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The endophytic mutualism of plants with microorganisms often leads to several
benefits to its host including plant health and survival under extreme environments.
Arnebia euchroma is an endangered medicinal plant that grows naturally in extreme
cold and arid environments in the Himalayas. The present study was conducted to
decipher the cultivable endophytic diversity associated with the leaf and root tissues of
A. euchroma. A total of 60 bacteria and 33 fungi including nine yeasts were isolated
and characterized at the molecular level. Among these, Proteobacteria was the most
abundant bacterial phylum with the abundance of Gammaproteobacteria (76.67%)
and genus Pseudomonas. Ascomycota was the most abundant phylum (72.73%)
dominated by class Eurotiales (42.42%) and genus Penicillium among isolated fungal
endophytes. Leaf tissues showed a higher richness (Schao1) of both bacterial and fungal
communities as compared to root tissues. The abilities of endophytes to display plant
growth promotion (PGP) through phosphorus (P) and potassium (K) solubilization and
production of ACC deaminase (ACCD), indole acetic acid (IAA), and siderophores were
also investigated under in vitro conditions. Of all the endophytes, 21.51% produced
ACCD, 89.25% solubilized P, 43.01% solubilized K, 68.82% produced IAA, and 76.34%
produced siderophores. Six bacteria and one fungal endophyte displayed all the five
PGP traits. The study demonstrated that A. euchroma is a promising source of beneficial
endophytes with multiple growth-promoting traits. These endophytes can be used for
improving stress tolerance in plants under nutrient-deficient and cold/arid conditions.

Keywords: bacteria, yeasts, Indian Himalaya, endophytes, plant growth promotion, phytohormones

INTRODUCTION

Plants are believed to coevolve with their microbial symbionts which are the integral components
of a plant’s life cycle (Compant et al., 2019). The concept of plant microbiome and plant–microbe
interactions has received significant attention in understanding the possible role of microbes and
their genes in the survival and fitness of plants (Trivedi et al., 2020). Endophytic mutualism,
involving an endophyte that colonizes internal tissues of a plant without causing any apparent
symptoms to its host, is of special interest because endophytes spend all or part of their life cycle
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inside the plant tissues and directly influence host cells. The
mutualism between endophytes and its host plant species is
sustained through the production or induction of metabolites
required for the growth or protection of plants against adverse
environmental conditions or pathogens (Li F. et al., 2020). As
evident from various reports, several metabolites of host origin
and their precursors are also produced by associated endophytic
symbionts (Maggini et al., 2017; Caruso et al., 2020). The role
of endophytes in the primary and secondary metabolism of host
plants and as a source of important secondary metabolites is also
demonstrated in various plant species (Pandey et al., 2016, 2018).

Endophytes are known to colonize all plant species growing in
tropical, temperate, or polar ecosystems (Acuña-Rodríguez et al.,
2020). Studies on the endophytic diversity of terrestrial medicinal
plants have been reported in the past few decades (Harrison
and Griffin, 2020); however, diversity and ecological functions
of symbionts in medicinal plants growing in the cold desert
environment of the high-altitude Himalayas remain unexplored
(Kotilínek et al., 2017). Soils in cold desert environments are
characterized by poor availability of nutrients as well as poor
mobility due to reduced microbiological activities (Margesin
et al., 2009; Acharya et al., 2012). Native microbiota associated
with plants in such extreme conditions plays a crucial role in
nutrient uptake and fitness of the plants. Therefore, growth
of high-altitude cold desert plants under adverse conditions
provides an opportunity to reveal a role of endophytic colonizers
in plants’ adaptation against abiotic stress and in acquisition of
nutrients from desiccated cold soils (Dubey et al., 2020, 2021).
Further, cultivable endophytes with specific functions and other
beneficial microbiota of plants and their distribution patterns
(robust colonization, consistent establishment) can be utilized
to manipulate the microbiome of plants through assembling
microbial synthetic communities (SynCom) (de Souza et al.,
2020; Compant et al., 2021). Such studies can reveal the effects
exerted by associated microbes at the community level on their
host plants, especially under stress conditions for improving
resiliency in crops (Harbort et al., 2020; Liu et al., 2020).

Arnebia euchroma (Royle) Johnston, commonly known as
Pink Arnebia (family: Boraginaceae), is an endangered herb of
medicinal value (Barik et al., 2018) which grows naturally on
the slopes in cold desert Himalaya at an altitude ranging from
3,200 to 4,500 m above mean sea level (amsl) (Singh et al., 2012).
The roots of this plant have anti-inflammatory, antimicrobial,
and antipyretic properties and are traditionally used in curing
eye diseases, cuts and wounds, and tooth- and earache (Gupta
et al., 2013). Roots of A. euchroma also produce various secondary
metabolites including napthoquinone pigments, meroterpenoids,
and arnebinols (Wang et al., 2015). A. euchroma in its natural
habitat experiences extreme low temperature, arid conditions,
and high light intensity and grows under nutrient-limited
soil with reduced water availability. The interplay of plant–
microbe interactions in A. euchroma could be responsible for the
uniqueness of this plant species in surviving harsh environmental
conditions and in production of specific secondary metabolites.
In spite of the valuable aspects of this species, its microbiota is
not known. Therefore, with an aim to explore the uncharacterized
microbial diversity and to decipher plant–microbe interactions

in A. euchroma, the plants were collected from Spiti Valley in
Lahaul and Spiti district of Himachal Pradesh in the western
Indian Himalayas. Here we focused especially on cultivable
endophytic microbial diversity due to its wider applicability
for the development of microbial-based technology and to
study plant–microbe interactions. To our knowledge, this is
the first study to provide a detailed overview of the cultivable
endophytic diversity associated with the root and leaf tissues of
A. euchroma and their plant growth-promoting (PGP) traits. The
leads of this work are being considered to evaluate the role of
isolated endophytes in cold stress acclimation in plants and in
accumulation of microbial assisted secondary metabolites.

MATERIALS AND METHODS

Plant Material
Arnebia euchroma (Royle) Johnston plant samples growing at
an altitude of ∼4,254 m amsl were collected from Langza,
Spiti (N 32◦16′27.93′′, E 78◦4′27.23′′), of the Lahaul and Spiti
district of Himachal Pradesh, India. The sampling was done on
the third week of September, in the year 2019. For assessing
culturable diversity, five randomly sampled plant specimens were
transported at low temperature (4◦C) and immediately processed
in the lab. Root and leaf tissues were used for isolation of
microbial endophytes.

