
study, we perform a target-based small-molecule screening for
SMA using the TSL2 RNA structure as the biological target, and
we identify a hit compound that increases SMN2 E7 splicing by
stabilising a conformation of TSL2 that improves accessibility
of the 5′ splice site. These findings open new avenues for drug
discovery in SMA, as well as for other splicing-mediated dis-
eases where functional RNA structures could be similarly
targeted.

Results
TSL2 is a suitable target for small-molecule screening. Success
of target-based screening strongly relies on the adequate selection
of a biological target. Therefore, we first sought to validate the
suitability of TSL2 as a target for small-molecule screening. To
this end, HeLa cells were transiently transfected with a battery of
SMN1 and SMN2 minigenes containing exons 6-to-8 and bearing
different structural mutations in TSL2. These included mismatch
mutations (3C, 4G and 6C), a mutation in the loop (9C) and a
base-pairing strengthening mutation (2C). All mutations were
located in the 5′ half of the TSL2 hairpin, in order to avoid
interference with recognition of the 5′ ss of E7 at the sequence
level (Fig. 1a). SMN2 minigenes carrying mismatch mutations in
the TSL2 stem (3C, 4G and 6C), as well as the loop mutation
(9C), showed increased SMN2 E7 inclusion levels, which ranged
from 16% (no mutation) to 62% (mutation 6C) (Fig. 1b, c).
Conversely, strengthening of base pairing in TSL2 (mutation 2C)
promoted E7 skipping in SMN1. These results are in agreement
with a previous report using a different cell line16.

To confirm that the effect of these mutations on SMN2 splicing
was linked to conformational changes in TSL2, a series of low-
resolution structural methods were used on synthetic TSL2
RNAs, both in their mutated (2C, 3C, 4G, 6C and 9C) and non-
mutated versions (Supplementary Table 1). First, TSL2 base
stacking was indirectly measured by labelling the TSL2 RNAs
with the fluorescent structural probe 2-aminopurine (2AP)22, the
emission of which is quenched by RNA base contacts. 2AP
fluorescence measurements showed that all mutations induced
RNA-stacking changes that significantly correlated with E7
inclusion, with the exception of the 4G mutation (Fig. 1d).
Visualisation of hairpin formation using native PAGE confirmed
these findings (Fig. 1e and Supplementary Fig. 2). The 4G
mutation triggered the strongest conformational changes in TSL2.
However, SMN2 splicing was only mildly affected, suggesting that
a certain level of TSL2 structure is required for exon inclusion, or
that a protein-binding sequence may have been affected by this
mutation.

Circular dichroism (CD) spectroscopy was used to further
confirm these observations using non-labelled TSL2 RNAs. In
these experiments, all TSL2 RNAs showed a positive CD peak at
~265 nm typical of RNA and a negative peak at ~210 nm typical
of the A-form. At low temperature (10 °C), all mutations caused
either a reduction in the CD signal of TSL2 (4G, 9C; Fig. 1f) or a
significant wavelength shift in the positive peak, from 265 to 269
nm (3C, 6C; Fig. 1f), indicative of changes in base stacking that
were consistent with our 2AP and PAGE results (Fig. 1d, e). At a
denaturing temperature (90 °C), all differences in the CD spectra
disappeared (Supplementary Fig. 3), demonstrating that the
changes triggered by these mutations represent conformational
features rather than sequence effects.

In summary, these results demonstrate that triggering
conformational changes in TSL2 can increase SMN2 E7 splicing
values to nearly SMN1 levels, and confirm the potential of TSL2
as a target for the screening of RNA structure-modifying small
molecules able to induce equivalent changes.

A target-based screening identifies TSL2-binding molecules.
Screening efforts to find RNA-binding compounds typically yield
low hit rates. However, hit rates are reported to increase from
~1% to ~19% when using small molecules with chemical scaffolds
biased for RNA recognition; including indole, 2-phenyl indole, 2-
phenyl benzimidazole and alkyl pyridinium (Fig. 2a)23. Based on
this information, we conducted in silico filtering of an in-house,
high-chemical diversity structure database of ~3000 compounds
for the creation of a focused library of 304 small molecules
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Fig. 1 Structural mutations in TSL2 affect SMN2 exon 7 inclusion. a Predicted secondary structure of non-mutated (n.m.) TSL2 or TSL2 carrying the
indicated mutations (red). The 5′ splice site (5′ ss) of exon 7 (E7) is shown (blue). b, c Agarose gel image showing RT-PCR products from HeLa cells
transfected with SMNE6−to−8 minigenes16 carrying either n.m. TSL2 or mutated TSL2. Mutations that disrupt the TSL2 stem (3C, 4G and 6C) and a
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simplicity, this band is omitted in subsequent gel images. d Correlation between E7 inclusion and TSL2 base-stacking changes caused by TSL2 mutations,
measured as the increase in fluorescence of synthetic 2-aminopurine (2AP)-labelled TSL2 RNAs (n= 8; two plates with four replicates each). 2AP was
introduced at position 15, substituting its analogue G. e Correlation between E7 inclusion and in vitro hairpin formation, measured from native
polyacrylamide gels of synthetic TSL2 RNAs folded by snap cooling (n= 3 independent gels). The RNA ladder is single stranded. Mutations that increase
E7 splicing reduce TSL2 hairpin formation in vitro and favour duplex interactions. f Circular dichroism (CD) spectra (10 °C) of TSL2 RNAs (n= 10 scans).
Reduced negative-peak intensities (~210 nm) indicate reduced helicity. Reduced positive signals (~265 nm) indicate reduced stacking. Wavelength shifts
suggest additional rearrangements. ss RNA single-stranded RNA (control), Mol CD molar circular dichroism units. *p < 0.5, **p < 0.01 and ***p < 0.001.
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containing such RNA-binding scaffolds. This collection was tes-
ted in 96-well-plate format (100 μM) against a synthetic TSL2
RNA (0.5 μM) using a fluorescence displacement (FD) assay, with
the fluorescent dye TO-PRO-1 as our probe24. The Z-factor of
this assay was 0.7, confirming the suitability of the screening
method25.

The primary FD screening led to the identification of 54 TSL2-
interacting hits (hit rate 17%, Fig. 2b and Supplementary Data 1),
with EC50 values starting at 4.5 μM (Fig. 2c). Among all hits, 45
molecules showed good dose responses (Supplementary Fig. 4),
and were subsequently tested in our 2AP assay to confirm their
ability to induce conformational changes in TSL2. A total of 14
out of 28 hits showed a significant effect on TSL2 conformation,
with seven hits increasing RNA base stacking and seven reducing
it (Supplementary Fig. 5). A total of 17 molecules could not be
tested due to autofluorescence interfering with the emission of
2AP. An unrelated RNA structure and a denatured TSL2 RNA
were used to assess the binding selectivity of our four most
promising hits (Fig. 2d), with three of them showing good
binding discrimination (Supplementary Fig. 6).

