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Identification of potential
biomarkers and pathways
associated with carotid
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type 2 diabetes mellitus:
A transcriptomics study
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Qiujuan Zhang1, Xuejiao Zhang2 and Rui Liu1,4*

1Department of Very Important People (VIP) Unit, China-Japan Union Hospital of Jilin University,
Changchun, China, 2Department of Endocrinology, China-Japan Union Hospital of Jilin University,
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China, 4School of Stomatology, Changsha Medical University, Changsha, China
Type 2 diabetesmellitus (T2DM) affects the formation of carotid atherosclerotic

plaques (CAPs) and patients are prone to plaque instability. It is crucial to clarify

transcriptomics profiles and identify biomarkers related to the progression of

T2DM complicated by CAPs. Ten human CAP samples were obtained, and

whole transcriptome sequencing (RNA-seq) was performed. Samples were

divided into two groups: diabetes mellitus (DM) versus non-DM groups and

unstable versus stable groups. The Limma package in R was used to identify

lncRNAs, circRNAs, and mRNAs. Gene Ontology (GO) annotation and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses, protein-

protein interaction (PPI) network creation, and module generation were

performed for differentially expressed mRNAs. Cytoscape was used to create

a transcription factor (TF)-mRNA regulatory network, lncRNA/circRNA-mRNA

co-expression network, and a competitive endogenous RNA (ceRNA) network.

The GSE118481 dataset and RT-qPCR were used to verify potential mRNAs.The

regulatory network was constructed based on the verified core genes and the

relationships were extracted from the above network. In total, 180 differentially

expressed lncRNAs, 343 circRNAs, and 1092 mRNAs were identified in the DM

versus non-DM group; 240 differentially expressed lncRNAs, 390 circRNAs, and

677 mRNAs were identified in the unstable versus stable group. Five circRNAs,

14 lncRNAs, and 171 mRNAs that were common among all four groups

changed in the same direction. GO/KEGG functional enrichment analysis

showed that 171 mRNAs were mainly related to biological processes, such as

immune responses, inflammatory responses, and cell adhesion. Five circRNAs,

14 lncRNAs, 46 miRNAs, and 54 mRNAs in the ceRNA network formed a

regu la tory re la t ionsh ip . C22or f34—hsa-miR-6785-5p—RAB37 ,

hsacirc_013887—hsa-miR-6785-5p/hsa-miR-4763-5p/hsa-miR-30b-3p—

RAB37, MIR4435-1HG—hsa-miR-30b-3p—RAB37, and GAS5—hsa-miR-30b-
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3p—RAB37 may be potential RNA regulatory pathways. Seven upregulated

mRNAs were verified using the GSE118481 dataset and RT-qPCR. The

regulatory network included seven mRNAs, five circRNAs, six lncRNAs, and

14 TFs. We propose five circRNAs (hsacirc_028744, hsacirc_037219,

hsacirc_006308, hsacirc_013887, and hsacirc_045622), six lncRNAs

(EPB41L4A-AS1, LINC00969, GAS5, MIR4435-1HG, MIR503HG, and SNHG16),

and seven mRNAs (RAB37, CCR7, CD3D, TRAT1, VWF, ICAM2, and TMEM244)

as potential biomarkers related to the progression of T2DM complicated with

CAP. The constructed ceRNA network has important implications for potential

RNA regulatory pathways.
KEYWORDS

type 2 diabetes mellitus, carotid atherosclerosis, transcriptome, biomarker, pathways,
stable plaque, unstable plaque
Introduction

Type 2 diabetes mellitus (T2DM) is a group of metabolic

diseases that are mainly caused by chronic hyperglycemia due to

multiple causes. Long-term progression can lead to

atherosclerotic cardiovascular disease (ASCVD), which is the

main cause of death in T2DM patients (1). When atherosclerosis

(AS) occurs, a series of pathological changes, including fibro-

lipopathy and foam cell necrosis, occur on the arterial wall and

lead to plaque formation (2, 3). Cervical plaque formation is one

of the main causes of stroke (4). The American Heart

Association classifies carotid atherosclerotic plaques (CAPs)

histologically into stable and unstable plaques (5). The

formation and progression of unstable CAPs lead to more

dangerous ischemic stroke events (6).