Isolation of Endophytes From Plant
For isolation of endophytes, surface sterilization of plant tissues
was performed as described by Nascimento et al. (2019) with
appropriate modifications. Briefly, roots and leaves were washed
thoroughly with distilled water. The plant materials were surface
sterilized by immersing in 70% (v/v) ethanol for 2 min, followed
by washing in 1% (v/v) sodium hypochlorite for 1 min and a
second washing in 70% (v/v) ethanol for 2 min. The surface-
sterilized plant material was extensively rinsed with sterile
distilled water three times and air-dried under sterile conditions.
Distilled water used in the final wash was plated (100 µl) on agar
media to validate the sterility. After surface sterilization, the plant
tissues were cut into small pieces of approximately 0.5 cm in
length using a sterile scalpel and kept on agar plates. Besides, 0.5 g
of surface-sterilized tissue was homogenized in a sterile mortar
pestle, and the homogenate was serially diluted (10-fold) in sterile
saline solution (0.9% NaCl in water). One hundred microliters of
all dilutions was plated on agar plates using a sterile spreader.

Nutrient agar (NA) (HiMedia, Mumbai, India) and tryptone
yeast extract agar (TYEA) (HiMedia, India) were used for the
isolation of bacterial endophytes. Similarly, potato dextrose agar
(PDA) (HiMedia, India) and yeast extract peptone dextrose
agar (YPDA) (HiMedia, India) amended with streptomycin
(50 µg/ml) and chloramphenicol (15 µg/ml) were used for the
isolation of fungal endophytes (Pandey et al., 2016). Agar plates
were incubated at 20◦C for 3–5 days in an incubator. After
incubation, different morphotypes from all plates were isolated
and subcultured until pure colonies were obtained. The pure
endophytic isolates were uniquely coded as ARBx, ARFx and
ARYx, for root and ALBx, ALFx, and ALYx for leaf-associated
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endophytic bacteria, fungi, and yeasts, respectively. The pure
cultures were preserved as glycerol stocks at –80◦C. For routine
experiments, bacteria, fungi, and yeast cultures were grown on
TYEA, PDA, and YPDA, respectively.

Molecular Identification of Endophytes
For the identification of bacterial endophytes, genomic DNA was
isolated from overnight grown bacterial culture in Luria Bertani
(LB) (HiMedia, India) broth at 20◦C by freeze-thaw method with
appropriate modifications (two rounds of freezing at –80◦C for
5 min and quick thawing at 95◦C for 2 min followed by vortex
for 1 min; Thakur et al., 2018). The cell lysate was centrifuged
(10,000× g, 5 min), and crude supernatant containing DNA was
used for polymerase chain reaction (PCR). The amplification of
the 16S rRNA gene was performed using universal eubacterial
primer pair 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and
1492R (5′-TACCTTGTTACGACTT-3′) (Jain and Pandey, 2016).
Genomic DNA was isolated from fungal isolates by the CTAB
extraction method (Voigt et al., 1999). Amplification of the
ITS1-5.8S-ITS2 region for fungi was performed using fungal-
specific primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)
and ITS4 (5′-GCATATCAATAAGCGGAGGA-3′) (White
et al., 1990). Similarly, genomic DNA from yeast isolates
was extracted by the Bust n′ Grab method (Harju et al.,
2004). The D1–D2 domain of large subunit ribosomal
DNA for yeast was amplified using primers NL1 (5′-GCA
TATCAATAAGCGGAGGAAAAG-3′) and NL4 (5′-GGTC
CGTGTTTCAAGACGG-3′) (Kurtzman and Robnett, 1997).

PCR was performed using 10 ng of genomic DNA with
GoTaq R© Master Mix (Promega, Madison, WI, United States) in
a ProFlexTM thermal cycler (Applied Biosystems, Foster City,
CA, United States). PCR conditions were as follows: initial
denaturation at 94◦C for 5 min; 30 cycles of denaturation at 94◦C
for 1 min, annealing at 51◦C (bacteria) or 54◦C (fungi/yeast)
for 30 s, and extension at 72◦C for 1 min, and a final extension
at 72◦C for 5 min. DMSO (3%) as PCR additive was used
as and when required. The amplified product was checked on
1.2% agarose gel. For Sanger sequencing, the amplicons were
purified with ExoSAPTM-IT PCR Cleanup Reagent (Applied
Biosystems, United States) and used as a template for sequencing
PCR using BigDyeTM Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, United States). The purified PCR products
were sequenced on 3730xl DNA Analyzer (Applied Biosystems,
United States). EzBioCloud1 was used to assign a taxonomic
identity to 16S rRNA gene nucleotide sequences of bacteria. For
fungi and yeasts, the nucleotide sequences were identified using
the BLASTn program at NCBI2.

Molecular Phylogeny and Alpha Diversity
For the phylogenetic relationship, bacterial and fungal nucleotide
sequences were aligned separately using the MUSCLE algorithm
in MEGA X software (Kumar et al., 2018). Maximum
likelihood phylogenetic analysis was performed using RAxML
v8 (Stamatakis, 2014) in Geneious Prime 2021 software. The

1https://www.ezbiocloud.net/
2http://www.ncbi.nlm.nih.gov

confidence at each node of the phylogenetic tree was evaluated
by bootstrap analysis with 1,000 replicates. Interactive Tree of
Life (iTOL) v5, an online tree explorer3, was used to display and
annotate phylogenetic trees (Letunic and Bork, 2021).

Alpha diversity of isolated endophytic bacteria and fungi
associated with plant tissues and the complete plant was
calculated at the genus level to assess the observed richness
(number of taxa, S) and evenness (abundance of taxa) of
microbial communities. Shannon diversity index (H), Simpson’s
index (D), Simpson’s diversity index (1–D), evenness (eˆH/S),
and predicted species richness (SChao1) were determined
individually for bacteria and fungi in leaf and root samples as well
as for the whole plant. All the diversity analysis was performed
using the PAST software package v4.03 (Hammer et al., 2001).