These results represent the first example of TSL2 structure-
modifying small molecules, as well as the first target-based
screening reported for SMA.

TSL2 binders modify SMN2 E7 splicing in different systems. To
assess the activity on SMN2 E7 splicing of the identified hits, 19
candidates were selected for a secondary screen in HeLa cells
transfected with the SMN2 minigene. RT-PCR identified eight
molecules (42% of total tested) that significantly increased E7
inclusion after 6, 12 and 24 h of treatment, relative to control cells
treated with 0.04% DMSO (Fig. 2d; Fig. 3a, b and Supplementary
Table 2). Of these, marine natural molecule homo-
carbonyltopsentin (PK4C9) showed the strongest effect, with an
average E7 inclusion of up to 72% at 40 μM (43% increase with
respect to DMSO-treated cells) and an EC50 value of ~25 μM,
consistent with its EC50 value in the TO-PRO-1 binding assay
(16 μM, Fig. 2c). Importantly, this effect depended on the integ-
rity of TSL2, as the use of minigenes carrying structural muta-
tions in TSL2 affected PK4C9 activity (see section “PK4C9
improves accessibility of the 5′ ss of SMN2 E7” below). Moreover,
eight in-house-produced analogues of PK4C9 with reduced TSL2
binding ability also displayed decreased activity on E7 inclusion,
further demonstrating that the splicing modifier activity of
PK4C9 is mediated by its interaction with TSL2 (Supplementary
Fig. 7).

To study the effect of our screening hits on endogenous SMN2
splicing in a pathological context, six of them were subsequently
tested on a fibroblast cell line derived from a type-I SMA patient
(GM03813C). All six molecules showed an increase of E7 splicing
that was consistent with our results in HeLa (Fig. 3b), with
PK4C9 having the strongest effect and the lowest cytotoxicity
(Fig. 3d and Supplementary Fig. 8). Upon 24-h treatment with
PK4C9 at 40 μM, E7 inclusion increased up to 97% (41% increase
with respect to DMSO-treated cells). Phenotypically unaffected
fibroblasts carrying a mutated copy of SMN1 in heterozygosis
(GM03814B) were also used as an additional cell line. Here, E7
inclusion reached a maximum of 91% upon 24-h treatment with
PK4C9 at 40 μM (25% increase with respect to DMSO-treated
cells) (Fig. 3b). qRT-PCR from molecule-treated vs. DMSO-
treated GM03813C cells confirmed these results, showing an up
to 5.2-fold decrease in the expression of E7-excluding SMN2
isoforms, and up to three-fold increase in E7-including isoforms
(Fig. 3c).

Finally, PK4C9 was tested on transgenic Drosophila flies as an
in vivo reporter of SMN2 splicing in motor neurons. In these flies,

the expression of a UAS-SMN2 transgene carrying human SMN2
exons 6-to-826 (SMN2E6−to−8) was targeted to motor neurons
using the D24-Gal4 driver line (25 °C). The splicing pattern of
SMN2E6−to−8 in Drosophila promotes E7 inclusion to a higher
extent than human cells (72% inclusion). Upon oral treatment
with PK4C9 at 200 μM, this percentage increased to 84% (Fig. 3e),
hence validating the effect of PK4C9 in an additional cell type and
in the context of a whole organism with a highly conserved
blood–brain barrier27, 28.

Collectively, our results demonstrate that screening for TSL2-
interacting molecules can effectively identify splicing modifiers of
SMN2 that are active in different model systems, including HeLa,
SMA fibroblasts and Drosophila motor neurons, thus validating
our target choice and screening strategy.

PK4C9 rescues functional SMN protein in SMA cells. To cor-
relate the PK4C9-induced effect on SMN2 E7 splicing with an
increase in full-length SMN protein, total levels of SMN were
measured by western blot in GM03813C and GM03814B fibro-
blasts. Before treatment, phenotypically unaffected GM03814B
cells showed 2.3 times more SMN protein than GM03813C SMA
fibroblasts (Fig. 4a). However, upon treatment of GM03813C cells
with PK4C9 (40 μM, 48 h), SMN protein increased 1.5-fold
compared to GM03813C cells treated with DMSO (Fig. 4a). This
increase is in agreement with values reported for other E7 splicing
modifier small molecules8, 9.

The effect of PK4C9 on SMN subcellular localisation was also
studied in GM03813C and GM03814B fibroblasts by immuno-
histochemistry. Wild-type distribution of SMN includes both the
nucleus and the cytoplasm. In the nucleus, functional SMN
oligomerises and forms punctate aggregates known as gems,
which co-localise with coilin-p802. To confirm the production of
SMN protein with restored oligomerisation capacity, double-
antibody staining of coilin-p80 and SMN was used to compare
the number of gems in PK4C9-treated cells (40 μM) vs. DMSO-
treated controls (24 h). A significant increase in the number of
SMN-positive gems and coilin-p80-positive gems per cell was
detected in both lines compared to DMSO-treated cells. More-
over, the percentage of cells with gems was also elevated in
PK4C9-treated cells (Fig. 4b, c and Supplementary Fig. 9).

SMN loss-of-function has been linked to widespread pre-
mRNA splicing defects29–32. To further confirm the functionality
of the restored SMN protein, we next studied whether PK4C9
could rescue SMN-loss-mediated splicing defects using RNA-
sequencing (RNA-seq). Statistical analysis revealed 290 tran-
scripts with modified splicing in PK4C9-treated (40 μM, 24 h)
GM03813C fibroblasts compared to DMSO controls (delta
percent spliced-in index PSI > 0.4), corresponding to 201 single
genes, including SMN2 (Supplementary Data 2 and Supplemen-
tary Table 3). Gene set enrichment analysis (GSEA) did not
return significantly over-represented biological pathways, indicat-
ing that these splicing changes correspond to a mechanistic effect
rather than a concerted toxic response. To discern whether these
alterations represented off-targets or a direct consequence of
SMN recovery, qRT-PCR was performed on PK4C9-treated vs.
DMSO-treated wild type (WT, ND36091A) and SMA fibroblasts
for eight of the 201 genes. We expected that (1) SMN-dependent
changes would respond differently to treatment in WT vs. SMA
cells, given their different SMN starting levels; whereas (2) true
off-targets would be similarly affected. Four of these eight genes
(RPS6KB1, LPIN1, PHF14 and INSR) showed PK4C9 dose-
sensitive responses in SMA fibroblasts but not in WT cells,
confirming that at least part of the PK4C9-induced splicing
changes are a consequence of SMN recovery (Fig. 4d; Supple-
mentary Fig. 10 and Supplementary Data 3). Consistently,
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structural analogues of PK4C9 with no effect on SMN2 splicing
also failed to modify the splicing of RPS6KB1 and LPIN1
(Supplementary Fig. 7).

