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Abstract

Although cell polarity is an essential feature of living cells, it is far from being well-understood. Using a combination of
computational modeling and biological experiments we closely examine an important prototype of cell polarity: the
pheromone-induced formation of the yeast polarisome. Focusing on the role of noise and spatial heterogeneity, we develop
and investigate two mechanistic spatial models of polarisome formation, one deterministic and the other stochastic, and
compare the contrasting predictions of these two models against experimental phenotypes of wild-type and mutant cells.
We find that the stochastic model can more robustly reproduce two fundamental characteristics observed in wild-type cells:
a highly polarized phenotype via a mechanism that we refer to as spatial stochastic amplification, and the ability of the
polarisome to track a moving pheromone input. Moreover, we find that only the stochastic model can simultaneously
reproduce these characteristics of the wild-type phenotype and the multi-polarisome phenotype of a deletion mutant of
the scaffolding protein Spa2. Significantly, our analysis also demonstrates that higher levels of stochastic noise results in
increased robustness of polarization to parameter variation. Furthermore, our work suggests a novel role for a polarisome
protein in the stabilization of actin cables. These findings elucidate the intricate role of spatial stochastic effects in cell
polarity, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological
function.
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Introduction

Cell polarity is a classic example of symmetry-breaking in

biology. In response to an internal or external cue, the cell

asymmetrically localizes components that were previously uni-

formly distributed. This polarization underlies behaviors such as

the chemotaxis of motile cells up chemoattractant gradients and

asymmetric cell division during development [1,2].

In Saccharomyces cerevisiae, a haploid cell (a or a) senses a spatial

gradient of mating pheromone from its partner and responds by

producing a mating projection toward the source. The peptide

pheromone binds to a G-protein coupled receptor which activates

the heterotrimeric G-protein. Free Gbc recruits Cdc24 to the

membrane where it activates Cdc42. The spatial gradient of

activated Cdc42 (Cdc42a) is used to position the polarisome,

which generates the mating projection [3–5]. The role of actin-

mediated vesicle transport in the establishment and maintenance

of Cdc42a polarity is an area of active research [6,7], however we

only focus on the downstream components.

The polarisome, located at the front of the cell, helps to

organize structural, transport, and signaling proteins [8], and

guides polarized transport and secretion along actin cables. The

polarisome’s function is conserved in eukaryotes, and analogous

scaffold complexes are responsible for such diverse structures as

focal adhesions and synapses [9].

A striking feature of the polarisome is its narrow localization at

the tip of the mating projection. The process of transforming a

shallow external gradient into a steep internal gradient (i.e. all-or-

none) of protein components is a process we term spatial

amplification, and is a significant challenge to understand and

model in cellular polarization [10,11]. In yeast, this polarization

occurs in steps through successive stages of the mating pathway

from the extracellular gradient of a-factor (gray in Fig. 1A) to the

more pronounced polarization of Gbc (blue) to the crescent cap of

active Cdc42 (green) to the punctate polarisome at the front of the

cell (red) [12].

The two main components of the polarisome are Spa2 and

Bni1. Spa2 is an abundant scaffold protein important for structural
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cohesion of the polarisome; Bni1 is a formin that initiates the

polymerization of actin cables, which direct vesicles to the front of

the cell [5]. In the absence of Bni1, the mating projection forms

slowly and is misshapen [13]. In the absence of Spa2, the mating

projection adopts a broad appearance and the polarisome is no

longer a single punctate entity [14–16]. In both loss-of-function

mutants, mating efficiency is drastically reduced. One hypothesis is

that proper mating requires the alignment of punctate polarisomes

(Fig. 1B). Indeed, mutants that exhibit abnormal polarisome

dynamics often also exhibit decreased mating performance

[13,14,17]. These data are consistent with the view that a tightly

localized polarisome is critical for efficient mating.

A second key feature of the mating projection and polarisome is

the ability to track a gradient that may be changing direction.

Mathematical modeling of cell polarization highlights the potential

tradeoff between amplification, which produces the tight polari-

zation, and tracking of a moving signal source [18,19]. Positive

feedback is one way to achieve amplification, but this feedback can

impede the ability to follow a shift in signal direction. Recent

studies have shown that fine-tuned modulation of positive

feedback can lead to proper polarization and chemotaxis

[11,20], whereas disruption of the positive feedback results in

defective polarization [21]. Most of these studies have relied on

deterministic models of spatial dynamics. An important question is

how stochastic spatial dynamics affect cell polarity, and more

specifically how noise affects the amplification/tracking tradeoff.

The impact of noise and stochastic dynamics on signal

transduction, protein interaction networks, and gene regulation

has gained broad recognition [22]. Examples range from the

stochastic lysis-lysogeny decision in phage lambda [23] to

transcriptional noise in yeast [24] to morphogen gradient noise

in Drosophila [25] to stochastic dynamics in the human brain [26].

As a result, many stochastic models of biological systems have been

developed [27] including one of the yeast mating pheromone

pathway [28]. In fact, continuous deterministic models (governed

by ordinary differential equations) represent a limiting case of

more accurate discrete stochastic models (governed by the

chemical master equation) [29].