PGP Traits of Endophytes
1-Aminocyclopropane-1-Carboxylate Deaminase
(ACCD) Production
For estimating ACCD production by endophytes, all the isolates
were inoculated in 10 ml synthetic media (composition per
liter: glucose, 15 g; MgSO4·7H2O, 0.2 g; K2HPO4, 0.6 g; KCl,
0.15 g; NH4NO3, 1 g; 1 ml of trace solution containing per
liter: FeSO4·7H2O, 0.005 g; MnSO4·H2O, 0.006 g; ZnSO4·H2O,
0.004 g; CoCl2, 0.002 g) (Yedidia et al., 1999) in a 50-ml
Falcon tube. One percent (100 µl) of freshly grown bacteria
(OD600 = 0.5) and a 5-mm disk of 7-day grown fungi, separately,
were used as inoculum. Following inoculation, cultures were
incubated for 24 h in the case of bacteria, and for 48 h in the
case of fungi at 20◦C under shaking conditions (200 rpm). After
incubation, the culture broth was centrifuged (6,000× g, 5 min),
the supernatant was discarded, and the pellet was resuspended in
5 ml of sterile synthetic media containing 3 mM ACC but without
ammonium nitrate (NH4NO3). The microbial suspensions were
reincubated for 24 h in the case of bacteria and 48 h in the case
of fungi at the same conditions. Following incubations, culture
broths were centrifuged (10,000 × g, 10 min), the supernatant
was discarded, and biomass was resuspended in 2.5 ml of Tris–Cl
(0.1 M, pH 8.5) buffer.

ACCD activity was measured by the method as described by
Nascimento et al. (2019) with appropriate modifications. Briefly,
bacterial/fungal biomass in Tris-Cl buffer was homogenized
using a bead beater (25 s × 2 cycles) with a 5-min incubation
on ice between two cycles. Toluene (25 µl) was added to the
cell lysate and vortexed vigorously for 30 s. ACC (20 µl of
0.5 M solution in water) was added to 200 µl of lysate, and after
an incubation period of 15 min at 30◦C, 1 ml of 0.56 N HCl
was added. The mixture was centrifuged (10,000 × g, 10 min),
and 1 ml of supernatant was mixed with 800 µl of 0.56 N
HCl and 300 µl of 2,4-dinitrophenylhydrazine (DNPH) solution
(0.2 g DNPH dissolved in 100 ml of 2 N HCl). The mixture
was incubated for 30 min at 30◦C, and 2 ml of 2 N NaOH
was added. The absorbance at 540 nm (A540) was measured in
a 96-well plate using a Synergy H1 microplate reader (BioTek
Instruments, Winooski, VT, United States). ACCD activity
was calculated by measuring the amount of α-ketobutyrate

3https://itol.embl.de/
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released by the deamination of ACC using a standard curve
made using α-ketobutyrate. ACCD activity was expressed as
µmol α-ketobutyrate/h/mg protein. Protein concentrations in
the cell lysates were determined using the Bradford method
(Bradford, 1976). Three independent replicates were used for
activity measurements.

Phosphate (P) Solubilization and Determination of pH
Pikovskaya’s agar (HiMedia, India) (pH 7.0) containing
tri-calcium phosphate (TCP) was used for screening of
P-solubilization by bacterial and fungal endophytes. A loopful
of bacterial inoculum or a 5-mm fungal disc was inoculated
on Pikovskaya’s agar and incubated at 20◦C for 5 days.
After incubation, a clear zone of solubilization around the
bacterial/fungal colonies indicated P-solubilization. The colony
diameter (CD) and zone diameter (ZD) were measured to
calculate the solubilization index (SI = ZD/CD). The positive
isolates for P-solubilization were further investigated for
quantification of soluble phosphorus in National Botanical
Research Institute’s Phosphate growth medium (NBRIP) broth
(pH 7.0) containing 0.5% (w/v) TCP (Nautiyal, 1999). NBRIP
broth (50 ml) in a 250-ml Erlenmeyer flask was inoculated
with 500 µl overnight grown bacteria (OD600 = 0.5) or a
5-day-grown fungal disc (5 mm) and incubated at 20◦C at
200 rpm for 5 days. Following incubation, the soluble P in
the cell-free culture supernatant was quantified by the method
described by Adhikari et al. (2021). A882 was measured in a
96-well plate using a Synergy H1 microplate reader. Soluble
P (µg/ml) in broth was estimated using a standard curve of
KH2PO4. The pH of the culture supernatants was also measured
using a pH meter.

Indole Acetic Acid (IAA) Production and Potassium
(K) Solubilization
For estimation of IAA production, 200 µl of overnight grown
bacteria (OD600 = 0.5) and a 5-mm fungal disc was inoculated
in 20 ml LB broth (HiMedia, India) and potato dextrose
broth (PDB) (HiMedia, India), respectively, supplemented with
0.5 mg/ml of L-tryptophan. The growth was allowed at 20◦C
for 2 days in the case of bacteria and 5 days in the case of
fungi at 200 rpm. Un-inoculated broth containing L-tryptophan
served as a control. After incubation, the production of IAA by
the microbial endophytes was quantified by mixing 100 µl of
culture supernatant with 100 µl of freshly prepared Salkowski
reagent [2 ml of 0.5 M FeCl3 in 98 ml of 35% (v/v) HClO4]
(Ye et al., 2019). After 20 min of incubation in the dark
at room temperature, A530 was measured in a 96-well plate
using a Synergy H1 microplate reader. A standard curve
of IAA was prepared for quantifying IAA production (µg
ml−1) in the samples. All the experiments were performed
in triplicates.

Microbial screening for K-solubilization was performed in
plate assays using Aleksandrow agar (HiMedia, India). All isolates
were inoculated as described previously and incubated at 20◦C
for 5 days. The zone of solubilization around the microbial
colonies was recorded following incubation. Solubilization
indices were calculated as indicated above.

Siderophore Production
The solid and liquid versions of CAS assays (Jain and Pandey,
2016) were employed for measuring siderophore production
by the endophytic isolates. All the glasswares used for the
preparation of siderophore production media were soaked
overnight in 10% (v/v) HCl and rinsed five times with Milli-
Q water. Casamino acid used in the media was defarrated by
extracting with 3% 8-hydroxyquinoline in chloroform and filter
sterilized (Louden et al., 2011). For plate-based assays, freshly
grown microbial inoculum was spotted on CAS agar (Schwyn and
Neilands, 1987) and incubated for 5 days at 20◦C in the dark. The
orange zone around the colonies showed siderophore production
by the isolates. The siderophore production index was calculated
as explained above.