Taken together, these results validate the ability of PK4C9 to
increase functional SMN protein levels and reverse molecular
alterations caused by SMN deficiency in SMA cells.

PK4C9 improves accessibility of the 5′ ss of SMN2 E7. To
further explore the mechanism of action of PK4C9, we next used
our RNA-seq data to search for shared RNA motifs at the exon/
intron junctions of the 41-cassette exons most strongly affected
by PK4C9 (delta PSI > 0.65), assuming that part of these were
direct off-targets. Motif-finding algorithms Gibbs, MEME, Wee-
der and Homer were applied to our RNA-seq data, and the
AGGTAAG sequence was identified as the most enriched motif at
the 5′ ss of PK4C9-sensitive exons (Fig. 5a). This motif closely
resembles the GAGTAAG sequence of the 5′ ss of SMN2 E7, with
which TSL2 overlaps. A battery of SMN2 minigenes carrying
structural mutations in this region of TSL216 were transfected in

HeLa cells in order to confirm the importance of this area for
PK4C9 activity. In particular, we found that strengthening local
base pairing in the 5′ ss portion of TSL2 (mutations U2–C2 and
U3A17–G3C17) significantly reduced the effect of PK4C9 on
SMN2 splicing. Conversely, weakening base pairing in this region
(mutation U2–A2) increased it, altogether suggesting that PK4C9
requires access to the 5′ ss residues within TSL2 in order to be
active (Fig. 5b, c).

To determine whether these observations reflected a direct
interaction of PK4C9 with the 5′ ss portion of TSL2, we next
studied the binding of PK4C9 to TSL2 by liquid-state nuclear
magnetic resonance (NMR) spectroscopy. Since high-resolution
structures of TSL2 have not yet been reported in the nucleotide
database (NDB), we first sought to solve the NMR structure of
TSL2. A synthetic high-purity, non-labelled TSL2 RNA, as well as
an adenine 13C-labelled TSL2 RNA (13C-A-TSL2), were used to
record a large set of NMR spectra that allowed the calculation of a
bundle of 40 structures representing the TSL2 ensemble (root-
mean-square deviation, RMSD, of 1.8 Å; Table 1). These
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Fig. 3 TSL2-interacting small molecules increase SMN2 E7 splicing. a RT-PCR of exons 6-to-8 from HeLa cells transfected with SMNE6−to−8 minigenes16

and treated with NCI377363 (1, 5 and 10 μM), PK4C9, BJGF466 and 288D (10, 20 and 40 μM) or DMSO (0.04%, controls) for 6, 12 and 24 h (n= 6; three
biological and two technical replicates). PK4C9 and BJGF466 elicit maximal E7 inclusion at early time points, which may be due to progressive compound
toxicity and/or molecule secretion, as commonly seen in cancer cells. b, c RT-PCR (b) and qRT-PCR (c) showing the dose–response of PK4C9 in
GM03813C (SMA) and GM03814B (parental carrier) fibroblasts after 24 h of treatment (n= 6; three biological and two technical replicates). For
simplicity, the ladder is shown in a. In RT-PCR, SMN2 isoforms including and excluding E7 are detected simultaneously. In qRT-PCR, SMN2 isoforms
including and excluding E7 are amplified in two separate reactions. The dose–response curve of PK4C9 reveals a narrow concentration window but
achieves maximal response. Concentrations higher than 50 μM could not be measured due to poor solubility of the compound. d Twenty-four-hour
cytotoxicity in GM03814B fibroblasts, using the lactate dehydrogenase (LDH) assay (n= 12; six biological replicates and two technical replicates).
PK4C9 showed the lowest toxicity when comparing all molecules at the same concentration (40 μM; left) and the concentration of maximum splicing
activity (right; PK4C9 40 μM, BJGF466 40 μM, NCI377363 10 μM and 288D 80 μM). Complete 24-h and 72-h cytotoxicity curves are shown in
Supplementary Fig. 8. e RT-PCR from adult D42-Gal4>UAS-SMN2E6−to−8 Drosophila flies expressing human SMN2E6−to−8 in motor neurons. Flies were free
fed with PK4C9 (25, 50, 100 and 200 μM) or DMSO (0.5%, controls) as larvae. rp49 is the loading control (n= 3 biological replicates of 10–12 individuals
each), **p < 0.01. p-values were obtained by applying non-paired, two-tailed t tests with Welch corrections. All graphs represent mean values ± SEM
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structures showed A-helical stacking for all base pairs from
A1–U19 to A8–U12, capped by a triloop consisting of residues
A9–U11, with an unstable loop-closing base pair (A8–U12) that
resulted in a temporary pentaloop conformation (see Fig. 6a, b;
below). PK4C9 titration experiments were then performed adding
up to 20 equivalents of ligand to the TSL2 RNA. Residues U2 and
U19 showed the most significant PK4C9-induced chemical-shift
perturbations (CSPs), clearly distinguishable from the DMSO-
induced shifts (Fig. 5d). These results confirm that binding of
PK4C9 affects the local conformation of TSL2 at the 5′ ss.

Given the low solubility of PK4C9 in water, the 3D structure of
the TSL2-ligand complex could not be solved by NMR. Therefore,
to obtain deeper atomistic understanding on the binding
dynamics of PK4C9 to TSL2, we used in silico molecular docking
and explicit-solvent molecular dynamics (MD) simulations in
combination with our NMR TSL2 structures. Of the different
binding poses of PK4C9 to TSL2 initially proposed by molecular
docking (Supplementary Fig. 11), a stable binding orientation of
PK4C9 to the pentaloop conformation of TSL2 was confirmed by
100-ns MD simulations (Supplementary Movie 1 and 2). In
agreement with our NMR findings, this binding was mediated by

hydrogen bond interactions with residues U2 and U19, as well as
π–π stacking between G18 and the indole moiety of PK4C9, and
additional hydrophobic contacts (Fig. 6d, e). These interactions
resulted in a partial opening of TSL2 at the 5′ ss, as quantified by
the larger distance between the C1’ atoms of residues A1 and U19
(Fig. 6f) and the shorter distance between the C1’ atoms of
residues A8 and U12 (Fig. 6g) , as well as the increased mobility of
these two residues in the presence of PK4C9 (root-mean-square
fluctuation values, RMSF; Fig. 6h vs. 6c). The binding mode of the
eight inactive structural analogues of PK4C9 was also studied
(Supplementary Fig. 7). Analogues 001 and 004, which completely
failed to bind to TSL2 in vitro and did not change SMN2 splicing
in cells, also failed to generate meaningful binding poses,
providing experimental support to our atomistic binding model.