Patients with T2DM are more likely to form unstable

plaques, and the probability of stroke is twice that of those

without T2DM (7). Thus, increased vulnerability to CAP

development in T2DM patients may be due to aggravated

inflammation (8, 9), increased neovascularization (8),

promotion of liponuclear expansion (10, 11), growing

numbers of plaques (12), and other mechanisms. Clinically,

it is of great significance to identify the stability of CAPs in

T2DM patients as early as possible and to actively prevent the

formation of unstable plaques. Unfortunately, plaque stability

cannot be determined histologically despite the increasing

number of methods to detect the development of CAPs in

T2DM patients. Earlier bioinformatics studies have reported

that T2DM alters CAP gene expression (13), but this has not

been further confirmed with transcriptomics. Consequently,

key biomarkers for T2DM complicated by CAP progression

are currently unavailable.
02
In our study, after a carotid endarterectomy, CAPs were

sampled for histological classification and high-throughput

sequencing. Using bioinformatics analysis, we determined the

corresponding biomarkers at the transcriptome level that

indicate the stability of CAPs in T2DM patients. Additionally,

the pathogenesis of the disease was explored and treatment

targets are discussed.
Materials and methods

Data source

Samples were collected from 10 patients with CAPs at the

First Hospital of Jilin University (Changchun, Jilin, from July

2019 to November 2019). The procedure was approved by the

Ethics Committee of the First Hospital of Jilin University (No.

2019-272), and written informed consent was obtained from

each participant. The processes of tissue classification, storage,

transportation, RNA extraction, library preparation, RNA

sequencing, and identification of mRNA, lncRNA, and

circRNA spectra are consistent with our previously published

research (14). Similarly, the transcriptome data PRJNA752896

from this study can be found in the NCBI database (https://

submit.ncbi.nlm.nih.gov/subs/bioproject/).

We used “atherosclerotic plaque” and “type 2 diabetes” as

keywords to search for relevant information in GEO (http://www.

ncbi.nlm.nih.gov/geo) (15). The GSE118481 dataset satisfied our

research conditions. This dataset included 16 samples of non-

T2DM with CAPs (six asymptomatic and 10 symptomatic) and

eight samples of T2DM with CAPs (six asymptomatic and two

symptomatic). See Supplementary Figure 1 for a flowchart.
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Distribution and comparative analysis of
expression abundance among samples

A variety of methods were used to evaluate the correlations

among 10 samples, using the cor function in R version 3.6.1

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.

html) to calculate the Pearson’s correlation coefficient (PCC)

between every two samples. The closer the correlation coefficient

is to 1, the higher the similarity of expression patterns between

samples (16), using version 1.7.8 of the psych package (https://cran.

r-project.org/web/packages/psych/index.html) in R to perform

principal component analysis (PCA) based on expression

abundance on all samples to view the distribution among samples.
Screening of significantly differentially
expressed RNAs and enrichment analysis
of mRNAs

The Limma package (version 3.32.5) (17) (http://bioconductor.

org/packages/release/bioc/html/limma.html) in R was used to

screen RNAs (including lncRNA, circRNA, and mRNA) with a

significant difference between the two comparison groups. FDR

less than 0.05 and |log2FC|>0.5 were selected as the threshold

criteria for screening significant differences. For the significantly

differentially expressed RNAs screened from the two groups, the

heatmap package (version1.0.8) (18) (https://cran.rproject.org/

web/packages/pheatmap/index.html) in R was used to create a

two-way hierarchical clustering heatmap.

Subsequently, the sets of significantly differentially expressed

lncRNAs, circRNAs, and mRNAs screened from the two

comparison groups of DM versus non-DM and unstable

versus stable were compared, and the common RNAs of the

two comparison groups were obtained. Next, the directions of

the significant differences were investigated, and those that

differed in the same direction among the common RNAs were

retained as the target objects of future research. The mRNAs in

the retained RNAs were enriched and analyzed based on Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) (19) using the DAVID (version 6.8) (20, 21) online

analysis tool (https://david.ncifcrf.gov/), and a p-value less than

0.05 was selected as the screening significance threshold for

correlations. The GO terms include biological process (BP),

cellular component (CC), and molecular function (MF) (22).
Construction of protein-protein
interaction (PPI) network

The STRING database (version11.0) (23) (http://string-db.

org/) was used to search the interactive relationships between the

proteins at the intersection of significantly differently expressed

gene products retained in the two comparison groups. The
Frontiers in Endocrinology 03
interaction network was constructed, and then a visual

representation was generated using Cytoscape (version 3.9.0)

