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Abstract: We applied 13C magnetic resonance spectroscopy (MRS), a nonradioactive, nonin-

vasive brain imaging technique, to quantify the oxidation of [1-13C] acetate in a conventional 

clinical magnetic resonance imaging (MRI) scanner in five consecutive elderly subjects at various 

clinical stages of Alzheimer’s disease (AD) progression. [1-13C] acetate entered the brain and 

was metabolized to [5-13C] glutamate and glutamine, as well as [1-13C] glutamate and glutamine, 

and the final glial oxidation product, 13C bicarbonate, at a linear rate. Calculation of the initial 

slope was similar in a single subject, examined twice, 1 month apart (test-re-test 8%). Mean rate 

of cerebral bicarbonate production in this elderly group was 0.040 ± 0.01 (n = 5). Assuming that 

the rate of conversion of acetate to bicarbonate is a reflection of glial metabolic rate and that glial 

metabolic rate is a surrogate marker for ‘neuroinflammation’, our preliminary results suggest 

that [1-13C] MRS may provide biomarkers for diseases, believed to involve microglia and other 

cells of the astrocyte series. Among these is AD, for which novel drugs which ameliorate the 

damaging effects of neuroinflammation before symptoms of dementia appear, are in advanced 

development. The value of 13C MRS as an early, noninvasive biomarker may lie in the conduct 

of cost-effective clinical trials.

Keywords: Alzheimer’s disease, noninvasive biomarker, glial activation

Introduction
In Alzheimer’s disease (AD), incidence and prevalence increase with age. AD is the sixth 

leading cause of death in the US, and there are no effective therapies for the disease. 

Development of disease-modifying treatments for AD has been both expensive and 

unsuccessful to date. A shortcoming of current largely neuronal biomarkers, magnetic 

resonance imaging (MRI), amyloid imaging, and cerebrospinal fluid biomarkers, is 

the absence of an accepted biomarker for glial activation.1,2 Neuroinflammation, also 

termed glial activation, has long been implicated in the pathology of AD.3 Recent 

research has shown that there are early pathological changes in the brains of persons 

with predementia memory decline, which can even be detected in asymptomatic 

individuals who may eventually develop AD.4,5 This phenomenon occurs early in the 

course of AD possibly before the more extensive neuron damage monitored by clinical 

tests. Most AD clinical trials depend on measures of rates of change in highly variable 

and insensitive clinical and cognitive measures. Therefore, there is an urgent need for 

appropriate biomarkers that can serve as outcome endpoints to detect progression of 

disease.

Magnetic resonance spectroscopy (MRS) is a powerful method for measuring brain 

metabolism. Noninvasive proton MRS has been used to measure brain chemical contents 
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statically6–8 while minimally invasive carbon MRS has been used 

to measure brain metabolic processes in action, dynamically.9 

With appropriate infusion of brain exogenous labeled sub-

strates, neuronal and glial metabolic rates have been reported 

in numerous neurodegenerative diseases.10–14 It is accepted that 

acetate, which enters the brain tricarboxylic acid cycle via an 

astrocyte-specific enzyme, can be used as a tracer for astrocyte 

or glial oxidative metabolism.15–17 Both C1 and C2 labeled 

acetate have been used successfully to study glial metabolism in 

intact human brains.10,13,14 In aging, evidence of upregulation of 

astrocytes (glia) metabolism was demonstrated with an increase 

of 25% in older subjects compared with younger adults using 

labeled C2 acetate as exogenous substrate.18

In this preliminary communication, we employed a short 

protocol developed previously19 to directly measure glial 

dysfunction in Alzheimer’s patients using C1 acetate as an 

exogenous labeled substrate.

Methods
Patients
The studies were approved by the local internal review 

board (Huntington Memorial Hospital), and all patients 

gave written informed consent. A total of 24 MRI/MRS 

studies were performed on six subjects of whom two had 

AD, two had mild cognitive impairment (MCI) and two were 

healthy older adults with mean age of 78 ± 3 years, and two 

were females.