For the liquid version of CAS assay, iron-free Czapek-Dox
broth containing 3% sucrose, 0.2% NaNO3, 0.1% K2HPO4, 0.05%
MgSO4·7H2O, and 0.05% KCl (pH 7.3) (Larcher et al., 2013)
was used for siderophore production by fungi. Similarly, iron-
free M9 minimal broth (pH 7.0) (Sinha et al., 2019) was used for
quantifying siderophore production by bacteria. The endophytic
isolates were inoculated (100 µl bacterial suspension and a 5 mm
fungal disc) in 10 ml of respective broth in 30-ml glass vials and
incubated at 20◦C for 5 days at 200 rpm. After incubation, culture
supernatants were collected following centrifugation (8,000 × g,
10 min). One hundred microliters of supernatant was mixed
with 100 µl of CAS dye solution, and the mixture was incubated
in the dark for 15 min. A630 was measured using the Synergy
H1 microplate reader against control containing 100 µl of
un-inoculated broth mixed with 100 µl of CAS dye solution.
Quenching of iron in CAS dye solution by the siderophores
in the samples results in discoloration of the resulting mixture
in comparison to the control. Percent siderophore units (SU)
were calculated by the formula %SU = (Ar−As)/Ar × 100
(where Ar is A630 of control and As is A630 of samples).
%SU < 10 was considered as negative. All the measurements were
performed in triplicates.

Statistical Analysis
Analysis of variance (ANOVA) with post hoc Duncan’s multiple-
range test (DMRT) and Pearson correlation coefficient (r) were
calculated using SPSS v20. Venn diagrams were drawn using the
jvenn online tool4. All the data are presented as mean± standard
deviation of three replicates.

RESULTS

Endophytic Diversity
A total of 60 bacterial endophytes encompassing 21 from leaf and
39 from root tissues; 24 endophytic fungi encompassing 15 from
leaf and 9 from root tissue; and 9 yeast endophytes encompassing
4 from leaf and 5 from root tissues of A. euchroma were isolated.
All these endophytic isolates were identified by sequencing either
16S rRNA gene (bacteria), ITS1-5.8S-ITS2 region (fungi), or
D1/D2 domain of the large subunit of ribosomal DNA (yeasts).

4http://jvenn.toulouse.inra.fr/app/index.html
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Nucleotide sequences of all endophytic isolates are deposited
in the GenBank database with accession numbers MW665325–
MW665384 for bacteria; MW391724–MW391747 for fungi; and
MW391800–MW391808 for yeast isolates.

All the bacterial endophytes were identified to species level
with more than 99% similarity using the EzTaxon/NCBI database
except ALB20, ARB6, and ARB37, which were identified to genus
level as Pseudomonas spp. (Supplementary Table 1). Similarly,
except for ARF7 (Cladosporium sp.); ARF9, ALF8, and ALF9
(Penicillium spp.); ALF14 (Xylaria sp.); ALF12 (Carrena sp.);
and ALF15 (Periconia sp.), all fungal endophytes were assigned
species-level identity (Supplementary Table 2).

Among 60 bacterial endophytes, 83.34% bacterial endophytes
belonged to class Proteobacteria, which were further classified
into Gammaproteobacteria (76.67%), Alphaproteobacteria (5%),
and Betaproteobacteria (1.67%). The remaining 16.66% bacterial
endophytes belonged to Firmicutes and Actinobacteria (8.33%
each). During phylogenetic analysis, all closely related bacteria
formed well-supported clades (Figure 1). Similarly, out of
33 fungal endophytes, 72.73% fungi were classified under
Ascomycota phylum, which were further grouped in Eurotiales
(42.42%), Capnodiales (12.12%), Saccharomycetales (9.09%), and
3.03% each of Xyriales, Pleosporales, and Botryosphaeriales.
The remaining 27.27% fungal endophytes were classified under
Basidiomycota phylum, which was further grouped in 6.06% each
of Cystofilobasdiales, Filobasidiales, and Polypropales and 3.03%
each of Tremallales, Trichosporonales, and Sporidiobolales.
In phylogenetic tree reconstruction, all fungal genera of
Ascomycota and Basidiomycota phylum formed well-separated
clades (Figure 2).

Tissue Specificity of Endophytes
Pseudomonas followed by Serratia were most prominently
isolated from roots as well as leaf tissues of plant (Supplementary
Figure 1A). Pseudomonas accounted for 61.54 and 47.62% of
all isolated bacterial endophytes in root and leaf tissues,
respectively. Other bacteria that colonized the plant
tissues included Staphylococcus, Pantoea, Sphingomonas,
Brevibacterium, Paenibacillus, Bacillus, Acinetobacter,
Burkholderia, Microbacterium, Pschromicrobium, Arthrobacter,
and Rhizobium. Similarly, leaf tissues showed a dominance of
Penicillium while root tissues were dominantly colonized with
Aspergillus (Supplementary Figure 1B). The total number of
genera isolated from leaf tissues was higher (S = 14) as compared
to the roots (S = 7).

Among bacteria, five genera, namely, Rhizobium,
Paenibacillus, Staphylococcus, Pantoea, and Acinetobacter,
were isolated from root tissues only, while six genera
including Sphingomonas, Arthrobacter, Burkholderia,
Bacillus, Microbacterium, and Psychromicrobium were
isolated only from leaf tissues. Pseudomonas, Serratia, and
Brevibacterium were isolated from both roots as well as leaf
tissues (Figure 3A). Similarly, nine fungal genera, namely,
Talaromyces, Xylaria, Periconia, Phaeophlebiopsis, Microdiplodia,
Carrena, Apiotrichum, Debaryomyces, and Vishniacozyma
were found uniquely associated with only leaf tissues, while
Rhodotorula and Tausonia were only isolated from root tissues.

Fungal genera including Penicillium, Aspergillus, Cladosporium,
Naganishia, and Candida were isolated from both roots and leaf
tissues (Figure 3B).