(24)(http://www.cytoscape.org/). The centrality of the gene

nodes in the network was calculated using the plug-in

CentiScaPe (version 2.2) (25) (http://apps.cytoscape.org/apps/

centiscape) of Cytoscape. The three most common methods for

measuring node centrality are degree centrality (DC), closeness

centrality (CC), and betweenness centrality (BC). Next, the

important gene nodes were screened by the centrality

parameter, and the closely connected genes in the network

were obtained. Then, the module identification plug-in

MCODE (version1.4.2) in Cytoscape was used to partition and

identify the network modules (parameters: degree cutoff=2, node

score cutoff=0.2, k-core=2). Another plug-in, BINGO (version

2.44; http://apps.cytoscape.org/apps/bingo; FDR<0.05) (26), was

used to divide and annotate the functional modules.
Construction of transcription factors
(TFs)-differentially expressed gene
regulatory network

The Translational Regulatory Relationships Unraveled by

Sentence-based Text Mining (TRRUST) database (27) (https://

www.grnpedia.org/trrust/) establishes the transcriptional

regulation relationship of TFs based on literature mining. We

uploaded the genes with significant differential expression at the

intersection screened by the two comparison groups to the

database and selected TFs with regulatory connection

relationships with the genes with significant differential

expression at the intersection. Next, according to the relationship

between TFs and regulatory genes, a regulatory network was

constructed and visually displayed using Cytoscape (24).
Construction of co-expression network
of circRNA-mRNA and lncRNA-mRNA

For the significantly differentially expressed lncRNAs,

circRNAs, and mRNAs screened from the two comparison

groups, the PCC (28) between the expression levels of

circRNA-mRNA and lncRNA-mRNA was calculated using the

cor.test function in R. Connection pairs with a p-value less than

0.05 were screened, and co-expression networks of circRNA-

mRNA and lncRNA-mRNA were constructed. The networks

were visualized using Cytoscape (24).
Construction of competitive endogenous
RNA(ceRNA) network

To construct lncRNA/circRNA-miRNA relationships, the

sequences of all human miRNAs were downloaded from
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miRBase (https://www.mirbase.org/), and then the sequences of

significantly differentially expressed lncRNAs and circRNAs

were extracted and retained by the two comparison groups

from the RNA-seq data. Subsequently, the miRanda

localization tool (29) (http://cbio.mskcc.org/miRNA2003/

miranda.html) was used to predict the binding relationships of

lncRNA-miRNA and circRNAs-miRNA (miRanda alignment

parameter settings: gap extend=0, score threshold =100, energy

threshold =-20, % matched seq threshold =80%).

For the construction of miRNA-mRNA relationships, the

miRNAs linked to lncRNAs and circRNAs in the previous step

were searched and the target genes they regulated were identified

using the miRwalk3.0 database (30)(http://mirwalk.umm.uni-

heidelberg.de/). Further, the significantly differentially expressed

mRNAs screened from the two comparison groups were

mapped to the target genes to identify the significantly

differentially expressed mRNAs that were regulated.

To construct a ceRNA network, the lncRNA/circRNA-

miRNA-mRNA regulatory network was formed after

integration based on the relationships between lncRNA/

circRNA-miRNA and miRNA-mRNA. The generated network

was visualized using Cytoscape (24).
Public database validation analysis

The gene expression profile data in the GSE118481 dateset

were downloaded from the GEO database, which included 24

CAP tissue samples. Further, all samples were divided into two

comparison groups according to source information: DM versus

non-DM and stable versus unstable. The same Limma algorithm

and screening threshold (FDR is less than 0.05, |log2FC|>0.5)

were used, and mRNAs with significant differential expression in

the two comparison groups were screened. Next, we compared

the mRNAs screened from the two comparison groups in the

RNA-seq data, selected the overlapping sections, and visualized

the mRNA expression levels of the overlapping sections in the

RNA-seq data and GEO data.
Reverse-Transcription quantitative
polymerase chain reaction (RT-qPCR)
validation

We used seven unstable CAPs with DM and seven stable

CAPs without DM for liquid nitrogen grinding and Trizol

reagent (Invitrogen, Carlsbad, California, USA) extraction to

obtain total RNA. After concentration and quality evaluation by

microplate reader, total RNA was reverse transcribed to cDNA

using the RevertAid First Strand cDNA Synthesis Kit (Thermo

Scientific, Waltham, Massachusetts, USA). Then, the cDNA

samples were mixed with FastStart Universal SYBR Green

Master (Rox) (Roche, Mannheim, Germany) and injected into
Frontiers in Endocrinology 04
an Eppendorf AG 22331 Hamburg PCR Thermal Cycler. b-
Actin was used as the internal control. Primer sequences are

listed in Supplementary Table 1. All samples were run in

triplicate, and the results were analyzed using the 2

(−DDCt) method.
Construction of regulatory network
where important factors are located