Neuropsychological assessments
All subjects underwent extensive neuropsychological 

evaluation using the standard test battery to evaluate AD.20 

Briefly: premorbid estimates of intellectual functioning 

were performed (Wechsler Test of Adult Reading). The 

core neuropsychological battery included the Wechsler 

Adult Intelligence Scales, third ed. (WAIS-III) and the 

Wechsler Memory Scales, third ed. (WMS-III) Domains 

of Attention/Concentration/Working Memory (WAIS-III 

Digit Span, Letter–Number Sequencing and Arithmetic), 

Psychomotor/Information processing (WAIS-III Symbol 

Search and Digit Symbol, Stroop word reading and color 

naming), Language functions (COWAT-FAS and Animals, 

WAIS-III Information), Verbal Memory (WMS-III Logical 

Memory I and II, California Verbal Learning Test-II), 

Nonverbal Memory (Brief Visual Memory Test-Revised, 

Rey Osterreich Complex Figure Test-Delay), Visuospatial/

construction (WAIS-III Block Design, Picture Completion, 

Ruff Figural Fluency, Judgment of Line Orientation, Rey 

Osterreich Complex Figure Test-Copy) Executive Functions 

Table 1 Compilations of subjects’ characteristics, proton, carbon MRS, and neuropsychological assessment results

Patient 1  
Control

Patient 2  
Control

Patient 3  
MCI

Patient 4  
MCI

Patient 5  
AD

Patient 6  
AD

Subject characteristics
Age 80 83 77 81 76 76
Gender M M M M F F
MMSE 30 28 26 27 22 22
Proton MRS results
NAA/Cr 1.45 1.37 1.47 1.37 1.62 1.39
mi/Cr 0.56 0.72 0.77 0.74 0.85 0.83
NAA/mi 2.6 1.92 1.92 1.85 1.34 1.67
Carbon MRS results
Rate of bicarbonate 
production (%FE/minute)

0.023 0.03 0.042 0.033 0.056 0.06

Neuropsychological assessment (Z scores)
Attention/concentration 
Working memory

WNL WNL –2 WNL −1.6 −1.6

Psychomotor/ 
information processing

WNL WNL WNL WNL −1.5 −1.5

Language functions WNL WNL –1.5 WNL −1.5 −1.5
Verbal memory WNL WNL –1.3 –1.3 −3 −3
Nonverbal memory WNL WNL –3 WNL –3 −3
Visuospatial/ 
construction

WNL –1.4 –1.4 –2 −2 −2

Executive functions WNL –1.4 –2.5 WN: −3 −3
Motor functions WNL WNL –1.3 WNL WNL WNL

Abbreviations: AD, Alzheimer’s disease; Cr, creatine; FE, fractional enrichment; mi, myo-inositol; MCi, mild cognitive impairment; MMSE, mini-mental state examination; 
MRS, magnetic resonance spectroscopy; NAA, N-acetyl aspartate; WNL, within normal range.
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(Delis–Kaplan Executive Functions System – Tower Test), 

and Motor Functioning (Purdue Pegboard) were assessed.

All subjects underwent mini-mental state examination 

(MMSE). Criteria for MCI cut-off from normal included 

absence of dementia (MMSE $ 23) essentially preserved 

activities of daily living, the presence of cognitive and/or 

memory complaints, and impairment .1 standard devia-

tion below age norms on one or more immediate or delayed 

memory tests or $2 nonmemory tests.21 Criteria for AD 

classification included MMSE score ,23, impairment in 

activities of daily living, and $2 standard deviations below 

age norms on a majority of memory tests.

Neuroimaging and spectroscopy
Examinations were performed on a GE 1.5 T MRI scanner 

equipped with non-proton MRS capability as previously 

prescribed.22 Localized MRI was acquired with a 30-slice 

T2-weighted fast spin echo imaging sequence with echo time 

(TE) = 96 milliseconds, repetition time (TR) = 4 seconds, slice 

thickness = 5 mm, 1 excitation, and 256 × 192 data acquisition 

matrix using a single channel quadrature head coil for both 

transmitting and receiving. These localizer images were used 

to prescribe two single voxel proton MRS acquisitions of 

posterior cingulate grey matter and white matter (PROBE-p 

TE = 35 milliseconds, TR = 1.5 seconds, 8 mL voxel, 128 

averages). For proton decoupled 13C MRS, scanning protocol 

is similar to that previously described.19,23 Briefly, prior to the 

start of the infusion protocol, a natural abundance 13C MRS was 

acquired for 30 minutes of five blocks pulse, to acquire data 

averaging a Waltz-4 bi-level proton decoupling and nuclear 

OverHouser (NOE) scheme with a power level of 5 W during 

decoupling and 0.9 W during the NOE period. Subsequently, 

intravenous administration of stable isotope enriched 1–13C 

acetate (Cambridge Isotopes Laboratories, Andover, MA; FDA 

IND 59,950) was performed with the subjects lying comfort-

ably outside the MRI scanner for 60 minutes. The patients 

were then swiftly positioned back in the MRI scanner and data 

acquisition was performed for another 60 minutes.