Alpha Diversity
Shannon’s diversity index (H), Simpson’s indices (D and 1–D),
Evenness (eˆH/S), and species richness (Schao1) were calculated
to assess the diversity, evenness, and richness of cultivable
endophytes isolated from the plant tissues of A. euchroma
(Table 1 and Supplementary Figure 2). A higher H (1.73),
1–D (0.73), and eˆH/S (0.62) value for bacterial communities
in leaf tissue as compared to roots (H = 1.31; 1–D = 0.59;
eˆH/S = 0.46) indicated a higher diversity and even distribution
of bacteria in leaf tissues. A similar pattern was also observed for
fungal communities with higher diversity and even distribution
in leaves. In addition, the total diversity of isolated endophytes in
leaf tissue was also higher (H = 2.79; 1–D = 0.90) as compared to
root tissue (H = 2.02; 1–D = 0.76) and their distribution was more
even. Furthermore, a high richness (Schao1) of bacteria (16.50)
and fungi (32.33) in leaf tissues as compared to bacteria and fungi
in roots (Schao1 = 11.00 and 8.00, respectively) was observed. The
overall predicted microbial richness was higher in leaf tissues
(Schao1 = 57.00) than in root tissues (Schao1 = 20.25). However,
these diversity measures are the description of results obtained in
the present study and could be biased by the sampling as well as
isolation methods.

PGP Traits of Endophytes
ACC Deaminase Production
Among all bacterial endophytes, only 13 bacterial isolates that
included 11 root bacterial endophytes and 2 leaf-associated
bacteria displayed ACC deaminase activity (Figure 4A). Among
all, isolate ARB15 (Serratia plymuthica) showed the maximum
ACCD activity (132.69 µmol α-ketobutyrate/h/mg protein)
followed by ARB2 (63.25 µmol α-ketobutyrate/h/mg protein)
and ARB25 (60.58 µmol α-ketobutyrate/h/mg protein) (both
identified as Pseudomonas grimontii). Leaf endophytes, i.e.,
ALB16 (Brevibacterium frigoritolerans) and ALB21 (Burkholderia
contaminans), displayed ACCD activity of 15.88 and 1.39 µmol
α-ketobutyrate/h/mg protein.

Similarly, for fungal endophytes, only seven isolates exhibited
ACCD activity (Figure 4B) that included two root endophytes
(ARF1 and ARF9) and five leaf endophytes (ALF3, ALF4,
ALF5, ALF8, and ALF9). ARF1 (Aspergillus versicolor) displayed
the highest activity of 9.04 µmol α-ketobutyrate/h/mg protein,
which was significantly higher (p < 0.05) than that of other
fungal endophytes.

P-Solubilization and Correlation With pH of the
Culture Supernatants
A remarkable feature of isolated endophytes in this study
was their potential to solubilize TCP at 20◦C (Supplementary
Tables 3, 4 and Figure 5). Out of 39 root-associated bacteria,
37 bacteria (94.87%) solubilized P in the range of 49.57 to
718.55 µg/ml (Supplementary Figure 3A). ARB23 (Serratia
plymuthica; 718.55 µg/ml), ARB4 (Pseudomonas versuta; 713.91
µg/ml), and ARB31 (P. caspiana; 689.86 µg/ml) solubilized
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FIGURE 1 | Phylogenetic relation among bacterial endophytes isolated from A. euchroma leaf and root tissues. A total of 60 bacteria were isolated and analyzed for
reconstruction of phylogeny using the Maximum Likelihood method with bootstrap replication of 1,000. A reoccurrence frequency of ≥50% is indicated on the node
by a circle. A solid circle and triangle before taxonomic designation indicate root and leaf endophyte, respectively.

maximum P with significant difference (p < 0.05) than other
root-associated bacterial endophytes. The lowest pH of 2.81 was
recorded for the culture supernatants of isolate ARB31, while the
highest pH of 5.02 was recorded for ARB9 (Paenibacillus tritici),
which also solubilized minimum P (Figure 5A). Among 21
leaf endophytes, 20 isolates (95.24%) possessed P-solubilization
efficiency (Figure 5B). ALB15 (Pseudomonas sp.) solubilized
significantly higher (p < 0.05) P, i.e., 828.99 µg/ml, as compared
to all other endophytes and exhibited the lowest reduction in the
pH of culture broth to 2.87.

Similarly, out of 33 fungal endophytes, 26 isolates (78.78%)
including 12 root and 14 leaf-associated endophytes solubilized
TCP in the broth (Figure 5D). The overall efficiency of fungal
endophytes to solubilize tricalcium phosphate was lower than
the bacterial endophytes that ranged from 6.96 to 304.06 µg/ml

(Supplementary Figure 3B). The highest soluble P, i.e., 304.06
µg/ml, in the broth was recorded for isolate ARF9 (Penicillium
sp.) which also caused the lowest reduction in the pH of culture
broth to 3.31 as compared to pH 7 for control. Isolate ALF4
(Penicillium charlesii) and ALF13 (Talaromyeces amestolkiae) also
solubilized the highest P with no significant difference than
ARF9; however, the pH of the culture broth was recorded as 3.80
and 3.86, respectively.

A significant and strong negative correlation i.e., r = –0.8551
and r = –0.8687 (p < 0.05), between the pH of the culture
supernatants and P-solubilization by bacterial (Figure 5C) and
fungal endophytes (Figure 5E), respectively, was observed. This
reduction in the pH of the culture supernatant suggested
the production of low molecular weight organic acids by the
endophytic isolates that lead to P-solubilization.
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FIGURE 2 | Phylogenetic relation among fungal endophytes isolated from A. euchroma leaf and root tissues. A total of 33 fungi were isolated and analyzed for
reconstruction of phylogeny using the Maximum Likelihood method with bootstrap replication of 1,000. A reoccurrence frequency of ≥ 50% is indicated on the node
by a circle. A solid circle and triangle before taxonomic designation indicate root and leaf endophyte, respectively.

FIGURE 3 | Venn diagram illustrating the number of unique and overlapping bacterial (A) and fungal (B) endophytes isolated from leaf and root tissues of
A. euchroma.

IAA Production and K-Solubilization
Root-associated endophytes were the more efficient producer
of IAA as compared to leaf endophytes (Supplementary
Figures 3C,D). Among 39 root-associated bacterial endophytes,
23 isolates (58.97%) displayed IAA production in the media

supplemented with 0.5 mg/ml tryptophan in the range of 0.05–
37.36 µg/ml (Figure 6A). Similarly, 13 out of 21 (61.90%)
leaf-associated bacterial endophytes produced IAA ranging
from 0.12 to 8.44 µg/ml (Figure 6B). Bacterial isolate ARB39
(Pseudomonas frideriksbergensis) and its phylogenetic neighbor
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TABLE 1 | Alpha diversity indices of microbial endophytes in different tissues of A. euchroma.