The overlapping mRNAs obtained in the previous step, were

combined with the PPI network, TF-mRNA regulatory network,

lncRNA/circRNA-mRNA co-expression network, and the

ceRNA regulatory network previously constructed. Then, the

overlapping mRNAs were extracted to jointly build a

comprehensive network.
Statistical analyses

GraphPad Prism was used to draw graphics and perform

statistical analysis of RT-qPCR data using the Wilcoxon rank

sum test. Other statistical analyses were performed using R

software. T-tests were used to compare differences in

expression between the groups. The expression level of

mRNAs is presented as the mean ± SD. p < 0.05 was

considered statistically significant.
Results

Distribution and comparative analysis of
expression abundance

The PCCs between samples with different RNAs expression

levels were distributed above 0.6. PCA analysis was performed

based on expression abundance. The results showed that the

correlation between gene expression levels was very high, the

sample distribution was relatively clustered, and there was no

discrete type (Figure 1).
Identification of differentially expressed
RNAs

Statistics on the number and types of significantly

differentially expressed RNAs were screened according to the

two comparison groups and the common RNAs following

comparison are shown in Supplementary Table 2. Among

them, 180 lncRNAs, 343 circRNAs, and 677 mRNAs were

differentially expressed between the DM versus non-DM

groups, and 240 lncRNAs, 390 circRNAs, and 677 mRNAs

were differentially expressed between the unstable versus stable
frontiersin.org
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groups. After investigating the direction of the significant

differences of overlapping RNAs in the two comparison groups,

five circRNAs (three downregulated and two upregulated), 14

lncRNAs (five downregulated and nine upregulated), and 171

mRNAs (80 downregulated and 91 upregulated) had the same

significant difference directions in the two comparison groups.

Figure 2A shows volcano plots depicting the significantly

differentially expressed RNAs and whether they were up- or

downregulated. Heatmaps of the expression level of each of the

top 10 RNAs that were up- and downregulated among the
Frontiers in Endocrinology 05
significantly differentially expressed RNAs are shown

in Figure 2B.
Function and pathway enrichment
analysis of differentially expressed
mRNAs

We screened 22 BPs, nine CCs, seven MFs, and 14 KEGG

signaling pathways (Supplementary Table 3); the columnar
A

B

C

FIGURE 1

circRNA (A), lncRNA (B), and mRNA (C). Left: PCA map of samples based on expression abundance. X, Y, and Z axes represent PC1, 2, and 3
respectively. Dots of different colors represent samples of different groups (S represents the stable group and U represents the unstable group);
Right: heatmap of correlation between two samples based on expression abundance. The change of color from cold color to hot color
indicates the relationship of the correlation coefficient between samples from small to large, the horizontal and vertical axes represent the
name of samples, and the numbers in each grid represent the value of correlation coefficient.
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figure is shown in Figure 3. The results showed that BPs and

KEGG pathways of 171 mRNAs were significantly enriched in

positive regulation of T cell receptor signaling pathway,

regulation of immune response, lymphocyte chemotaxis, T cell

differentiation, T cell costimulation, inflammatory response, cell

adhesion molecules (CAMs), chemokine signaling pathway,

focal adhesion, adherens junction, and NF-kappa B signaling

pathways, which are involved in immune responses, cell

adhesion, and inflammatory reactions. Additionally, the type I

interferon signaling pathway and epithelial to mesenchymal

transition are considered to be related to the progression of AS
Frontiers in Endocrinology 06
(31, 32), and regulation of phosphatidylinositol 3-kinase

signaling is considered to be related to insulin resistance and

AS (33). MFs were significantly enriched in phosphotyrosine

binding, actin filament binding, CCR chemokine receptor

binding, iodide transmembrane transporter activity,

extracellular matrix structural constituent, 2’-5’-oligoadenylate

synthetase activity, and structural constituent of muscle. CCs

were significantly enriched in the integral component of plasma

membrane, Ndc80 complex, extracellular matrix, extracellular

region, sarcolemma, integral component of membrane, adherens

junction, and immunological synapse.
A

B

FIGURE 2

(A) The DM versus non-DM and unstable versus stable comparison groups volcano plot. The blue and red dots respectively indicated
significantly downregulated and upregulated RNAs, the horizontal dotted line indicated FDR<0.05, and the two red vertical dotted lines indicated
|log2FC|>0.5. The top 10 RNAs are marked. (B) Heat map of the expression levels of the top 10 RNAs in DM versus non-DM and unstable versus
stable groups.
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Construction of a PPI network of
differentially expressed mRNAs,
regulatory relationship with TFs,
co-expression network with differentially
expressed circRNAs, and differentially
expressed lncRNAs

A total of 697 pairs of interaction links were obtained using

the STRING database to construct an interaction network. As

shown in Figure 4A, the network contained 154 gene nodes. The

important connecting genes in the network were screened and

sorted from high to low according to the degree of nodes; the top

20 are displayed in Supplementary Table 4. The top 20 genes

were LONRF2, CTNNA3, VWF, LCK, CCR7, LEF1, CD3D,

GIMAP8, OASL, RIMS4, GIMAP5, HLA-B, LINGO1, ZAP70,

CD40LG, CD5, TRAT1, ACTN2, HAPLN2, and DUSP26.