However, most of these models have been non-spatial, in which

the system is considered well-mixed. Recent results have shown

the need for spatial stochastic models. For example, Fange and Elf

[30] have modeled spatiotemporal oscillations of the MinD and

MinE proteins during cell division in E. coli. They found that

stochastic simulations were essential to reproduce the phenotypes

of certain mutants such as avoiding bistability when the cell is

spherical, and forming nucleated clusters of MinD in PE2

mutants. Similarly, Altschuler et al. [31] have modeled cell

polarity in yeast using stochastic spatial dynamics. In this system,

polarization was induced by overexpressing constituitively-active

Figure 1. Spatial amplification in cell polarity during yeast
mating. (A) Spatial amplification occurs in stages during cell
polarization in yeast. The external spatial gradient of a-factor is shallow
(gray), and it generates a comparable gradient of free Gbc on the cell
membrane. This initial internal gradient induces a polarized cap of
active Cdc42 (green) which in turn localizes the tightly condensed
polarisome (red) to the front of the cell. In this manner, a shallow
external gradient is amplified to a steep internal gradient. (B) A
schematic and microscopy image of two mating yeast cells with aligned
punctate polarisomes. The polarisomes are labeled with Spa2-GFP (a-
cell) and Spa2-RFP (a-cell). During mating the polarisomes at the tip of
the mating projection are tightly localized and seek out one another
until they are aligned and adjacent. When the projections meet the
membranes and polarisomes fuse, and mating occurs.
doi:10.1371/journal.pcbi.1003139.g001

Author Summary

Cell polarity is the fundamental process of breaking
symmetry to create asymmetric cellular structures. It is
an open question how randomness (stochasticity) in the
cell hinders or helps cell polarity. In this work, we focus on
the ability of yeast cells to sense a spatial gradient of
mating pheromone and respond by forming a projection
in the direction of the mating partner. A key element is the
polarisome, which is at the tip of the mating projection.
We introduce the first model of polarisome formation in
yeast. The model is well-supported by experimental data.
We perform modeling to explore the role of noise in the
formation of the polarisome. By running simulations with
and without noise, we arrive at the surprising conclusion,
that gradient-dependent polarization is enhanced by
stochasticity. Both the tight localization (amplification)
and the ability to respond to directional change of the
input (tracking) are enhanced by stochastic dynamics,
resulting in a more robust behavior. Mutants in which key
polarisome proteins have been deleted exhibit broader,
noisier polarisome than the wild type. The mutant
phenotype is accurately captured by our stochastic
simulations. These results demonstrate the importance of
stochasticity in the study of cell polarity.

Spatial Stochastic Dynamics Enable Cell Polarity
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Cdc42. Their stochastic models of cell polarization involving self-

recruitment [32] and actin nucleation with directed transport [33]

have highlighted the important role of spatial stochastics in

initiating and maintaining spontaneous polarization. In these

studies, the authors focused on polarization in the absence of a

cue, and did not investigate the amplification or tracking of a

gradient.

We present a mathematical model of Cdc42a-gradient induced

polarisome formation. To our knowledge this is the first such

model. The model is well-supported by experimental data, and we

discuss the process of obtaining the parameters from experimental

data. There are only two free parameters in the model, and we

explore this space via extensive parameter sweeps. Comparing the

results of stochastic and deterministic models with equivalent

structure, stochastic simulations reveal better and more robust

tradeoffs between spatial amplification and signal tracking. In

particular, spatial stochastic effects contribute to tighter polariza-

tion, an effect we refer to as spatial stochastic amplification. In

addition, only the stochastic model can reproduce both of these

characteristics of the wild-type (WT) phenotype, as well as the

multi-polarisome phenotype of the spa2D mutant. Finally, our

work suggests a novel role for a polarisome protein in the

stabilization of actin cables.

Results

Model Description
We have constructed a mathematical model of the formation of

the yeast polarisome. Focusing on the final stage of the mating

system, our model takes the broad Cdc42a distribution on the

membrane as the input and seeks to produce a narrow polarisome

as the output. We sought a simple model that captures the essential

dynamics while limiting the size of the parameter space for model

analysis. The chemical reactions that make up our model structure

were simulated both stochastically and deterministically. The

following two subsections describe the model structure and the

parameter estimation based on our biological data. For further

model details see Sections 2.3 and 3 in Text S1.

Model Structure
Fig. 2 describes our model of the formation of the punctate yeast

polarisome in response to a cue: the broader polarization of

activated Cdc42 (Cdc42a). The polarisome is a complex structure

consisting of at least five different proteins [5]. The two primary

functions of the polarisome proteins are structural (scaffolding) and

catalytic (nucleation of actin cables). Spa2 is the most abundant

scaffold protein, thus to simplify our model we aggregated the

scaffold species into Spa2. Bni1 is the formin responsible for actin

cable formation during the mating response [13], and so we

aggregated the actin nucleation dynamics into Bni1.

The input to the model is the experimentally measured

membrane profile of Cdc42a, and the output is the spatial profile

of Spa2. Note that in the simulations, Cdc42a is not a dynamic

state variable. However, the direction of the Cdc42a polarization

can be shifted as a change in input. To estimate the input profile,

we averaged the fluorescence intensity of a Cdc42a reporter,

Ste20-GFP, over multiple cells (Fig. S14 in Text S1). In the model,

Cdc42a recruits Bni1 to the membrane. Using a combination of

two-hybrid and molecular pull-down data, Evangelista et al.

demonstrated that active Cdc42 directly binds Bni1 [13]. Bni1 on

the membrane nucleates actin cable assembly, producing a

positive feedback loop via Spa2, which is delivered to the

membrane by transport along the actin cables. For simplicity,

we do not explicitly model the actin polymerization process, but

instead model actin cables attaching to and detaching from the

membrane (Fig. 2), thus combining actin initiation and polymer-

ization into a single event.