Collectively, our structural studies provide an atomistic
explanation to the SMN2 splicing modifier activity of PK4C9,
whereby a local PK4C9-induced opening of TSL2 could improve
accessibility of the 5′ ss of E7 to splicing factors.

Triloop TSL2 conformations favour E7 splicing. A second,
indirect conformational consequence of PK4C9 binding to TSL2
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was detected in the loop part of the RNA hairpin. In particular,
our MD analysis showed (1) a significant decrease in the mobility
of loop residues U11 and U12 (RMSF, Fig. 6h), coupled with (2) a
conformational shift from pentaloop to triloop TSL2 (Fig. 6g).
These results suggested that base pairs opening at the 5′ ss end of
the hairpin may inversely correlate with the mobility of the
hairpin at the loop end, in order to balance the global energy of
the structure, as has been described for other systems33. Based on
this, we hypothesised that stabilizing triloop forms of TSL2 may
allow more efficient E7 splicing by displaying a more accessible 5′
ss than pentaloop forms.

To test this hypothesis, structural TSL2 mutations 2A, 2C and
3G17C (Fig. 7a), which modified SMN2 E7 splicing and PK4C9
activity in transfected HeLa cells (Fig. 7b; also see Fig. 5b–c), were
inserted in silico in our ligand-free NMR structure of pentaloop
TSL2, and additional MD simulations were performed. Of these
three mutations, 2A, which increased E7 splicing and enhanced
PK4C9 activity in HeLa, showed the largest A1–U19 base pair
opening (Fig. 7c, d), as well as the lowest mobility of loop residues
A8–U11 (Fig. 7e; Supplementary Fig. 12). Conversely, mutations
2C and 3G17C, both of which hindered E7 inclusion and reduced
PK4C9 activity in HeLa, displayed reduced A1-to-U19 distances
and a proportional increase in loop residue mobility (Fig. 7c–e;
Supplementary Fig. 12). Experimentally, transfecting HeLa cells
with an SMN2 minigene carrying an A8U12 to 8G12C double
mutation that stabilises TSL2 as a triloop, yielded an E7 inclusion
of nearly 100% (Fig. 7f). Taken together, these findings establish
the first link between accessibility of the 5′ ss of SMN2 E7 and
TSL2 loop conformations (Fig. 7g, h).

Discussion
RNA secondary structures are enriched at alternative splice
sites34, where they can regulate splicing by displaying splicing
signals, masking them, or by placing regulatory sequences in

proximity to each other21. More than 150 diseases are associated
to mutations affecting splicing regulatory sequences, including
cancer, neurological or metabolic disorders35–39; some of which
are known to have functional RNA structures surrounding the
affected areas40, 41. These structures have high potential as targets
to identify spicing modifier compounds, yet they remain largely
underexploited. In this study, we have performed an in vitro
small-molecule screening using the TSL2 RNA structure at the 5′
ss of SMN2 E7 as a biological target, providing one of the very few
examples of small molecules that target the RNA structure of a
splice site42, 43. This screening identified TSL2-binding hits that
facilitate SMN2 E7 inclusion, increase SMN protein levels and
revert SMA molecular phenotypes. The suitability of TSL2 as a
target for the screening of small-molecule splicing modifiers was
first confirmed by a combination of single-point mutagenesis and
low-resolution structural experiments. These experiments
demonstrated a correlation between E7 inclusion and con-
formational alterations in TSL2, supporting the initiative to
attempt equivalent structural changes via binding of small
molecules.

Recently, two series of small molecules were identified through
phenotypic screenings, which reverted SMN2 splicing with high
specificity8, 9. These studies were the first demonstration that a
small molecule can be optimised to target a single splicing event,
which coupled with a potentially less-challenging delivery and
systemic bioavailability over other current modalities, makes
small molecules a highly promising therapeutic option for SMA.
Small-molecule screenings using commercial high-chemical
diversity libraries are, however, generally biased for modulating
protein function, yielding much lower hit rates for RNA targets23.
To overcome this, we generated a target-focused library of small
molecules with privileged scaffolds to bind RNA. Target-focused
libraries provide a series of benefits, as recently reviewed44, 45. For
example, (1) focused libraries save time and resources by reducing
the number of compounds to screen, (2) yield higher hit rates by
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eliminating compounds that are unlikely to bind to the
target23, 46 and (3) can reduce the hit-to-lead timescale, given that
the properties of their compounds have already been filtered to
suit the type of target in question. From the screening of our
focused library, 19 TSL2-interacting hits were further examined
for their ability to modify SMN2 E7 splicing. Nearly half of them
successfully promoted exon inclusion, thus validating our target
choice and screening strategy. Particularly, marine natural
molecule homocarbonyltopsentin (PK4C9) showed the most
promising effect, reverting molecular phenotypes in HeLa cells,
type-I SMA-derived fibroblasts and Drosophila motor neurons,
demonstrating the translatability of our results to different cell
types and models. In SMA cells, PK4C9 increased E7 inclusion by
~40%, coupled with a 1.5-fold increase in SMN protein. Similar
increases in SMN levels have been shown to be sufficient to
reverse SMA phenotypes in mice models (including lifespan and
motor function8, 9) and allow transitioning from severe to mild
forms of SMA4, providing proof-of-principle to the use of TSL2-
modifying small molecules in SMA drug discovery, as well as
encouraging the chemical optimisation of PK4C9.

A number of structural analogues of PK4C9 were designed and
synthesised in this study, which displayed different TSL2-binding
efficiencies. These efficiencies significantly correlated with their
effect on E7 splicing. Moreover, structural mutations in TSL2 also
affected the activity of PK4C9, altogether demonstrating that the
cellular activity of PK4C9 is mediated by its interaction with TSL2
(see Supplementary Table 1). The TSL2 mutations that most
strongly modified PK4C9 activity involved the GAGTAAGT
motif of the 5′ ss of E7, which was identified by our RNA-seq and
structural data as the target site of PK4C9. In a recent report, the
GAGTAAGT motif of SMN2 E7 was also involved in NVS-SM1
and NVS-SM2 activity, two SMN2 splicing modifiers identified
through phenotypic screening9. However, these molecules carried
out their effect on E7 splicing via directly affecting the binding of

the splicing machinery to the 5′ ss. The fact that mutations
located in the 5′ half of TSL2 (f.e., 2A or 2C) can modify PK4C9
activity rules out a direct interaction with 5′ ss-binding factors,
and confirms a conformational change of TSL2 as responsible for
the effect of this molecule on E7 splicing.