The PPI network was divided into four modules (Figure 4B).

After GO annotation, we obtained BP, MF, and CC which

were significantly related to each module. Among the BPs,

modules 1, 2, 3, and 4 were significantly related to lymphocyte

activation, extracellular structure organization, RNA catabolic

process, and nuclear division, respectively. Among the MFs, they

were each involved in one of the armadillo repeat domain

binding, neurotransmitter receptor activity, transcription

cofactor activity, and protein domain-specific binding

processes. Among the CCs, they were involved in the cell

surface, extracellular matrix, and nucleus. All the significantly

relevant GO annotations for each module are listed in

Supplementary Table 5.

A total of 88 TF-mRNA regulatory junction pairs were

screened. Based on the relationships between TFs and

regulatory genes, a regulatory network was constructed

(Figure 4C). We also compared all TFs in the TRRUST
Frontiers in Endocrinology 07
database with 171 target mRNAs and obtained four

intersections (Dlx4, Gli1, LEF1, and hoxd1).

A total of 516 and 450 connecting pairs were screened from

circRNA-mRNAs and lncRNA-mRNAs, respectively, to

construct the co-expression network of circRNA-mRNAs and

lncRNAs-mRNAs (Figures 4D, E).
Construction of ceRNA network

A total of 260 circRNAs-miRNA, 612 lncRNA-miRNA, and

131 miRNA-mRNA linkage pairs were obtained. Based on these

regulatory relationships, a ceRNA regulatory network

integrating the circRNA/lncRNA-miRNA regulatory axis was

constructed (Figure 5). The network included five circRNAs, 13

lncRNAs, 46 miRNAs, and 54 mRNAs.
GSE118481 dataset and RT-qPCR
validation analysis

A total of 690 and 1118 significantly differentially expressed

genes meeting the threshold requirements were screened in the

DM versus non-DM and symptomatic versus asymptomatic

groups, respectively. A total of 136 overlapping regions were

screened in both groups (Figure 6A). Then, the direction of

significant differences in overlapping genes in the two

comparison groups was investigated. A total of 94 significantly

differentially expressed genes with the same direction of

difference were obtained.

After comparing these 94 genes with 171 mRNAs screened

from the two comparison groups of RNA-seq data (Figure 6B), a

total of 16 overlapping genes were obtained, of which seven
FIGURE 3

BP, CC, MF, and KEGG histograms related to 171 mRNAs with significant differential expression. The horizontal axis represents the number of genes,
the vertical axis represents the significantly related items, and the color represents the correlation. The closer to red, the higher the significance.
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genes were in the same direction of difference in the RNA-seq

data and GSE118481 data (CCR7, CD3D, ICAM2, TMEM244,

TRAT1, VWF, and RAB37). Column charts of the expression

levels of the seven genes in different data are shown in

Figures 6C, D.

RT-qPCR verified that CCR7 (p < 0.05), CD3D (p < 0.05),

ICAM2 (p < 0.05), TMEM244 (p < 0.01), TRAT1 (p < 0.01),

VWF (p < 0.05), and RAB37 (p < 0.05) were upregulated in the

DM with unstable CAP group compared with the non-DM with

stable CAP group (Figure 7).
Frontiers in Endocrinology 08
Construction of a regulatory network
where the seven mRNAs are located