Diversity indices Leaf bacteria Root bacteria Leaf fungi Root fungi Bacteria Fungi Leaf Root Whole plant

Taxa (S) 9 8 14 7 14 16 23 15 30

Simpson’s index (D) 0.27 0.41 0.10 0.18 0.35 0.10 0.10 0.24 0.16

Simpson’s diversity
index (1-D)

0.73 0.59 0.90 0.82 0.65 0.90 0.90 0.76 0.84

Shannon’s diversity
index (H)

1.73 1.31 2.51 1.81 1.64 2.51 2.79 2.02 2.60

Evenness (eˆH/S) 0.62 0.46 0.88 0.87 0.37 0.77 0.71 0.50 0.45

Species richness
(SChao1)

16.50 11.00 32.33 8.00 21.00 23.20 57.00 20.25 47.00

FIGURE 4 | ACC deaminase (ACCD) activity (µmol α-ketobutyrate/h/mg protein) of endophytes isolated from the leaf and root tissues of A. euchroma. Total protein
after cell lysis was measured using Bradford assay. (A) ACCD activity of bacterial endophytes and (B) fungal endophytes. Bars with different alphabets indicate a
significant difference (p < 0.05) as calculated using Duncan’s multiple-range test. Error bars indicate standard deviation (n = 3).

ALB20 (Pseudomonas sp.) produced maximum IAA, i.e., 37.36
and 8.44 µg/ml, among root and leaf-associated bacterial
endophytes, respectively. On the other side, 11 out of 14
(78.57%) root-associated fungi and 17 out of 19 (89.47%) leaf-
associated fungi produced IAA (Figure 6C). Root-associated
yeast endophyte ARY8 was the most efficient producer of IAA
(18.28 µg/ml) while ALF1 among leaf endophytes produced the
highest amount of IAA, i.e., 6.60 µg/ml.

K-solubilization by endophytic isolates was tested using
plate-based assays. Thirty-six bacterial endophytes out of 60
(60%), that majorly included root-associated bacteria (50%)
and 10% leaf-associated bacteria, showed K-solubilization
efficiency (Supplementary Table 3). On the other side, only
four fungal isolates out of total 33 endophytes, namely,
ARF8 (Penicillium sajarovii), ARF9 (Penicillium sp.), ALF13
(Talaromyces amestolkiae), and ARY7 (Naganishia liquefaciens)
solubilized K in the medium (Supplementary Table 4).

Siderophore Production
Of the 39 root-associated bacterial endophytes, 36 endophytic
isolates showed production of siderophores as estimated using
solid CAS assay (Supplementary Table 3), while 33 were
confirmed as true siderophore producers through liquid CAS
assay as the remaining isolates produced <10% SU. The %SU
quantified by these isolates ranged between 15.57 and 83.38%
(Supplementary Figure 3E). Of these 33 endophytes, 17 isolates
produced SU ≥50%. Isolate ARB18 (Serratia plymuthica) was

the highest producer of siderophores with a %SU of 83.38%
(Figure 7A). Similarly, out of 21 leaf-associated bacterial
endophytes, 19 isolates showed siderophore production in the
range of 14.64–61.67% SU (Supplementary Figure 3E). Isolate
ALB18 (Bacillus subtilis subsp. subtilis) was the most significant
producer of siderophore as compared to other leaf-associated
bacterial endophytes (Figure 7B).

Similarly, of all fungal endophytes, 19 isolates produced
siderophores in liquid CAS assay that included 9 root-associated
and 10 leaf-associated fungi (Supplementary Figure 3F).
Aspergillus sydowii ARF5 and Penicillium halotolerans ALF10
were the maximum producers of siderophore, i.e., 96.41 and
95.39% SU. Nine out of 19 fungal isolates produced > 50%
SU (Figure 7C).

DISCUSSION

Microbial symbionts of plants growing in cold and extreme
environments, including one in the present study, are interesting
candidates with a promising role in cold stress alleviation in
plants (Zhang et al., 2013; Acuña-Rodríguez et al., 2020). The
diversity of endophytes in plants growing in these specific
environments and their contributions to plant adaptability
are not much explored (Cui et al., 2015). Therefore, the
present study was aimed to investigate the diverse cultivable
endophytic microbiota associated with A. euchroma and study
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FIGURE 5 | Phosphate solubilization by bacterial and fungal endophytes isolated from leaf and root tissues of A. euchroma. Soluble P (µg/ml) in the culture
supernatants was quantified, and pH of supernatants was measured. Phosphate solubilization by root (A) and leaf (B) associated bacterial endophytes and
corresponding pH of the supernatants. (C) Correlation between pH and P solubilized by bacterial endophytes. (D) Phosphate solubilization of fungal endophytes and
corresponding pH of the supernatants. (E) Correlation between pH and P solubilized by fungal endophytes. Bars with different alphabets indicate a significant
difference (p < 0.05) as calculated using Duncan’s multiple-range test. Error bars represent standard deviation (n = 3).

their functional aspects in plant growth promotion. The ultimate
goal of this work is to identify possible mechanisms contributing
to the amelioration of cold stress tolerance in plants.

Microbial Communities in A. euchroma
The occurrence of 83.34% Proteobacteria mostly represented
by Gammaproteobacteria (76.67%) was observed in this study.
Pseudomonas was the most commonly isolated bacterial
genera from both root and leaf tissues of A. euchroma
(Supplementary Figure 1). It has been observed that plants
majorly recruit Proteobacteria especially Gammaproteobacteria
in their plant tissues (Bafana, 2013; Xu et al., 2019). For
example, Khan Chowdhury et al. (2017) reported the
abundance of Proteobacteria accounting for ∼63% of total
OTUs with Pseudomonas as the most abundant genera in
mountain-cultivated ginseng (Panax ginseng Meyer) using the
culture-dependent approach. Similarly, Webster et al. (2020)

also concluded the abundance of endophytic bacterial genera
belonging to Gammaproteobacteria in medicinal plants of
Western Ghats, India. Similar observations on bacterial diversity
of endophytes have also been reported through metagenomics
study (Zhang et al., 2019). Next to Pseudomonas, Serratia
was another commonly isolated endophyte in this study.
Serratia as the endophytic successor in various medicinal plants
and crops is reported in various studies (Asaf et al., 2017;
Eckelmann et al., 2018).