A series of studies in mice have shown that reduction of SMN
protein results in widespread splicing abnormalities29–31, 47.
Recovery of SMN is therefore expected to lead to a large number
of splicing changes, which would represent the reversal of at least
part of such splicing abnormalities. Our RNA-seq analysis
detected 201 differentially spliced genes in SMA cells upon
treatment with PK4C9, some of which were linked to SMN res-
cue. Only two other examples of SMN2 splicing modifying small
molecules exist in the literature for which RNA-seq data are also
available8, 9. Three differentially spliced genes (SMN2, SLC25A17
and VPS29) are common between these two molecules and
PK4C9, further supporting that at least some of all PK4C9-
induced splicing changes are the consequence of SMN rescue.
PK4C9-sensitive splicing changes also included off-targets, which
could account for the 10% toxicity of PK4C9 in GM03814B
fibroblasts. Being able to discern between undesired off-target vs.
SMN recovery-mediated splicing changes is key for the chemical
optimisation of PK4C9. Such optimisation would in turn be aided
by our structural results. Our NMR and MD studies determined
that PK4C9 binding to TSL2 requires, and promotes, a partial
opening of TSL2 residues U2 and U19, which resemble the
conformational effect of mutation 2A. In the case of NMR, the
PK4C9-induced CSPs were of small magnitude, due to the fact
that G18 and U2 imino protons are poorly visible to NMR (fast
water exchange). However, our MD clearly confirmed stable
interactions between PK4C9 and TSL2 residues U19, U2 and
G18. Residues U2 and G18 are part of the non-canonical G·U
wobble base pair of TSL2, which are known to offer unique
structural and ligand-binding properties48, and pose the ideal
starting point for lead optimisation.

TSL2 was first described as a triloop by in vitro enzymatic
probing, whereas a latter study using in vitro SHAPE found it in
the pentaloop form16, 17. Here, we show that both species coexist
and use NMR and molecular dynamics (MD) to provide an
atomistic explanation as to how the TSL2 equilibrium between
pentaloop and triloop conformations influences E7 splice site
recognition49. In particular, we could associate the triloop form of
TSL2 to a more efficient E7 splicing. Taking advantage of this
finding, bioactive small molecules could now be rationally
designed that target not only TSL2 at the 5′ ss level, but also at the
hairpin loop, stabilising it as a triloop (examples of RNA-loop
targeting molecules can be found here18, 50).

In summary, our study contributes to the increasing use of
small molecules to rationally target RNA18–20, 51–56, and opens
new avenues for rational drug discovery in SMA, setting a pre-
cedent for other splicing-mediated disorders, where the relevant
RNA structures could be similarly targeted to modify the out-
come of the splicing events that they regulate.

Methods
Fluorescence displacement screening. RNA (0.5 μM) was snap annealed in 8
mM Na2HPO4 at pH 7, 185 mM NaCl, 0.1 mM EDTA and 40 μg/mL BSA, and
incubated per quadruplicate with TO-PRO-1 (1 μM), and DMSO (control) or
ligand (100 μM, screening) for 30 min in black 96-well plates. The plate was excited
at 485 nm and fluorescence emission was collected at 528 nm in a SynergyTM Mx
(BioTek) plate reader. Molecules that decreased TO-PRO-1 fluorescence intensity
by >20% were considered positives, as per equation (1)

Activity %ð Þ ¼ 100� A� B
C � D

� �
´ 100

� �
; ð1Þ

where (A) indicates fluorescence intensity of TO-PRO-1 with RNA and compound,
(B) fluorescence intensity of TO-PRO-1 with compound, (C) fluorescence intensity

Table 1 NMR and refinement statistics for the TSL2 RNA

TSL2

NMR distance and dihedral constraints
Distance restraints
Total NOE 458
Intra-residue 258
Inter-residue 200
Sequential (|i – j|= 1) 154
Nonsequential (|i – j| > 1) 46

Hydrogen bonds 14
Total dihedral angle restraints 114

Sugar pucker 50
Backbone 54
Sugar to base 10

Base pair planarity 6
Structure statistics (mean ± SD)
Violations (mean and s.d.)
Distance constraints (Å) 0.037 ± 0.002
Dihedral angle constraints (°) 0.26 ± 0.11
Max. dihedral angle violation (°) 5.57
Max. distance constraint violation (Å) 0.49

Deviations from idealised geometry
Bond lengths (Å) 0.0026 ± 0.0001
Bond angles (°) 0.75 ± 0.03
Impropers (°) 0.59 ± 0.04

Average pairwise r.m.s. deviationa (Å)
All RNA heavy 1.85 ± 0.58
Stem heavy (residues 1–7, 13–19) 1.23 ± 0.35
Loop heavy (residues 8–12) 1.54 ± 0.57

aStatistics from a final bundle of 40 structures after water refinement
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of TO-PRO-1 with RNA and (D) intensity of the TO-PRO-1 alone. When Ribo-
Green was used instead of TO-PRO-1, 300 nM of dye was used, with fluorescence
emission read in a LightCycler® qPCR instrument using Sybr Green filters.

Cell culture. HeLa cells were a gift from Prof. U. Rüegg (University of Geneva,
Switzerland). HeLa cells were cultured in DMEM medium with 10% FBS and 1%
antibiotics (penicillin and streptomycin). ND36091A, GM03814B and GM03813C
fibroblasts were obtained from the Coriell Institute for Medical Research, and
grown in MEM medium with 15% FBS, 1% antibiotics (penicillin and strepto-
mycin) and 2 mM glutamine (freshly added). All lines were kept in a humidified
incubator at 37 °C in 5% CO2. For all RNA and protein extractions, 4 × 105 cells
were seeded per well per triplicate in six-well plates (volume 2mL) and grown to
80% confluence. DNA transfection of pCI-SMN2E6−to−8 minigenes16 in HeLa was
performed using X-tremeGENE HP Transfection Reagent (Roche Life Science) and
1 μg of plasmid DNA. After 24 h, treatment was added to the wells. In non-
transfected cells (fibroblasts), compounds were directly added to the wells once
80% cell confluence was reached. Fibroblasts and HeLa were regularly checked for
mycoplasma contamination.

Drosophila. A total of 10–12 first-instar larvae expressing the UAS-SMN2:luc
minigene under the control of the D42 promoter (D42-Gal4, Bloomington #8816)
were transferred per triplicate into tubes containing 0.5% DMSO (control) or

PK4C9 in 0.5 mL of standard nutritive media. Larvae were free fed with PK4C9 for
5 days. Tubes were kept at 25 °C and flies were collected 24 h after hatching for
homogenisation.