Crucial factors related to seven mRNAs were extracted from

the PPI network, TF-mRNA regulatory network, lncRNA/

circRNAs-mRNA co-expression network, and the ceRNA

regulatory network previously constructed. Supplementary

Table 6 shows the connection relationships used to build a

comprehensive network where the overlapping important

mRNAs are located (Figure 8). The important factors included
A B

D E

C

FIGURE 4

(A) PPI network of significantly differentially expressed genes. The red and blue nodes represent the genes that are significantly upregulated and
downregulated, respectively, in the two comparison groups. (B) Interaction network module diagram. The red and blue nodes represent the
genes that are significantly upregulated and downregulated, respectively, in the two comparison groups. (C) TF-differential gene regulatory
network. The yellow square and circle represent TFs and significantly differentially expressed genes, respectively, and the red and blue nodes
represent the genes that are significantly upregulated and downregulated, respectively, in the two comparison groups. (D) circRNAs-miRNA co-
expression network, red and blue represent the RNAs that are significantly upregulated and downregulated, respectively, in the two comparison
groups, and round and diamond represent mRNAs and circRNAs, respectively; The blue and gray lines indicate significant negative and positive
correlations, respectively. (E) lncRNA-miRNA co-expression network, red and blue represent the RNAs that are significantly upregulated and
downregulated, respectively, in the two comparison groups, and round and square respectively represent mRNAs and lncRNAs; The blue and
gray lines indicate significant negative and positive correlations, respectively.
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in the network were as follows: five circRNAs (hsacirc_028744,

hsacirc_037219, hsacirc_006308, hsacirc_013887, and

hsacirc_045622), six lncRNAs (EPB41L4A-AS1, LINC00969,

GAS5, MIR4435-1HG, MIR503HG, and SNHG16), and seven

mRNAs (RAB37, CCR7, CD3D, TRAT1, VWF, ICAM2, and

TMEM244). Among them, TFs including ERG, ETS1, ETS2,

GATA6, NFIC, NFIL3, NFKB1, POU2F1, POU2F1, RELA, and

YY1 are involved in the regulation of the gene VWF; TFs

including EPAS1, HIF1A, KLF2, NFKB1, RELA, and TRERF1

are involved in the regulation of the gene CCR7; and the TF of

ERG is involved in the regulation of the gene ICAM2. In

addition, C22orf34 can act as a ceRNA to compete with

RAB37 through hsa-miR-6785-5p, hsacirc_013887 can

compete with RAB37 through hsa-miR-6785-5p, hsa-miR-

4763-5p, hsa-miR-30b-3p, MIR4435-1HG can compete with

RAB37 through hsa-miR-30b-3p, and GAS5 can compete with

RAB37 through hsa-miR-30b-3p. These six circRNA/lncRNA-

miRNA-mRNAs may be key regulatory axes in the

ceRNA network.
Discussion

Patients with T2DM are more likely to face CAP-related

complications than those without T2DM (7). These T2DM

patients are also more likely to develop unstable AS plaques,

resulting in more serious cardiovascular events (34). Therefore,

it is crucial to identify the T2DM complicated by unstable CAP

earlier in clinical practice. Further, mechanisms underlying
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disease progression need to be elucidated along with

identification of corresponding therapeutic targets.

By comparing the genes expressed in human T2DM patients

with unstable CAP samples and non-T2DM patients with stable

CAP samples, we identified a total of 171 target mRNAs with

significant differential expression, of which 91 were upregulated

and 80 were downregulated. By applying GO annotation and

KEGG pathway analyses, we noticed that most of the enriched

items were related to immune responses, cell adhesion, and

inflammatory responses, which is consistent with published

studies (3, 35–40). Further analyses indicated that AS

formation cannot be separated from the adhesion and

migration of monocytes, inflammatory cells, inflammatory

mediators, and cytokines in the arterial wall (3). The

enrichment results also showed that the plaque formation

process of T2DM with unstable CAP also involves a similar

pathogenesis. T2DM exacerbates the direct effect of

inflammation on AS (35), and the immune response also plays

an important role in the progression of AS (36, 37). Adaptive

and innate immunity play an important role in the progression

of T2DM (38, 39), and hyperglycemia promotes AS progression

by regulating the adaptive immunity of macrophages (40). The

microenvironment of AS plaques is very complex, where both

inflammatory and immune responses are involved and play an

important role (41–43). Considering that immune cell

infiltration plays a key role in CAP development (44, 45) and

that hyperglycemia alters the plaque environment, it is

surprising that the role of immune cell infiltration in the

progression of CAP under hyperglycemia remains unexplored.
FIGURE 5

ceRNA regulatory network: red and blue represent the RNAs that are significantly upregulated and downregulated, respectively, in the two
comparison groups. Round, diamond, and square respectively represent mRNAs, circRNAs, and lncRNAs, and green triangle represents the
related miRNAs. Blue, red, and gray represent lncRNA- miRNA, circRNAs-miRNA, and miRNA-mRNA connections, respectively.
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Future research should address this issue. Furthermore, research

on the CAP microenvironment and the emergence of

corresponding therapeutic targets provide a new research

direction for the therapies of T2DM complicated with CAP

(42, 43, 46, 47).