There are two positive feedback loops in the model. First Spa2

recruits Bni1 to the membrane. There is experimental evidence for

Spa2 binding Bni1 [34]. Second, a polarisome component inhibits

actin depolymerization so that more Spa2 can be transported to the

membrane along actin cables. This is accomplished via an inhibition

term possessing a Michaelis-Menten type form (see Table S3 in Text

S1), which is valid in a stochastic setting [35]. We constructed two

versions of the model structure because the exact mechanism of

actin stabilization is not known: one in which Bni1 inhibits actin

depolymerization (B-model), and one in which Spa2 inhibits actin

depolymerization (S-model). In the main text we will focus on the S-

model; analogous results can be found for the B-model in the SI.

The strength of the first positive feedback loop can be adjusted via

the parameter Bfb, and the strength of the second positive feedback

loop by the inhibition constant Km. The second positive feedback

loop is a model hypothesis motivated by prior modeling results [33].

However, we note that Yu et al. [36] have shown that during yeast

budding, polarization is accompanied by more stable actin cable

dynamics. In addition, formins in other organisms can facilitate

actin bundling at higher concentrations [37]. Finally, Spa2 interacts

with a number of accessory proteins including Myo2 which exhibits

synthetic lethality with Tpm1, which binds and stabilizes actin

cables [38]. Table S3 in Text S1 lists the equations that we use to

describe the model structure.

For each of the two possible model structures, we employed two

modes of simulation. The first uses discrete stochastic kinetics for

diffusion and biochemical reactions. The second uses a continuous

deterministic formulation, i.e. the familiar partial differential

equations for reaction-diffusion systems (for more details on both

formulations see Materials and Methods).

Parameter Estimation
We used our simple model structure to estimate most of the

reaction rates and diffusion constants from our in vivo data. This

section provides a summary of the full calculations described in

Section 3 in Text S1 for the S-model; similar calculations were

made for the B-model.

Similar to the approach of Marco et al. [33], we performed

fluorescence recovery after photobleaching (FRAP) experiments

(Fig. 3A) in the presence and absence of the actin depolymeriza-

Figure 2. Diagram describing yeast polarisome model. (A) Input
driven recruitment of cytoplasmic Bni1 by membrane bound active
Cdc42 (Cdc42a). (B) Bni1 on the membranes nucleates and polymerizes
actin cables. (C) Actin cables direct transport of Spa2 from the
cytoplasm to the membrane. (D) Spa2 provides positive feedback as it
recruits cytoplasmic Bni1 to the membrane and inhibits actin
depolymerization.
doi:10.1371/journal.pcbi.1003139.g002

Spatial Stochastic Dynamics Enable Cell Polarity
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Figure 3. Parameter estimation from experimental data including FRAP. (A) Experimental FRAP recovery curves for Bni1 (Solid blue line:
average of 5 experiments. Light blue area: 95% confidence interval around average. Dashed red: fit to exponential). The fit curve is used to determine
the time to half-recovery, therefore the data is normalized by the maximum value of the fit curve. Notice that the WT curve has a much shorter time

Spatial Stochastic Dynamics Enable Cell Polarity
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tion agent Latrunculin A (LatA). With LatA treatment we

observed a greatly extended recovery time for Bni1, implying

that actin-dependent recycling was increasing the recovery rate

(compare Fig. 3A FRAP recovery curves (curves represent average

of 5 experiments with 95% confidence interval)). From the LatA

FRAP recovery curves, we directly estimated the membrane

diffusion coefficient for Bni1 to obtain D~0:005 mm
s2 . Because we

did not exclude actin-independent mechanisms of Bni1 membrane

removal, the measured diffusion coefficient represents an upper

bound, however this value is consistent with the slowest of those

measured for membrane proteins in [39]. The membrane

localization of Spa2 depends on actin, thus we could not perform

the identical analysis on Spa2. Instead, we set the diffusion

coefficient for Spa2 to be the same as Bni1, a protein similar in

size.

We derived an analytic expression relating the recovery half-

time to the off-rate using a simple version of our model in the limit

of no diffusion [40]: tmax=2~
log(2)
koff

. Then we calculated tmax=2 from

FRAP simulations of the full model using a range of values for Boff

and the diffusion constant D (left panel of Fig. 3B). As D goes to

zero, the simulations converge toward the no-diffusion limit

analytic expression (Fig. 3B). These results do not depend on a

specific value for Bon (right panel of Fig. 3B). From the curves in

Figs. 3A and B, and the measured value of D, we were able to

estimate Boff~0:25 s{1. The same procedure was performed for

Spa2, with the result Soff~0:35 s{1 (see Fig. S2 in Text S1).

These values correspond to a region of parameter space in which

the polarisome reaction kinetics are faster than the diffusion

kinetics for typical yeast membrane proteins.

From the steady-state levels of Spa2 (approximately 90% on the

membrane, see Fig. S4 in Text S1) and Soff , we estimated

Son~0:16 molecules{1s{1. The fact that approximately 20% of

Bni1 is on the membrane cannot uniquely determine the Bon

parameter, as Bni1 is delivered to the membrane in two ways:

recruitment by Cdc42a (Bon) and binding by Spa2 (Bfb). Instead,

our analysis produced a linearly constrained relationship between

Bon and Bfb (Equation S8 in Text S1).

Finally, we estimated the rate constants for actin polymeriza-

tion/depolymerization. We made use of data from Evangelista et

al. [41], in which the authors induced Bni1 loss-of-function using a

temperature-sensitive allele, and then measured the time course of

the number of cells possessing actin cables. Assuming that actin

depolymerization is an exponential decay process, the half-life of a

single cable is the same as the half-life of a population of cables.