Reverse transcription (RT)-PCR. Total RNA was extracted using the RNeasy
mini kit with on-column DNase digestion (Qiagen). Between 0.5 and 1 μg of RNA
were used for reverse transcription with Super Script II (Invitrogen) or the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems), using random
hexamers (cultured cells) or a gene-specific primer 5′-CAGCGTAAGT-
GATGTCCACCT-3′ (Drosophila). A total of 100 ng of cDNA were used as tem-
plate in semi-quantitative PCR with GoTaq polymerase (cultured cells; Promega)
or 2×PCR Super Master Mix (Drosophila, Biotool). Three biological replicates and
three technical replicates per biological replicate were obtained, unless stated
otherwise. Primer sequences, and PCR conditions are described in Supplementary
Table 4. Bands were resolved in 3% agarose gels at 4 °C for 90 min. Representative
full agarose gel images supporting our main findings are shown in Supplementary
Fig. 13. Quantification of band intensity was performed on ImageJ. The effect of
TSL2 mutations on PK4C9 splicing modifier activity is shown as the percentage of
maximum E7 increment possible (% MIP), defined by Eq. (2):

% MIP ¼ E7PK4C9 � E7DMSO

100� E7DMSO

� �
´ 100

� �
: ð2Þ

TSL2pentRMSD 1.4 Å TSL2tri

b

U2
G18

U19

U2

G18

U19

TSL2pent-PK4C9

e

f

d

h

PK4C9

c

a

30

20

10

0

20

5

4

3

2

1

0

15

10

D
is

ta
nc

e 
A

8-
U

12
 (

Å
)

R
M

S
F

 (
Å

)

R
M

S
F

 (
Å

)

D
is

ta
nc

e 
A

1-
U

19
 (

Å
)

5

t (ns)
0 20 40 60 80 100

t (ns)
0 20 40 60 80 100

TSL2pent-free TSL2pent-free

TSL2pent-PK4C9 TSL2pent-PK4C9

Residue

TSL2pent-free TSL2pent-PK4C9

Unspecified residue

O

NH

OH

OH

HO

HO

OO
O

N

N

NH2N

HN

O
O

OH

N
H

H

HN
HN

N O

O

HO

HO

O

O

O

O– N

N

O

OO

O–

O

O

A
1

O–

N

4

3

2

1

0

H-bond (sidechain)

Pi–Pi stacking

Solvent exposure

A
1

U
2

U
3

C
4

C
5

U
6

U
7

A
8

A
9

A
10

U
11

A
13

U
12

A
14

G
15

G
16

A
17

G
18

U
19

Residue

A
1

U
2

U
3

C
4

C
5

U
6

U
7

A
8

A
9

A
10

U
11

A
13

U
12

A
14

G
15

G
16

A
17

G
18

U
19

TSL2pent TSL2tri

g

P

P

P

Fig. 6 PK4C9 directly causes opening of 5′ ss TSL2 residues and indirectly induces triloop conformation. a Bundle of 40 NMR structures of TSL2. b
Representative ligand-free pentaloop (TSL2pent, silver) and triloop (TSL2tri, orange) NMR structures of TSL2. c Comparison of the mobility of TSL2pent
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qPCR. A total of 25 ng of cDNA were used as template for qPCR with the TaqMan
Fast Advanced Master Mix (Applied Biosystems), using the default fast mode of a
StepOnePlus Real-Time PCR System (Applied Biosystems). GAPDH was used as
the endogenous control (5 ng of cDNA template) after validating its stability
compared to other housekeeping genes. Three biological replicates and three
technical replicates per biological replicate were obtained, unless stated otherwise.
Primer and Taqman probe sequences and concentrations are described in Sup-
plementary Table 4. The relative expression of PK4C9-treated samples to GAPDH
and to the control group (DMSO) was obtained by the 2−ΔΔCt method. Due to the
low copy number of SMN2 transcripts, non-radioactive northern blot could not be

used as a validation technique. SMN2 isoform bands are shown by semi-
quantitative PCR instead.

Western blot. A total of 25 μg of total protein from whole-cell extracts from three
biological replicates (40 μM PK4C9 or 0.04% DMSO, 48 h) were fractionated in
12% SDS-PAGE and transferred to a PVFD membrane for 1 h in a cooled tank.
After blocking with 5% BSA, the membrane was washed (TBST) and incubated
with primary antibodies anti-α-Tub (1:2000, endogenous control; Sigma, cat #
T9026) and anti-SMN (1:500; clone 2B1; Sigma, cat # S2944) for 2 h at RT.
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Membranes were washed and incubated with a secondary DyLight 680-conjugated
anti-mouse antibody (1:10,000; Cell Signaling Technology, cat # 5470) for 2 h at
RT. Membranes were washed and signal visualised with a LI-COR Odyssey Ima-
ging System in the 700-nm channel. Representative full-blot scans supporting our
main findings are shown in Supplementary Fig. 13.

Immunohistochemistry. A total of 4 × 105 cells were seeded in 2 mL per well in
two-well chamber slide systems (Lab-Tek), and kept at 37 °C in 5% CO2. At 80%
confluence, each well was treated for 24 h with DMSO (control) or PK4C9 (40 μM).
Cells were washed (1×PBS) and fixed with 4% PFA for 10 min at RT. Permeabi-
lisation was carried out with 0.25% Triton X-100 in PBS at RT for 10 min, followed
by washes. Cells were blocked with 1% BSA in PBST (0.1% Tween 20) for 1 h, and
incubated with anti-SMN (1:500; clone 2B1; Sigma, cat # S2944) and anti-coilin-
p80 (1:50; H-300 Santa Cruz Biotechnology Inc., cat # sc-32860) o/n at 4 °C. After
washing, Alexa Fluor 647-conjugate anti-rabbit (Molecular Probes, cat # A-31573)
and Alexa Fluor 555-conjugate anti-mouse (Molecular Probes, cat # A-21422)
secondary antibodies were used at 1:500 for 90 min at RT. Slides were rinsed and
mounted on Vectashield mounting medium with DAPI (Reactolab). All images
were taken under the same settings in a confocal Zeiss LSM700 microscope. A total
of 30 cells from three biological replicates were analysed.

Statistics. All statistical analyses were performed using GraphPad Prism unless
otherwise stated. Two-tailed, non-paired t test was used for comparisons between
two groups, with Welch correction in the case of unequal variances. For the small-
molecule screening, a cut-off value of 20% FD was applied; followed by two-tailed,
non-paired t tests with Bonferroni correction for multiple comparisons. Data are
presented as means ± SEM in all cases except Table 1. Significance values are
detailed in the figure legends.

Code availability. No computer codes were developed for this study. Input scripts
and software alterations used for NMR structure calculation, molecular dynamics
or RNA-seq analysis are described in Supplementary Methods and are available
from the corresponding authors upon request.

Data availability. The NMR structure of TSL2 was deposited in the PDB
(accession number 5N5C) and the BMRB (accession number 34100). Our RNA-seq
data have been deposited in the Gene Expression Omnibus repository (accession
code GSE94111). Additional data that support the findings of this study are
available from the corresponding authors upon reasonable request.