The occurrence of 21 fungal taxa in A. euchroma tissues
indicates high diversity of cultivable fungi, which was dominated
by phylum Ascomycota (72.73%). These isolated fungi under
the Ascomycota phylum mostly represented class Eurotiales
and genera Penicillium, Aspergillus, and Talaromyces. High
occurrence of Ascomycetes fungal endophytes is reported earlier
in different medicinal plants. For example, Tan et al. (2018)
reported 93% occurrence of Ascomycota in Dysosma versipellis.

Frontiers in Microbiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 696667

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-696667 July 12, 2021 Time: 17:24 # 10

Jain et al. Beneficial Endophytes of Arnebia euchroma

FIGURE 6 | Indole acetic acid (IAA) production by microbial endophytes of A. euchroma quantified using Salkowski reagent. IAA production by root (A) and leaf (B)
associated bacterial endophytes. (C) IAA production by root (gray) and leaf (white) associated fungal endophytes. Bars with different alphabets indicate a significant
difference (p < 0.05) as calculated using Duncan’s multiple-range test. Error bars represent standard deviation (n = 3).

FIGURE 7 | Siderophore production by microbial endophytes of A. euchroma estimated using liquid CAS assay. Siderophore production by root (A) and leaf (B)
associated bacterial endophytes. (C) Siderophore production by root (gray bars) and leaf (white bars) associated fungal endophytes. Different alphabets indicate a
significant difference (p ≤ 0.05) as calculated using Duncan’s multiple-range test. Error bars represent standard deviation (n = 3).
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An et al. (2020) reported endophytic fungal diversity of
Chloranthus japonicus, where 97.89% of endophytes belonged
to the Ascomycota phylum. In contrast to the dominance of
Colletotrichum spp. in these medicinal plants (Tan et al., 2018; An
et al., 2020), Penicillium followed by Aspergillus were the most
dominating fungal taxa in the current study. In another study on
fungal endophytes isolated from Rhodiola spp. (Cui et al., 2015),
phylum Ascomycota represented 88.89% of all fungal endophytes
followed by Basidiomycota (2.78%).

An interesting observation in this study was the colonization
of plant tissues with yeast microbial communities that belonged
to both Ascomycota and Basidiomycota phylum (Supplementary
Table 2). Limited studies have reported cultivable yeast
endophytes in plants, which suggested their role in biocontrol
of pathogens and promotion of plant growth (Luna, 2017).
A basidiomycetes-pigmented yeast Rhodotorula mucilaginosa
and Ascomycetes yeasts Debaryomyces hansenii and Candida
spp. were reported as endophytes from different plant parts of
Brazilian apple (Malus domestica) (Camatti-Sartori et al., 2005).
Close relatives of Vishniacozyma carnescens, i.e., V. alagoana and
V. victoriae, were recently reported as endophytes of bromeliads
(Félix et al., 2020) and maple tree (Wemheuer et al., 2019),
respectively. In addition, some of the yeasts isolated in this
study (Tausonia pullulans and Naganishia liquefaciens) were not
reported earlier as endophytic colonizers in plants; however, their
existence in soils and extreme habitats has been reported (Han
et al., 2020; Li A. H. et al., 2020).

Diversity Assessment of Endophytes
The overall cultivable endophytes in A. euchroma were
represented by 30 taxa with a Simpson’s and Shannon’s diversity
index (1–D) of 0.84 and 2.60, respectively. The predicted
species richness (Schao1) of the whole plant was estimated at
47 while it was 57 and 20.25 individually for leaf and root
tissues, respectively (Table 1). The diversity data suggested a
highly diverse microbial community inhabiting A. euchroma
plant with higher species richness in leaves as compared to
roots. This was true for both bacterial and fungal endophytic
microbiota (Table 1). These results corroborate with the study
of Purushotham et al. (2020) where the richness of endophytic
Alpha, Beta, and Gammaproteobacteria was higher in leaves
in comparison to stem and roots of primitive New Zealand
medicinal plant Pseudowintera colorata. Fernandes et al. (2015)
and Sharma et al. (2018) also observed higher diversity and
greater species richness for fungal endophytes in leaf as compared
to other plant tissues in Glycine max and Berberis aristata
DC. Plant leaves under stressed environments can exhibit low
foliar nutrients or high levels of toxic compounds. Both of
these responses can account for endophyte microbial richness
by limiting the growth of otherwise dominating microbial
species, and hence increase in the diversity might be observed
(Oono et al., 2020). In contrast, a high microbial abundance
in roots could be attributed to the antimicrobial activity in
the roots of Arnebia (Gupta et al., 2013), which might inhibit
colonization by sensitive microbial communities, therefore
reducing the overall diversity. Nonetheless, our data provided
evidence of microbial richness based on the cultivability of

these microorganisms. Further diversity analyses by enhancing
the sample size and following culture-independent approach
would throw more light on microbial community composition
in different plant compartments.

Functional Characterization of
Endophytes
Plant growth promotion by microbial endophytes inhabiting
different plant tissues facilitates nutrient exchange (Hassan,
2017). In the present study, bacterial as well as fungal isolates
showed different PGP activities, namely, ACCD, IAA, and
siderophore production and solubilization of TCP and K. Of all
the microbial endophytes, six bacteria (Pseudomonas grimontii
ARB5, Serratia plymuthica ARB15, P. frederiksbergensis ARB19,
P. frederiksbergensis ARB20, P. grimontii ARB36, and P. grimontii
ARB38) (Figure 8A) and one fungal isolate (Penicillium sp.
ARF9) (Figure 8B) possessed all the five PGP characteristics.

Microbial solubilization of inorganic phosphate is an
important character mediating P uptake to the plants. In
this study, P-solubilization by endophytic bacteria and fungi
was considerably higher which ranged from 49.57 to 718.55
µg/ml and from 6.96 to 304.06 µg/ml, respectively. Further,
a negative correlation between pH and soluble phosphorus
(Figures 5C,E) clearly suggested the release of various organic
acids produced in the course of P-solubilization by microbes
(Adhikari et al., 2021). The abilities of microbial endophytes
particularly those associated with root tissues of A. euchroma,
which are anyway believed to be a specialized pool of rhizosphere
microbes (Afzal et al., 2019), to solubilize higher P might
be attributed to the low P availability in nutrient-depleted
cold desert soils. Due to the alkaline pH and high calcium
content of soils in cold deserts (Acharya et al., 2012), most
of the soil P forms insoluble calcium phosphates, which
are unavailable to plants. Evidence of the occurrence of
P-solubilizing abilities in endophytes including bacteria and
fungi is well documented (Ye et al., 2019; Varga et al., 2020).
For instance, various PGP endophytic Pseudomonas spp. can
solubilize moderate to high P (∼400–1,300 mg/L) (Oteino et al.,
2015). In addition to P, microbial endophytes of A. euchroma
also showed K-solubilization abilities; however, occurrence
of these microbes was lower as compared to P solubilizers.
A reduction in the pH of the surrounding environment through
organic acid secretion by these microbes might account for
the release of K ion from its mineral salts (Kour et al., 2020).
The K-solubilizing efficiency of endophytic bacteria and fungi
from a medicinal plant Glycyrrhiza uralensis was also reported
(Li et al., 2018).