Therefore, we can use the decay curve in [41] to estimate a

depolymerization rate for individual cables. We fit the data with

an exponential decay curve and determined that the time to half

actin depolymerization was approximately 45s. In vitro experiments

by Carlier et al. [42] agree with this timescale for actin

depolymerization. In our model, depolymerization depends on

both a basal rate Aoff and an inhibition term containing the

constant Km, representing Spa2 inhibition of actin depolymeriza-

tion. After substituting the actin cable half-life, we obtained the

following equation for the total actin depolymerization rate:

Aoff � Km

KmzSpa2

n o
~ log(2)

45s
. We note that a similar expression holds

for the B-model. Using the above we estimated the polymerization

rate constant Aon to be 7:7e-5 molecules21s21.

We performed simulations of the actin depolymerization

experiment [41] to derive a simpler expression for the relationship

between Aoff and Km. Starting with probability distributions of

Spa2 and Bni1 taken from fluorescence data as initial conditions,

we varied Aoff and Km and calculated the actin cable half-life.

This was repeated on data from 10 cells. The right panel of Fig. 3C

shows a phase plane of decay times as a function of the two

parameters. From this graph, we were able to obtain a direct

relationship between Aoff and Km (Fig. 3C, dashed black).

In summary, we used experimental data to identify 6

parameters in the model, reducing the free parameter space to

two dimensions: the Bon=Bfb ratio and the (Aoff , Km) relationship.

A third undetermined parameter is the total number of actin

cables. In the deterministic simulations variation of this parameter

did not affect polarization, thus it was explored separately. We

have selected values for the two free parameters based on the

models ability to reproduce the spatio-temporal characteristics of

our in vivo data (Km~3500, Bfb=Bon~7:5). We use these values as

our nominal parameter set.

Spatial Stochastic Amplification
A striking feature of the yeast polarisome is its tight localization

compared to the broader polarization of Cdc42a (Fig. 4A). To

characterize this polarization experimentally, we used Ste20-GFP

as a fluorescent reporter for Cdc42a (an alternative reporter Gic2-

208-GFP produced similar results, see Fig. S8 in Text S1). In

pheromone-induced cells, it spanned a full width at half maximum

(FWHM, see Materials and Methods) of approximately 48u on the

membrane (averaged over multiple cells, see Fig. 4C, S14 in Text

S1). The punctate polarisome was marked by Spa2-mCherry,

which localized to a region of FWHM approximately 180. Cdc42a

directs the localization of the polarisome by binding polarisome

components such as Bni1 [5]. As described above, we refer to

spatial amplification as the transformation from a broader input

polarization (Cdc42a) to a narrower output polarization (Spa2).

The parameter estimation described in the previous section left

our model with two remaining degrees of freedom: Bfb=Bon and

(Aoff , Km). Exploring this space we found that, for any given

parameter set, the stochastic model always produced tighter

polarization than the deterministic model. We refer to this cue

directed noise-driven emergent behavior as spatial stochastic

amplification. This is illustrated in Fig. 4D for our nominal

parameter set, and this behavior is observed across parameter

space (see Fig. S15 in Text S1). The sharp stochastic peaks sample

a range of directions within the Cdc42a profile similar to what is

observed experimentally (Fig. S9 in Text S1, videos S7 & S8),

whereas the deterministic peak is stationary. As a result, for the

stochastic model the average of the measured widths is narrow (see

Fig. S14B), while the width of the average over an ensemble of

time points is broad (black diamond curve in Fig. 4D). We found

that the deterministic simulation of the model overlaid the

ensemble average of stochastic trajectories (see Fig. 4D). More-

over, as we demonstrate below, increasing the stochasticity of the

dynamics results in increased amplification.

to half recovery than the LatA-treated curve (time to half recovery indicated by dashed black lines). Also see video S1. (B) FRAP simulation time to half
recovery for varying diffusion rates and Boff (left) and Bon (right). There is no change with Bon, while for Boff as D goes to zero the curves approach
the theoretical no-diffusion limit (dashed black). Also see video S2. (C) Left: Cartoon illustrating the Bni1 temperature sensitive mutant experiment
performed in [41] and simulated in this paper. Right: Phase plane of actin cable half-life (color-coded) as a function of Aoff and Km (simulation of the
experiment in [41]), with the curve representing 45 s (dotted black) and our model fit (dashed black). This phase plane represents the average of
those generated for initial conditions corresponding to 10 different observed cells.
doi:10.1371/journal.pcbi.1003139.g003
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Tracking of a Dynamic Input
A second key performance objective that must be balanced

against tight polarization is that the yeast polarisome must track a

change in the direction of the input cue (Cdc42a). In yeast cells, a

change in the a-factor gradient direction results in a corresponding

change in Cdc42a polarization. Similarly, extended exposure to

isotropic pheromone will also induce a change in Cdc42a

localization because of the oscillatory dynamics underlying the

formation of multiple projections [16,43,44]. We imaged dual-

labeled Ste20-GFP/Spa2-mCherry cells in 100 nM a-factor.

Under both directional gradient (Fig. S10 in Text S1) and

isotropic a-factor conditions (Fig. 5A), we observed that Cdc42a

shifts its position to a new polarization site. After a delay (middle

panel of Fig. 5A) this change was followed by the relocalization of

the polarisome (right panel of Fig. 5A). We refer to the

relocalization of the polarisome following a shift in Cdc42a

orientation as successful tracking.