Received: 18 April 2017 Accepted: 4 April 2018

References
1. Lefebvre, S. et al. Identification and characterization of a spinal muscular

atrophy-determining gene. Cell 80, 155–165 (1995).
2. Young, P. J., Le, T. T., thi Man, N., Burghes, A. H. & Morris, G. E. The

relationship between SMN, the spinal muscular atrophy protein, and nuclear
coiled bodies in differentiated tissues and cultured cells. Exp. Cell Res. 256,
365–374 (2000).

3. Eggert, C., Chari, A., Laggerbauer, B. & Fischer, U. Spinal muscular atrophy:
the RNP connection. Trends Mol. Med. 12, 113–121 (2006).

4. Crawford, T. O. et al. Evaluation of SMN protein, transcript, and copy number
in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS
ONE 7, e33572 (2012).

5. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in
the SMN gene regulates splicing and is responsible for spinal muscular
atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

6. Burghes, A. H. & Beattie, C. E. Spinal muscular atrophy: why do low levels of
survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci.
10, 597–609 (2009).

7. Monani, U. R. et al. The human centromeric survival motor neuron gene
(SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse
with spinal muscular atrophy. Hum. Mol. Genet. 9, 333–339 (2000).

8. Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers
improve motor function and longevity in mice with spinal muscular atrophy.
Science 345, 688–693 (2014).

9. Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association
and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015).

10. Arnold, W. D. & Burghes, A. H. Spinal muscular atrophy: development and
implementation of potential treatments. Ann. Neurol. 74, 348–362 (2013).

11. Singh, N. N., Lee, B. M., DiDonato, C. J. & Singh, R. N. Mechanistic principles
of antisense targets for the treatment of spinal muscular atrophy. Future Med.
Chem. 7, 1793–1808 (2015).

12. Howell, M. D., Singh, N. N. & Singh, R. N. Advances in therapeutic
development for spinal muscular atrophy. Future Med. Chem. 6, 1081–1099
(2014).

13. d’Ydewalle, C. & Sumner, C. J. Spinal muscular atrophy therapeutics: where
do we stand? Neurotherapeutics 12, 303–316 (2015).

14. Woll, M. G. et al. Discovery and optimization of small molecule splicing
modifiers of survival motor neuron 2 as a treatment for spinal muscular
atrophy. J. Med. Chem. 59, 6070–6085 (2016).

15. Singh, N. N. & Singh, R. N. Alternative splicing in spinal muscular atrophy
underscores the role of an intron definition model. RNA Biol. 8, 600–606
(2011).

16. Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA structure
in alternative splicing of a critical exon in the spinal muscular atrophy genes.
Nucleic Acids Res. 35, 371–389 (2007).

17. Singh, N. N., Lee, B. M. & Singh, R. N. Splicing regulation in spinal muscular
atrophy by an RNA structure formed by long-distance interactions. Ann. N. Y.
Acad. Sci. 1341, 176–187 (2015).

18. Disney, M. D., Yildirim, I. & Childs-Disney, J. L. Methods to enable the design
of bioactive small molecules targeting RNA. Org. Biomol. Chem. 12,
1029–1039 (2014).

19. Guan, L. & Disney, M. D. Recent advances in developing small molecules
targeting RNA. ACS Chem. Biol. 7, 73–86 (2012).

20. Thomas, J. R. & Hergenrother, P. J. Targeting RNA with small molecules.
Chem. Rev. 108, 1171–1224 (2008).

21. Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA
splicing. Trends Biochem. Sci. 35, 169–178 (2010).

22. Jean, J. M. & Hall, K. B. 2-Aminopurine fluorescence quenching and lifetimes:
role of base stacking. Proc. Natl Acad. Sci. USA 98, 37–41 (2001).

23. Tran, T. & Disney, M. D. Identifying the preferred RNA motifs and
chemotypes that interact by probing millions of combinations. Nat. Commun.
3, 1125 (2012).

24. Asare-Okai, P. N. & Chow, C. S. A modified fluorescent intercalator
displacement assay for RNA ligand discovery. Anal. Biochem. 408, 269–276
(2011).

25. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter
for use in evaluation and validation of high throughput screening assays. J.
Biomol. Screen. 4, 67–73 (1999).

26. Zhang, M. L., Lorson, C. L., Androphy, E. J. & Zhou, J. An in vivo reporter
system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential
therapy of SMA. Gene Ther. 8, 1532–1538 (2001).

27. Mayer, F. et al. Evolutionary conservation of vertebrate blood–brain barrier
chemoprotective mechanisms in Drosophila. J. Neurosci. 29, 3538–3550
(2009).

28. Chan, Y. B. et al. Neuromuscular defects in a Drosophila survival motor
neuron gene mutant. Hum. Mol. Genet. 12, 1367–1376 (2003).

29. Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the
repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600
(2008).

30. Baumer, D. et al. Alternative splicing events are a late feature of pathology in a
mouse model of spinal muscular atrophy. PLoS Genet. 5, e1000773 (2009).

31. Zhang, Z. et al. Dysregulation of synaptogenesis genes antecedes motor
neuron pathology in spinal muscular atrophy. Proc. Natl Acad. Sci. USA 110,
19348–19353 (2013).

32. Huo, Q. et al. Splicing changes in SMA mouse motoneurons and SMN-
depleted neuroblastoma cells: evidence for involvement of splicing regulatory
proteins. RNA Biol. 11, 1430–1446 (2014).

33. Muller, C. W., Schlauderer, G. J., Reinstein, J. & Schulz, G. E. Adenylate kinase
motions during catalysis: an energetic counterweight balancing substrate
binding. Structure 4, 147–156 (1996).

34. Shepard, P. J. & Hertel, K. J. Conserved RNA secondary structures promote
alternative splicing. RNA 14, 1463–1469 (2008).

35. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet.
17, 19–32 (2016).

36. Douglas, A. G. & Wood, M. J. RNA splicing: disease and therapy. Brief Funct.
Genom. 10, 151–164 (2011).

37. Buratti, E. et al. Aberrant 5’ splice sites in human disease genes: mutation
pattern, nucleotide structure and comparison of computational tools that
predict their utilization. Nucleic Acids Res. 35, 4250–4263 (2007).

38. Vorechovsky, I. Aberrant 3’ splice sites in human disease genes: mutation
pattern, nucleotide structure and comparison of computational tools that
predict their utilization. Nucleic Acids Res. 34, 4630–4641 (2006).

39. Kralovicova, J., Christensen, M. B. & Vorechovsky, I. Biased exon/intron
distribution of cryptic and de novo 3’ splice sites. Nucleic Acids Res. 33,
4882–4898 (2005).

40. Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA
and destabilization by mutations of frontotemporal dementia and
parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA 96,
8229–8234 (1999).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04110-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2032 | DOI: 10.1038/s41467-018-04110-1 | www.nature.com/naturecommunications 11

https://doi.org/10.2210/pdb5N5C/pdb
https://doi.org/10.13018/BMR34100
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94111
www.nature.com/naturecommunications
www.nature.com/naturecommunications


41. Estes, P. A., Cooke, N. E. & Liebhaber, S. A. A native RNA secondary structure
controls alternative splice-site selection and generates two human growth
hormone isoforms. J. Biol. Chem. 267, 14902–14908 (1992).

42. Luo, Y. & Disney, M. D. Bottom-up design of small molecules that stimulate
exon 10 skipping in mutant MAPT pre-mRNA. Chembiochemistry 15,
2041–2044 (2014).

43. Liu, Y., Rodriguez, L. & Wolfe, M. S. Template-directed synthesis of a small
molecule-antisense conjugate targeting an mRNA structure. Bioorg. Chem. 54,
7–11 (2014).

44. Orry, A. J., Abagyan, R. A. & Cavasotto, C. N. Structure-based development of
target-specific compound libraries. Drug Discov. Today 11, 261–266 (2006).

45. Harris, C. J., Hill, R. D., Sheppard, D. W., Slater, M. J. & Stouten, P. F. The
design and application of target-focused compound libraries. Comb. Chem.
High. Throughput Screen. 14, 521–531 (2011).

46. Bodoor, K. et al. Design and implementation of an ribonucleic acid (RNA)
directed fragment library. J. Med. Chem. 52, 3753–3761 (2009).

47. Custer, S. K. et al. Altered mRNA splicing in SMN-depleted motor neuron-
like cells. PLoS ONE 11, e0163954 (2016).

48. Varani, G. & McClain, W. H. The G×U wobble base pair. A fundamental
building block of RNA structure crucial to RNA function in diverse biological
systems. EMBO Rep. 1, 18–23 (2000).

49. Kralovicova, J., Patel, A., Searle, M. & Vorechovsky, I. The role of short RNA
loops in recognition of a single-hairpin exon derived from a mammalian-wide
interspersed repeat. RNA Biol. 12, 54–69 (2015).

50. Davidson, A. et al. Simultaneous recognition of HIV-1 TAR RNA bulge and
loop sequences by cyclic peptide mimics of Tat protein. Proc. Natl Acad. Sci.
USA 106, 11931–11936 (2009).

51. Disney, M. D. Rational design of chemical genetic probes of RNA function
and lead therapeutics targeting repeating transcripts. Drug Discov. Today 18,
1228–1236 (2013).

52. Gareiss, P. C. et al. Dynamic combinatorial selection of molecules capable of
inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of
lead compounds targeting myotonic dystrophy (DM1). J. Am. Chem. Soc. 130,
16254–16261 (2008).

53. Warf, M. B., Nakamori, M., Matthys, C. M., Thornton, C. A. & Berglund, J. A.
Pentamidine reverses the splicing defects associated with myotonic dystrophy.
Proc. Natl Acad. Sci. USA 106, 18551–18556 (2009).

54. Velagapudi, S. P. et al. Design of a small molecule against an oncogenic
noncoding RNA. Proc. Natl Acad. Sci. USA 113, 5898–5903 (2016).

55. Stelzer, A. C. et al. Discovery of selective bioactive small molecules by
targeting an RNA dynamic ensemble. Nat. Chem. Biol. 7, 553–559 (2011).

56. Patwardhan, N. N. et al. Amiloride as a new RNA-binding scaffold with
activity against HIV-1 TAR. MedChemComm 8, 1022–1036 (2017).

Acknowledgements
We thank members of the LS group Dr. S. Tardy and O. Patthey; member of the RA
group E. Cerro and Creoptix (www.creoptix.com) for technical assistance; Prof. P.
Moreau (University of Clermont Auvergne, FR) for providing compounds; Prof. R. Singh
(Iowa State University, US) for providing SMN2 minigenes; Prof M. Zhang (Tufts
University, US) for providing the SMN2 minigene used in Drosophila and Dr. E. C.
O’Connor (University of Geneva, CH) for input on the manuscript. This work was
supported by the University of Geneva and grants from the Swiss National Science

Foundation (SNSF) (Sinergia, CRSI33-130016) to L.S.; Protein Kinase Research (Pro-
Kinase, LSHB-CT-2004-503467) to L.S. and P.G.; the European Molecular Biology
Organization (EMBO, ALTF 253-2012) and the Schmidheiny Foundation to A.G.-L.;
SMA Europe to A.G.-L. (17623) and R.A. (19243); BioNMR and iNEXT to A.G.-L. and
H.S.; the German Research Foundation (DFG, CRC902) to H.S. and A.W.; the state of
Hesse through institutional funds for BMRZ to H.S. and C.R.; LOEWE programme
SynChemBio to H.S. and H.R.A.J.; the ERC Council (SimDNA) and the Spanish Ministry
of Science and Competiveness (BFU2014-61670-EXP, BFU2014-52864-R) to M.O. and
the Generalitat Valenciana (Santiago Grisolía PhD programme) to P.K.

Author contributions
A.G.-L. and L.S. conceived the project. A.G.-L. performed and analysed the screening,
low-resolution structural experiments, and all cell culture assays, with help from D.S., O.
P. and R.P.; F.T. performed and analysed the computational modelling with help from I.
F., A.G.-L. and L.S.; G.C. designed the in silico database that was filtered to generate the
RNA-binding small-molecule library; H.R.A.J., A.W. and C.R. performed and analysed
the NMR experiments with help from A.G.-L.; A.C., G.F., P.G. and B.J. synthesised
compounds; N.B., R.S., K.H. and M.E. performed the biostatistical analysis of RNA-seq
data, and P.K. performed and analysed the experiment in Drosophila. F.M., M.O., R.A., B.
J., H.S. and L.S. supervised their contributions to the study. A.G.-L. wrote the paper with
feedback from all authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04110-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04110-1

12 NATURE COMMUNICATIONS |  (2018) 9:2032 | DOI: 10.1038/s41467-018-04110-1 | www.nature.com/naturecommunications

http://www.creoptix.com
https://doi.org/10.1038/s41467-018-04110-1
https://doi.org/10.1038/s41467-018-04110-1
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes
	Results
	TSL2 is a suitable target for small-molecule screening
	A target-based screening identifies TSL2-binding molecules
	TSL2 binders modify SMN2 E7�splicing in different systems
	PK4C9 rescues functional SMN protein in SMA cells
	PK4C9 improves accessibility of the 5′ ss of SMN2 E7
	Triloop TSL2 conformations favour E7�splicing

	Discussion
	Methods
	Fluorescence displacement screening
	Cell culture
	Drosophila
	Reverse transcription (RT)-PCR
	qPCR
	Western blot
	Immunohistochemistry
	Statistics
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