Data and statistical analysis
Automated spectral processing for single voxel proton 

MRS data was performed using the commercially available 

LCModel software24 using a standard 1.5T reference basis 

set for semi-quantification. The results are reported as meta-

bolic ratios.

For 13C MRS time series data were processed as previ-

ously described using an observer-independent automatic 

IDL-based software developed in house and SAGE (GE 

Healthcare, Milwaukee, WI).14 The rate of bicarbonate 

production was determined using the difference between 

the amount of measured bicarbonate level pre- and post-

infusion over the time from the start of infusion to the end 

of data acquisition.19

Simple statistical analysis was performed using linear 

regression, and the goodness of linear fit is reported as R2.

Results
Subject characteristics, MRS, and neuropsychological 

evaluation results are shown in Table 1.

Proton MRS shows increased myoinositol to creatine 

ratio and decreased N-acetyl aspartate to myoinositol ratio, 
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Figure 1 Proton MRS spectra from healthy elderly (A), an elderly subject with MCi (B) and an AD patient (C). Spectra were scaled to creatine peak intensity.
Abbreviations: AD, Alzheimer’s disease; MCi, mild cognitive impairment; mi, myo-inositol; MRS, magnetic resonance spectroscopy; NAA, N-acetyl aspartate.
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Figure 2 Typical spectra (147–167 ppm region) of 13C MRS in an AD subject at 
baseline (A) and at 1 hour after start of infusion (B).
Abbreviations: MRS, magnetic resonance spectroscopy; AD, Alzheimer’s disease; 
tCr, total creatine.
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similar to results previously reported.5 Typical proton MRS 

spectra in cognitively normal, MCI, and AD subjects are 

shown in Figure 1.

Glial metabolism of 13C acetate was demonstrated by 

increased 13C enrichment of cerebral bicarbonate (HCO
3
, 

161 ppm) compared with pre-infusion (Figure 2). The unenriched 

total creatine resonance (tCr, 158 ppm) was also observed.

Clinically defined normal, MCI, and AD patients (MMSE 

normal = 28–30, MCI = 23–27, AD < 23) was accompanied by 

reduction in NAA/mI (−36% ± 0.05; P = 0.01) as previously 

described.5

In contrast, 13C MRS showed a progressive increase in 

enrichment of the glial-oxidation product, 13C-bicarbonate 

(Figure 2). The increase in glial metabolic activity showed 

that %fractional enrichment of bicarbonate was inversely 

 correlated with clinical grade (MMSE) (R2 = 0.908) 

(Figure 3A) and MRS-glial biomarker (mI/Cr) (R2 = 0.753) 

(Figure 3B). Weak or no correlation was observed for 

neuronal biomarker (NAA/Cr) and glial metabolic activity 

(R2 = 0.11) (not shown).

Conclusions
Our preliminary results directly demonstrate progressively 

elevated glial metabolic rate in patients with MCI and AD 

in proportion to the elevation in glial marker myoinositol of 

conventional proton MRS, and inversely correlated with a 

clinical measure of cognitive decline, MMSE. Although the 

number of patients in this preliminary study is small, the data 

could contribute to the ongoing debate supporting the general 

belief that activation of glia observed in animal models, may 

occur in human MCI and AD.

Neuroscientists have made extensive use of the term 

‘neuroinflammation’ to describe a complex process that 

occurs when glia cells undergo activation in response to 

stimuli such as viral infection,25,26 undesirable substances,27,28 

injury,29 and illnesses.30 Activated microglia and glia 

cells have been reported in AD.3,31,32 It is possible that our 

observation of an increase in glial activation is synonymous 

with neuroinflammation. Additional studies are required 

to confirm that relationship. If confirmed, 13C MRS after 

infusion of 1–13C acetate as employed here would provide a 

practical approach to defining neuroinflammation in human 

brain. Extending the present observation to larger numbers 

of well-defined patients and in longitudinal studies which 

document the onset of glial hyperactivity in comparison with 

the earliest evidence of neuronal loss (proton MRS or 13C 

MRS using 1–13C glucose as exogenous substrate are valid 

techniques33) could provide direct information on whether 

neuroinflammation is the immediate cause of MCI and AD 

or merely a secondary effect of neuronal injury. A conclusion 

in favor of the former mechanism would support the renewed 

impetus for preventative therapies, which target neuroinflam-

mation in the increasing numbers of patients diagnosed with 

early AD. Human use of 13C MRS, as demonstrated here, is 

a safe, nonradioactive technique which can be performed on 

conventional clinical MRI scanners with only minor modifica-

tion, and would be a valuable tool for such future studies.
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