We also imaged cells with Bni1-GFP/Spa2-mCherry to observe

the spatio-temporal dynamics of these two polarisome constituents

during tracking. A typical time trace for Bni1 and Spa2 is shown in

Figs. 5C and 5E respectively. We note that there is *10 minute

transition period during which the nascent second polarisome has

begun to form while the initial polarisome still persists. The

median characteristic time of this overlap from in vivo measure-

ments of five cells was 10 minutes (mean = 15+11, see Fig. S13 in

Text S1).

In both Cdc42a/Spa2 (Fig. 5B) and Bni1/Spa2 (Figs. 5D and

5F) dynamics we found that our in silico experiments matched the

characteristic spatio-temporal features of our in vivo experimental

results. Fig. 5B shows that there is a delay in polarisome relocation

after a switch in Cdc42a orientation. This is an indication of the

need to be in a parameter regime that balances tight polarization

(determined in part by Bfb) and the ability to successfully track the

input signal (determined by Bon), a tradeoff that will be discussed

further in the following section.

Figs. 5D and 5F show that Bni1 and Spa2 populations in our in

silico experiments reproduced the spatio-temporal polarisome

characteristics noted in our in vivo experiments: *10 minute

transition period in which two polarisomes are present. Analysis of

an ensemble of 500 trajectories gave an median overlap time of 9.5

Figure 4. Punctate Polarization (Green: Cdc42a, Red: Spa2). (A) Yeast cells treated with a-factor show the wider Cdc42a (marked by Ste20-
GFP) and tighter Spa2 polarization. (B) Visualization of a stochastic realization of the polarisome model (white indicates regions with actin cables
attached to the membrane). (C) Normalized fluorescence intensity membrane profiles of Ste20-GFP and Spa2-mCherry from a yeast cell undergoing
polarisome formation (Green: Ste20 (Cdc42a). Dashed black: Ste20 fit. Red: Spa2). Ensemble mean experimental data is in Fig. S19. (D) Normalized
membrane intensity profile from stochastic and deterministic realizations of polarisome model, the Cdc42a input, and the mean output of a
stochastic ensemble (n~500). Inset: Absolute membrane intensity profile from stochastic and deterministic realizations of polarisome model, and
Spa2 ensemble mean. (Red: Spa2 Stochastic. Dashed blue: Spa2 deterministic. Black diamond: Spa2 ensemble mean. Green: Cdc42a (input)).
doi:10.1371/journal.pcbi.1003139.g004

Spatial Stochastic Dynamics Enable Cell Polarity
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(mean = 11:5+8) minutes (Fig. S13 in Text S1). This confirms that

the polarisome dynamics produced by our model qualitatively and

quantitatively agrees with what we observed experimentally.

Although the deterministic simulations were also able to exhibit

the appropriate tracking behavior (Fig. S12 in Text S1), it was in a

much less robust fashion. As we demonstrate below, the stochastic

simulations can track for narrower polarisome widths and do not

require fine-tuning of the parameter values.

In Figs. 4 and 5 we compared a single stochastic realization with

the deterministic simulation to allow comparison of individual

trajectories. In the following section (Fig. 6) we show the average

behavior of an ensemble of stochastic realizations and compare it

to the deterministic simulation.

Robustness to Parameter Perturbation
Previously, it has been hypothesized that there is a tradeoff

between the amplified polarization and the ability to follow

changes in signal direction [11,45,46]. We explored this hypothesis

in the context of the polarisome system and investigated the effects

of stochastic dynamics on the tradeoff. To accomplish this, we

generated phase planes in parameter space for the deterministic

and stochastic formulations of the S-model with Bfb=Bon on the y-

axis and Km on the x-axis. We measured polarisome width and the

ability to track a directional change. These plots demonstrate this

tradeoff for both the stochastic and deterministic simulations

(Fig. 6). Stronger positive feedback (BfbwBon) and a more stable

polarisome (small Km) produced tighter localization. Because

Figure 5. Polarisome tracking of directional change in Cdc42a (Green: Ste20 (Cdc42a), Red: Spa2, Blue: Bni1). Left: In vivo data. Right:
In silico data. Top row: In both the cell (A) and the simulation (B), the Cdc42a profile shifts first, followed by the the polarisome (indicated by Spa2).
Middle and bottom rows: Spatial dynamics of Bni1 (C, D) and Spa2 (E, F) during polarisome tracking of Cdc42a. Note that the time scale of
polarisome switching is similar between in vivo and in silico experiments, especially in the *10 minute overlap time when two polarisomes are
present. Also see videos S3 and S4.
doi:10.1371/journal.pcbi.1003139.g005

Figure 6. Six polarization phenotype space plots of Bfb/Bon ratio versus Km. The first five panels show results from the stochastic model with
varying Actint values of 20, 40, 60, 80, 100 (left to right); the final panel shows results from the deterministic model. Km values (x-axis) range from 0 to
4000, Bfb/Bon ratio (y-axis) ranges from 0 to 10. Blue indicates accurate tracking (.70% probability), red indicates narrow width (v220 FWHM), purple
indicates that both criteria are met and white indicates that neither criterion is met. As the number of actin cables is increased, the stochastic
phenotype plots converge to the deterministic plot. Lower actin cable number confers a larger region where both criteria are satisfied, indicating that
increased stochasticity leads to more robustness to parameter variation. For each plot, the Son parameter was adjusted to maintain a constant flux of
Spa2 to the membrane.
doi:10.1371/journal.pcbi.1003139.g006
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tracking requires the ability to sense a new input direction and shift

the polarisome to the new site, greater input influence (BonwBfb)

and less polarisome stability (large Km) yielded better tracking.