We identified seven potential mRNAs, five circRNAs, and

six lncRNAs using comprehensive bioinformatic methods.

These genes and non-coding RNAs may serve as biomarkers

for CAP progression in T2DM. Among them, CCR7, ICAM2,

VWF, and RAB37 have been reported to be associated with

T2DM or ASCVD-related diseases (48–60). Our study is the first

to demonstrate that CD3D, TRAT1, and TMEEM244 are also

associated with CAP progression in T2DM. Additionally, for

non-coding RNA, we constructed a ceRNA regulatory network

to further explore the progression mechanism of T2DM

complicated with CAP.
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The C-C motif chemokine receptor 7 (CCR7) was one of the

major differentially expressed genes obtained by comparing

T2DM patients with unstable CAP samples and non-T2DM

patients with stable CAP. CCR7 is expressed by B cells, mature

dendritic cells (DC), and several T cell subsets including

immature, regulatory, and central memory T cells (61).

Notably, CCR7 has been identified as a marker for AS

progression (51). Similarly, CCR7 has been identified as a

differentially expressed gene in non-DM and DM islet

samples, indicating that CCR7 may play an important role in

the pathogenesis of T2DM (52). Chemokines are a large family

of proteins that regulate immune cell transport. They play a key

role in guiding the movement and activity of leukocytes during

homeostasis, immune surveillance, and inflammation. CC-

chemokine ligand 19 (CCL19) and CC-chemokine ligand 21

(CCL21), are CCR7 ligands (61). Adaptive immunity is involved
A B

C

D

FIGURE 6

(A) Wayne diagram for comparison of significantly differentially expressed genes in DMs versus non-DM and symptomatic versus
asymptomatic groups in GSE118481 datasets. (B) Wayne diagram comparing overlapping genes in DM versus non-DM and stable versus
unstable groups with target mRNA in RNA-seq data results. (C) The expression levels of 7 genes were distributed in two comparison groups
in the RNA-seq data. (D) The expression levels of 7 genes were distributed in two comparison groups in the GSE118481 dataset. * indicates
p<0.05, * * indicates p<0.01, * * * indicates p<0.001.
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in the pathogenesis of AS, and the chemokines CCL19 and

CCL21 are involved in lymphocyte homing in atherosclerotic

lesions (48). A few studies have noticed elevated plasma levels of

CCL19 and CCL21 in ApoE-/- mice with AS lesions, human

CAP, and patients with coronary artery disease (49). Further,

while the levels of CCL19 and CCL21 in the plasma in

atherosclerotic lesions have been noticed, both these molecules

are reported to be upregulated in carotid AS (50). Overall, a large

number of studies have probed the role of chemokines and
Frontiers in Endocrinology 11
chemokine receptors in the development of AS (48) and by now

the importance of chemokines in AS treatment is widely

accepted (53). In view of this evidence, we believe that CCR7

is an important biomarker for the progression of T2DM

complicated by CAP and plays an important role in

identifying relevant targets for the treatment of the disease.

Intercellular adhesion molecule-2 (ICAM-2) was another

differentially expressed gene obtained by comparison between

T2DM patients with unstable CAP samples and non-T2DM
FIGURE 7

Violin diagram of RT-qPCR results for seven genes. * indicates p < 0.05, ** indicates p < 0.01.
FIGURE 8

The comprehensive network of important overlapping genes. Red and blue represent the RNAs that are significantly upregulated and
downregulated, respectively, in the two comparison groups. Circles, diamonds, and squares represent mRNAs, circRNAs, and lncRNAs,
respectively, green triangles represent related miRNAs, and yellow circles represent TFs. Grey lines indicate an interaction connection. Green,
red, and purple line respectively indicate lncRNA-miRNA, circRNA-miRNA, and miRNA- mRNA connections. Blue lines indicate TF-mRNA
connections, and yellow lines indicate circRNA/lncRNA-mRNA co-expression associations.
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patients with stable CAP. The protein encoded by this gene is a

member of the intercellular adhesion molecule (ICAM) family.

Numerous studies have shown that cell adhesion molecules

(CAM) play a crucial role in AS initiation and progression (54,

55). ICAM-1 is widely recognized as the driver of the

inflammatory response (62). One study has shown that ICAM-

1 and ICAM-2 are involved in every step of neutrophil

extravasation (56). A recent meta-analysis showed that

elevated circulating CAM levels increased the risk of T2DM in

a dose-dependent manner (57). Therefore, we suggest that

ICAM-2 likely plays an important role in the progression of

CAP-complicated T2DM.