Hormones play a vital role in establishing a link between
environment and plant response or phenotype (Dubois et al.,
2018). Therefore, contribution of microbial endophytes in plant
hormone signaling can mediate several benefits to the host
plants, especially under environmental stress. A total of 20
endophytes that included 13 bacteria and 7 fungi displayed
ACCD production in the present study (Figure 4). Endophytic
bacteria belonging to Pseudomonas were the major producer
of ACCD. Surprisingly, this enzyme has no known function in
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FIGURE 8 | Venn diagram illustrating the number of microbial communities associated with A. euchroma possessing unique and overlapping PGP traits.
(A) Bacterial endophytes with common and unique PGP traits. Among 60 bacterial endophytes, 6 bacteria displayed all PGP characters, while 15 isolates showed 3
PGP characters (P-solubilization, siderophore, and IAA production). (B) Fungal endophytes with common and unique PGP traits. Out of 33 fungal endophytes, only
one isolate shared all PGP traits, while seven isolates showed three PGP characters (P-solubilization, siderophore, and IAA production).

microbes (Glick et al., 1999) and it is solely involved in mediating
the breakdown of stress-induced ACC into ammonia and
α-ketobutyrate, therefore lowering the ethylene level in plants.
Owing to the extreme cold and arid conditions in the natural
habitat of A. euchroma, ACCD production by these endophytes
can be attributed to a mutualistic partnership between microbes
and plants to reduce cold and drought stress. The roles of
ACCD-producing microbes were investigated in improving plant
growth under abiotic stress conditions (Tavares et al., 2018; Zarei
et al., 2020). For instance, an enhanced tolerance on plantlets of
Phaseolus vulgaris to freezing conditions between−16 and−2◦C
was observed in response to inoculation by ACCD-producing
endophytes (Tiryaki et al., 2019).

Production of phytohormone IAA was another interesting
trait observed in the endophytic isolates of A. euchroma. As
expected, the ability to produce a higher amount of IAA
was more in root-associated endophytes as compared to leaf-
associated endophytes (Figure 6). IAA as a signal molecule plays
a key role in plant–microbe interactions (Hilbert et al., 2012)
and under stress conditions (Aslam et al., 2020). Therefore,
the occurrence of different IAA producers as endophytes in
A. euchroma plant tissues may account for mediating plant
signaling/interactions and stimulating the growth of plants under
cold environmental conditions. Contributions of IAA production
by different microbial endophytes have been investigated in
several plant growth promotion studies (Chen et al., 2017;
Turbat et al., 2020).

Next to phytohormones, endophytic isolates of A. euchroma
also produced variable amount of siderophore under iron-
deficient in vitro conditions (Figure 7). A possible explanation
of the prevalence of siderophore production abilities in these
endophytes is the iron-limiting conditions in the cold desert soils
(Acharya et al., 2012). Therefore, these microbial endophytes may

provide essential iron to the plant for performing various cell
functions. In addition to iron, siderophores also have variable
affinities toward other mineral elements such as Co, Mn, Mo,
and Ni (Goswami et al., 2016), which provide endophytes
with a competitive advantage over non-producers/pathogens to
colonize the same ecological niche such as plant endosphere
or rhizosphere. Moreover, siderophores can also trigger plant
immunity under different stress conditions through induced
systemic resistance in plant tissues including roots and leaves
(Aznar and Dellagi, 2015).

Besides nutrient uptake, some of the endophytes isolated in
the present study were earlier reported to confer stress tolerance
in different plants. For example, a strain of Pseudomonas
frederiksbergensis OS261 isolated from Solanum lycopersicum
protects cells against chilling as well as salt stress (Subramanian
et al., 2016; Chatterjee et al., 2017). Similarly, bacterial
inoculation with Brevibacterium frigoritolerans reduced frost
injury in Phaseolus vulgaris L. (Tiryaki et al., 2019). Therefore, the
present study provided new opportunities to explore the abilities
of these endophytes in improving abiotic stress tolerance in plants
including agriculture crops.

CONCLUSION

The present investigation is the first report on the diversity
and composition analyses of endophytic microbes including
bacteria, fungi, and yeasts associated with the root and leaf tissues
of an endangered medicinal plant Arnebia euchroma (Royle)
Johnston that experiences multiple extreme conditions in its
natural habitat. This study concludes that, despite extremities
in the habitat of A. euchroma, this plant species harbors a rich
reservoir of microbial communities symbiotically residing inside
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different plant tissues. Leaf tissue of A. euchroma supported
a more diverse array of cultivable endophytes as compared
to root tissues. Overall, Pseudomonas and Penicillium were
the most commonly observed bacterial and fungal genera,
respectively. Various endophytic yeasts of Ascomycota and
Basidiomycota phylum were also observed in leaf and root
tissues. These endophytic microbes represent only a fraction
of the microbial communities that could be cultivated while
a large part (uncultivable endophytes) still remain unexplored
due to their inability to culture and require new advancements.
All the endophytes variably possessed one or more important
PGP traits, viz., ACCD, IAA, and siderophore production and
P and K solubilization. The presence of at least one plant-
beneficial activity in all the isolated endophytes undoubtedly
indicated the existence of a mutualistic relationship between
A. euchroma plant and associated endophytes, supporting each
other under extreme cold and arid environmental conditions.
The present study opened new avenues for exploration of
A. euchroma-associated endophytes for the amelioration of stress
tolerance of the host plant. A more in-depth study is required to
understand the host plant–endophyte–environment interactions
and to develop specific microbial strategies for providing stress
tolerance in plants.
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Supplementary Table 3 | PGP traits of bacterial endophytes screened using
plate-based assays.

Supplementary Table 4 | PGP traits of fungal endophytes screened using
plate-based assays.
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