To elucidate the effect of stochasticity on the polarisome system,

we varied the total number of actin cables in the cell. Fig. 6 shows

phase planes for various levels of total actin cables in the cell, from

20 to 100. We also adjusted Son (rate of actin-mediated Spa2

delivery) to maintain the same flux of Spa2 to the membrane for

different numbers of actin cables. In our model approximately half

of the total population of actin is on the membrane, and thus the

lower range of actint (total number of actin cables) values is

consistent with the measurements made by Yu et al. [47]. For the

deterministic model, varying the number of actin cables had no

effect on polarisome dynamics (so long as the population was

greater than zero) because partial differential equations treat

protein populations as continuous, and thus the same profile was

produced for all total actin populations. The dynamics of the

stochastic model, on the other hand, was strongly dependent on

actin cable number.

For the lower range of actin cables there were two striking

differences between the performance of the stochastic and

deterministic simulations: the stochastic model exhibited a larger

overlapping region in parameter space in which both the

amplification and tracking criteria were met (see Fig. 6, compare

the purple region of the first and last panels). Additionally, the

deterministic model displays an abrupt transition to tracking

failure, whereas the stochastic model has a smoother tradeoff

between polarisome width and the probability of successful

tracking (Fig. S15 in Text S1). To illustrate this tradeoff, we

examined the minimum possible width given successful tracking.

For deterministic models the minimum width was 11.3u For

stochastic models (actint~40), the minimum width depended on

the strictness of the tracking criteria: at 75% tracking probability

the minimum was 12:00, at 70% it was 10:80, and at 50% it was

10:70. This provides further evidence that the stochastic dynamics

of this system play a non-trivial role in polarisome formation.

As the number of actin cables was increased, we observed that

the gap between stochastic and deterministic performance

decreased. As we increase the number of actin cables, the

stochastic phase plane increasingly resembles the deterministic one

(see Fig. 6). The effect is striking both in terms of the individual

regions of sufficient amplification (red) and tracking (blue) as well

as in the region of overlap (purple). The convergence to

deterministic behavior with larger populations is not surprising,

given that deterministic models represent the large population

limit of stochastic models. Large total actin cable populations

reduce the intrinsic noise in the system, making the stochastic

model behave deterministically. Thus, these data suggest that the

number of actin cables determines the level of stochasticity in the

polarisome system and that increased noise in the system confers

robustness to parameter perturbations. Finally, we find all the

above observations hold in both the S- and B-models (compare

Fig. 6 and Fig. S16 in Text S1) in which either Spa2 or Bni1

inhibits actin depolymerization. Indeed, the simulations showed

that the presence of polarisome protein mediated inhibition (i.e.

Kmv?) produced significantly superior amplification (for a given

level of tracking) than the absence of the inhibition, suggesting a

novel role for a polarisome protein in the stabilization of actin

cables.’’

Stochastic Simulations Reproduce the Mutant Phenotype
We characterized the in vivo dynamic behavior of pheromone-

induced spa2D cells [14] compared to WT cells. In both, the

polarisome was marked by the protein Bni1 tagged with GFP

(bottom row of Fig. 7A). Because the low total population of Bni1

made visualization difficult, we also included mutant and WT

images of cells containing the more abundant polarisome marker

Sec3 tagged with GFP (top row of Fig. 7A). After a two hour

treatment with 100 nM a-factor, WT cells possessed a polarisome

that exhibited only moderate variability in spatial and temporal

behavior (left column of Fig. 7). On the other hand, spa2D cells

displayed a distinct phenotype in which multiple polarisome foci

appeared (multi-polarisome phenotype), possessing a more dra-

matic noisy behavior and broader polarization (right column of

Fig. 7A, videos S5 & S6). These results provide support for the

Spa2-dependent positive feedback in the model.

We performed spatial stochastic and deterministic simulations

for both WT and spa2D cells (Fig. 7B). In the stochastic

simulations we were able to observe the dynamic behavior of

the WT polarisome. More strikingly, the stochastic simulations

were able to capture important aspects of the spa2D multi-

polarisome phenotype in terms of multiple foci (top right panel of

Fig. 7B), noisy behavior, and broader polarization. In contrast,

deterministic simulations of the model could not reproduce the

WT or spa2D polarisome behaviors (bottom right panel of Fig. 7B).

Specifically in the spa2D case, the deterministic simulations

showed neither the presence of multi-polarisomes nor the noisy

dynamic behavior. Of course it is important to appreciate that the

absence of noisy dynamic behavior is not necessarily a defect of

our model; it is a premise of the deterministic modeling formalism.

Discussion

In this work we have constructed a simple model of the yeast

polarisome, a classic example of cell polarity, focusing on the

dynamics of the proteins Bni1 (a formin) and Spa2 (a scaffold

protein). The parameters in the model were fit to experimental

data including FRAP experiments performed on living cells (videos

S1 & S2). We note that this is, the first mathematical model of the

polarisome, and as such provides a valuable foundation for future

studies of this system. In addition, our model suggests a novel role

for a polarisome protein (i.e. Spa2 or Bni1) in the stabilization of

actin cables, which we plan to test in the future.

Our in silico experiments have shown that stochastic dynamics

produced qualitatively different results from deterministic dynam-

ics. First, we found that spatial stochastic amplification provided tighter

polarization across a range of parameters. Second, the intrinsic

noise enabled better tracking given tight amplification, provided

increased robustness to parameter perturbations, and better

reproduced the qualitative searching behavior of the polarisome

(see below). Finally, only the stochastic model was able to

reproduce the spa2D multi-polarisome phenotype.