Along with ICAM-2, the von Willebrand factor (VWF) was

listed as another differentially expressed gene. VWF encodes a

glycoprotein that is involved in hemostasis. VWF is engaged in

primary hemostasis and coagulation processes, where it acts as a

carrier for blood clotting factor VIII, prevents degradation of the

factor by protein C, and significantly increases its plasma half-

life (58). VWF plays a crucial role in platelet adhesion at sites of

vascular injury. It mediates the initial progression of thrombosis

at endothelial injury sites through specific interactions with the

subendothelial collagen and platelet receptors (63, 64). Earlier

studies have reported that VWF can be used as a procoagulant

biomarker to predict the risk of cardiovascular and renal

complications in diabetic patients (58). A meta-analysis

characterized the prognostic value of VWF for ASCVD

complications in T2DM patients by comparing plasma VWF

levels in T2DM patients with and without coronary artery

disease (59). In our study, VWF expression was significantly

upregulated in T2DM patients with unstable CAP. Therefore,

VWF has potential to be considered as an important biomarker

of CAP progression in T2DM.

RAB37, a member of the RAS oncogene family, encodes a

protein. Bioinformatics analysis has shown that RAB37 is

differentially expressed in Alzheimer’s disease (65). Further, a

proteomic study reported that the RAB37 protein is related to

insulin secretory granules, which are responsible for the storage

and secretion of insulin (60). In addition, RAB37 is expressed in

human islets and b-cell lines and is involved in the regulation of

insulin secretion (66). These studies indicate that RAB37 is

associated with T2DM, and our study concurs with this

evidence and indicates that RAB37 may play a role in T2DM

with CAP at the same time.

The protein encoded by the CD3D gene is a part of the T-

cell receptor (TCR)/CD3 complex and participates in T-cell

development and signal transduction (67). It exists on the

surface of T lymphocytes and plays an important role in the

adaptive immune response.A bioinformatis study on the

progression of rheumatoid arthritis has shown that CD3D is

a potential key mediator and diagnostic marker (68). TRAT 1

stabilizes the TCR/CD3 complex on the surface of T cells.

CD3D and TRAT1 are closely related to T cells, and studies
Frontiers in Endocrinology 12
have shown that T cells are involved in the pathogenesis of AS

and T2DM (37, 69). TMEM244 is a protein-coding gene.

Studies have shown that this gene may be used as a marker

of Sézary syndrome and other T-cell lymphomas (70).

Therefore, it is necessary to consider that the three genes

identified for the first time in our study may participate in the

progression of T2DM complicated with CAP through an

immune response.

The ceRNA hypothesis has revealed a new mechanism for

RNA interactions that suggests biological processes can be

regula ted by an intr ins ic mechanism (71) . Many

bioinformatics studies have constructed AS- or T2DM-related

ceRNA regulatory networks using the ceRNA hypothesis (72–

74). In this study, a circRNA/lncRNA-miRNA-mRNA

regulatory network with CAP progression in T2DM was

constructed for the first time, including five circRNAs,13

lncRNAs, 46 miRNAs, and 54 mRNA. Our results suggest that

multiple regulatory axes in ceRNA networks may play key roles

in the pathogenesis of the disease. We propose that C22orf34—

hsa-miR-6785-5p—RAB37, hsacirc_ 013887—hsa-miR-6785-

5p/hsa-miR-4763-5p/hsa-miR-30b-3p-RAB37, MIR4435-1HG

—hsa-miR-30b-3p—RAB37, and GAS5—hsa-miR-30b-3p—

RAB37 are potential RNA regulatory pathways that regulate

disease progression.

Previous studies have assessed the role of RNAs that are

associated with T2DM and CAP progression (75, 76).

However, only a few studies (13), including this study, have

explored the progression of T2DM with CAP using advanced

bioinformatic methods. While our results provide useful

insights into the role of certain genes and RNAs in the

progression of T2DM with CAP, our study also has a few

limitations. First, there are few public databases that met the

purpose of this study. Consequently, the sample size of RNA-

seq in our study was small, and further research should be

carried out using larger samples. Second, the diagnostic

efficacy of some central genes and non-coding RNAs

described in our study needs to be verified by clinical data.

F ina l ly , the ceRNA regula tory network based on

bioinformatics prediction must be verified using molecular

methods. In conclusion, the results of our study show that

some potentially important genes, non-coding RNAs,

pathways, and ceRNA regulatory networks are associated

with the progression of T2DM with CAP. Based on these

results, we predict that these observations will aid future

studies involved in diagnosis, pathogenesis, and potential

targeted therapy of T2DM with CAP.
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