This work builds upon and extends the previous work of Marco

et al. [33] and Altschuler et al. [32] The key difference is that we

focus on the polarisome and the physiological process of sensing

and responding to an input gradient of Cdc42a, versus sponta-

neous polarization in the absence of a cue. However, in all cases,

the research demonstrates the power of spatial stochastic dynamics

to initiate, amplify, and adjust the polarity.

Similar to the work of Fange and Elf [30], we demonstrate that

stochastic but not deterministic simulations can reproduce the

phenotype of a mutant in which random spatial clusters appear. In

yeast, the wild-type polarisome is a punctate structure that senses

an input signal, but forms multiple foci when the Spa2-mediated

positive feedback is diminished. In E. coli, the MinD protein is

normally dispersed and undergoes oscillations, but forms random

clusters when the positive feedback is increased (rate of sponta-

neous association with the membrane is decreased). In both cases,
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spatial clusters arise from the amplification provided by stochastic

spatial dynamics.

The two keys to understanding spatial stochastic amplification are

the discreteness of molecules and the noisy nature of chemical

systems. The discreteness of molecules dictates an integer number

of proteins in a given location, so that the addition of a molecules is

a unit step in population. If molecules were continuous in the sense

of concentration, then there would be a smooth addition of

molecules to the membrane. Fig. 8 explains the results of these

essential differences. In both the stochastic and deterministic cases

we begin at the top of the diagram with all of the Spa2 (or Bni1) in

the cytoplasm. After some period of time the first Spa2 molecule in

the stochastic simulation has moved to the membrane. By contrast,

in the deterministic simulation, a concentration of Spa2 has been

added to the membrane in a smooth distribution, in which the

total membrane population is equivalent to one molecule of Spa2.

Finally, the presence of Spa2 creates positive feedback. In the

stochastic simulation this is only in one discrete location, however

in the deterministic simulation, Spa2 exists in a spatially varying

continuum across the membrane. In this way it becomes clear how

stochastic simulation of the same parameter set, resulting in

roughly the same membrane fraction of protein, produces tighter

Figure 7. The multi-polarisome phenotype in spa2D cells. Columns: WT phenotype (left), spa2D phenotype (right). (A) In vivo microscopy
images of polarizing yeast cells marked with Sec3-GFP (top row) and Bni1-GFP (bottom row). Note the difference between the single punctuate
polarisome (left) and the multi-polarisome phenotype (right). Also see video S5. (B) In silico snapshots of yeast polarisome simulations for both
stochastic (top row) and deterministic (bottom row) models showing Bni1. Note that only the stochastic in silico model is able to match the in vivo
multi-polarisome phenotype. Also see video S6.
doi:10.1371/journal.pcbi.1003139.g007
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polarization than deterministic simulation. In the parameter

regime where this difference is most notable the output and input

shapes are decoupled. That is, the output polarization is the same

regardless of input shape (e.g. gradient steepness), but its location is

biased by the input profile. As is noted above, this process is

related to the positive feedback induced symmetry breaking

without a directional cue observed in [32].

The polarisome engages in a dynamic search process during

mating projection formation and tracking. There are two aspects

to this behavior. First, in a single projection, the polarisome scans

within the polarized region of Cdc42a as the projection attempts

to align with the gradient (Fig. S9 in Text S1). Second, during the

formation of the second projection, the polarisome explores the

new region before it becomes more tightly localized (see video S3).

Both of these behaviors can be observed in the stochastic

simulations (see videos S8 and S4).

As has been noted in [11,45,46] and is clear from the phase

planes in Fig. 6, there is a tradeoff between tight polarization and

tracking. Given tighter localization it might seem intuitive that the

stochastic simulations would be less likely to track. Tight

polarization generally requires stability and strong feedback.

Reliable tracking requires instability and high input sensing. The

noise in the system lends additional intrinsic instability to the

system independent of feedback/sensing tradeoffs, allowing for

reliable tracking for relatively tight polarization.

An important feature of robust biological models is that they do

not require careful selection of parameters. When modeling

bacterial chemotaxis, Barkai and Leibler [48,49] demonstrated

Figure 8. Stochastic versus deterministic polarization schematic time course. Green is the input Cdc42a profile, Red is the output (Spa2 or
Bni1). Top: Initially, in both the stochastic and deterministic simulations, all of the output protein is in the cytoplasm. Middle: After a short time
period one molecule has been recruited to the membrane. In the stochastic simulation this addition takes place in one discrete location, whereas in
the deterministic simulation the addition is in a continuous concentration gradient along the membrane. Bottom: This difference in allocation of
molecules results in differing final profiles. In the stochastic case, feedback has recruited most of the output protein to the location of the first
addition, whereas in the deterministic simulation output protein has been added smoothly along the membrane, resulting in a smooth final
distribution.
doi:10.1371/journal.pcbi.1003139.g008
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that the experimentally observed perfect adaptation was a

structural property of their model, while alternative models

required fine-tuning of the parameters to achieve similar

performance. Here we have shown that for the same model

structure and parameters, stochastic dynamics were robust to

parameter variation whereas deterministic dynamics required fine-

tuning to produce the experimentally observed phenotype. These

results add to a growing body of evidence that stochastic noise can

play a beneficial role through the introduction of novel and/or

robust functionality, which in turn endows cells with a perfor-

mance advantage [22,50–52].

Finally, in this first version of our polarisome model we made

some compromises to keep the model structure simple. For

example, we aggregated the transport and delivery of Spa2 to the

membrane along actin cables into a single reaction. We also

combined actin cable initiation and polymerization into a single

event. We believe that these approximations did not affect the

fundamental behaviors exhibited by our model, and we are

encouraged that the model was able to reproduce key aspects of

the experimental data. Future work will include these additional

dynamics in a more complex and detailed model.

Materials and Methods

Computational Strategy
We modeled polarization of a yeast cell on a one-dimensional

periodic domain (i.e. a circle) representing the membrane, which

surrounds a well-mixed cytoplasmic region. On the membrane, the

spatial location of the biochemical species was critical to under-

standing the polarization process. Thus, we tracked the location of

populations of proteins on the membrane and allowed them to

move via a diffusive random walk. A complete mathematical

description of our model is given in the Section 2.3 in Text S1.

Our stochastic model was formalized via the Reaction Diffusion

Master Equation (RDME). The inhomogeneous stochastic simu-

lation algorithm (ISSA), a simple and exact simulation method,

was used for the parameter space exploration (for a complete

description of the RDME and ISSA see Section 4.2 in Text S1).

The deterministic model was described by a set of partial

differential equations and solved using standard methods (see

Section 4.3 in Text S1).

Tracking
To determine the effectiveness of our model in replicating this

phenotype, we performed the following in silico experiment in

which the initial Cdc42 signal served as an input in one direction

(see first panel of Fig. 5B). After 1020 seconds, the input was

switched by 180 degrees (see second panel of Fig. 5B). 816 seconds

later, we measured how well the polarisome tracked the input

signal (see third panel of Fig. 5B, where the polarisome in the

simulation has successfully tracked the input signal). Our criterion

for successful tracking was that the polarisome be within 90

degrees of the final input (using average location during the final

204 seconds of the simulation). The probability of successful

tracking is shown for the stochastic simulation in Fig. S15A in Text

S1 and for the deterministic simulation in Fig. S15B in Text S1.

Full Width at Half-Maximum (FWHM)
We characterized the polarization tightness with the FWHM of

a normal distribution fit to the intensity profile data (see Fig. 3C

for an example fit to experimental data). The width was measured

in the same trajectory as above. The polarisome was allowed to

form and stabilize for the first 510 seconds, then the FWHM was

sampled at each point in time for the next 510 seconds and the

time average was taken to be the width value for that trajectory.

Final values presented in the phenotype space plots (Section 7 in

Text S1) represent the ensemble mean value.

Cell Culture and Pheromone Treatment
All yeast strains were derivatives of RJD415 (W303). Genetic

techniques were performed according to standard methods.

Complete strain details are presented in Table S1 in Text S1. Cells

were cultured in YPD (yeast extract-peptone-dextrose) media.

Cells were treated with a-factor for 2 hours before imaging. A

low concentration of pheromone (10–20 nM) was used for imaging

a dynamic single projection, and a high concentration (100 nM)

was used for imaging the second projection formation in the

tracking experiments.

Microscopy
Live yeast cells were immobilized on glass slides with concanavalin

A (ConA) in the presence of YPD media containing a-factor. They

were then imaged on an Olympus Fluoview confocal microscope

with a 606 objective using 488 nm (GFP) and 568 nm (mCherry)

excitation wavelengths. Time-lapse images were taken at 30s intervals

over a 30 min to 1 hour period. A relatively long dwell time and scan

averaging removed much of the imaging noise.

Supporting Information

Text S1 Main Supporting Information file. This file

provides more information about (1) the videos, (2) the model,

(3) parameter estimation, (4) simulation methodology, (5) imaging

and modeling of polarisome dynamics, (6) measuring the

polarisome width, (7) the phenotype space plots, and (8) results

from the B-model.

(PDF)

Video S1 Spa2 FRAP experiment in vivo with Spa2-GFP.
One second of video time is equivalent to one second of real time.

Spa2-GFP cells treated with 20 nM a-factor for 2 hours were

subjected to photobleaching by confocal microscopy, and recovery

monitored at ,1 fps.

(MOV)

Video S2 Spa2 FRAP experiment in silico. 1s (video

time) = 1s (simulation time). The time displayed is such that that

the bleaching event occurs at t = 0.

(MOV)

Video S3 Polarisome tracking experiment in vivo with
Ste20-GFP (green) and Spa2-mCherry (red). 1s (video

time) = 30s (real time). Dual-labeled cells containing Ste20-GFP/

Spa2-mCherry were treated with 100 nM uniform a-factor for 2

to 3h and imaged under isotropic conditions. Cells undergoing

second projection formation were identified and followed at 30s

intervals.

(MOV)

Video S4 Polarisome tracking experiment in silico. 1s

(video time) = 30s (simulation time).

(MOV)

Video S5 spa2D experiment in vivo with Sec3-GFP. 1s

(video time) = 30s (real time). spa2D cells containing Sec3-GFP, a

polarisome marker, were treated with 20 nM a-factor for 2h and

then imaged under isotropic conditions with frames every 10s.

(MOV)

Video S6 spa2D experiment in silico. 1s (video time) = 30s

(simulation time). The spa2D mutant was simulated by setting the
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value of Spa2t to 10% of the wild-type value (500 molecules/cell

vs. 5000 molecules/cell).

(MOV)

Video S7 Dynamic ‘‘searching’’ behavior of Spa2 in
vivo monitored by Spa2-GFP. 1s (video time) = 30s (real time).

Spa2-GFP cells were treated with 20 nM a-factor for 2h and then

imaged under isotropic conditions. The polarisome exhibits

dynamic motion at the front of the mating projection. Frames

were taken every 10s.

(MOV)

Video S8 Dynamic ‘‘searching’’ behavior of Spa2 in
silico. 1s (video time) = 30s (simulation time).

(MOV)
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