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Abstract 

BACKGROUND. Genetic research on Alzheimer’s disease (AD) has primarily focused on 

amyloid-β (Aβ) pathogenesis, with fewer studies exploring tau pathology. Elucidating the genetic 

basis of tau pathology could identify novel pathways in AD.  

METHODS. We conducted a genome-wide association study of tau standard uptake value ratios 

(SUVRs) from [18]F-flortaucipir positron emission tomography (PET) images to identify genetic 

variants underlying Tau pathology. Genetic data and tau-SUVRs from [18]F-flortaucipir PET 

images were acquired from the A4 (311 with preclinical AD) and ADNI (280 cognitively normal, 

76 with mild cognitive impairment, and 19 AD patients) studies. Circulating plasma proteins in 

UK Biobank Pharma Proteomics Project (UKBPPP, N=54,129) were used to validate genetic 

findings. SNP genotypes were tested for association with Tau-SUVR levels adjusting for age, sex 

and population substructure variables. AD association of polygenic risk scores (PRS) of tau and 

amyloid-SUVRs were assessed. Causal effect of plasma protein levels on Tau pathology were 

tested using Mendelian randomization analyses.  

RESULTS. GWAS of tau-SUVR revealed two significant loci: rs78636169 (P=5.76×10-10) in 

JARID2 and rs7292124 (P=2.20×10-8) near ISX. Gene-based analysis of tau deposition highlighted 

APOE (P=2.55×10-6), CTNNA3 (P=2.86×10-6) and JARID2 (P=1.23×10-4), a component of the 

PRC2 multi-protein complex which regulates gene expression. Mendelian randomization analysis 

of available circulating plasma proteins in the UK Biobank Pharma Proteomics Project (UKBPPP) 

identified LRRFIP1, a protein that binds with PRC2 multi-protein complex, as potentially causally 

linked to tau pathology. Genes associated with both amyloid and tau pathologies were enriched in 

endocytosis and signal transduction pathways. AD polygenic risk score (PRS) was associated with 

amyloid-SUVR but not with tau-SUVR. Amyloid-SUVR PRS had a notable association with AD 

clinical status, particularly in younger APOE-ε4 carriers, whereas tau-SUVR PRS showed a 

stronger association in older carriers.  

CONCLUSION. We identified a novel potential therapeutic target, JARID2 in the PRC2 multi-

protein complex, for tau pathology. Furthermore, gene pathway analysis clarified the distinct roles 

of Aβ and tau in AD progression, underscoring the complexity of genetic influences across 

different stages of the disease. 
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Introduction 

Alzheimer’s disease (AD) is a complex neurodegenerative disease characterized by the 

abnormal deposition of extracellular amyloid-β (Aβ) protein in neuritic plaques and intracellular 

hyperphosphorylated tau protein in neurofibrillary tangles within the brain 1. Neurodegeneration 

in AD is accompanied by hyperphosphorylated forms of tau. Cognitive impairment begins when 

tau accumulation spreads from the medial temporal lobe to the neocortex 2. Despite the crucial role 

tau pathology plays in AD, the genetic risk factors and gene pathways associated with tau 

pathologies remain unclear.  

Genome-wide association studies (GWAS) of cerebral Aβ measures acquired from 

positron emission tomography (PET) images have identified several genetic loci, including APOE 

3,4, BCHE 4, IL1RAP 5, CR1, ABCA7, and FERMT2 3. In our previous study, we conducted a large 

multi-ethnic meta-analysis of amyloid PET measures and identified a novel loci in the RBFOX1 

gene 6. Unlike amyloid PET images, tau PET scans are available in limited numbers due to the 

significant delay in the approval of tau tracers 7. Studies combining amyloid PET, tau PET, and 

structural magnetic resonance imaging (MRI) have identified tau accumulation as a primary 

contributor to cognitive decline in AD. This underscores the importance of tau PET imaging in 

evaluating AD-associated cognitive decline and neurodegeneration 8-10.  

In a candidate gene study, SNPs in BIN1 were associated with tau deposition 11. Previous 

tau-PET GWAS studies have pinpointed a few genetic loci, including PPP2R2B, IGF2BP3 12, 

ZBTB20, and EYA4 13, associated with tau deposition in the brain. However, these tau PET GWASs 

were carried out using single cohorts with limited sample sizes. 
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In this study, we harmonized tau PET measures from two studies and conducted a meta-

analysis to identify genetic loci associated with tau deposition in the brain. Subsequently, we 

performed Mendelian randomization analysis of circulating plasma proteins in UK Biobank to 

identify proteins whose cognate genes may have causal link to tau deposition. We hypothesized 

that common genetic pathways could drive amyloid and tau pathologies in AD progression. 

Therefore, we analyzed genes, and their enriched pathways associated with both amyloid and tau 

pathologies. We also evaluated the predictive accuracy of tau polygenic scores (PRS) and amyloid 

PRS for clinical and pathological AD status. 

Materials and Methods 

Study participants 

We obtained data from the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s 

Disease (A4) study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, which are 

available in the ADNI database (http://adni.loni.usc.edu). Our analysis included data from 330 pre-

clinical individuals from the A4, together with 303 cognitively normal (CN) individuals, 81 

individuals with mild cognitive impairment (MCI), and 19 individuals with diagnosed AD from 

the ADNI. In ADNI, the clinical diagnosis of probable AD was based on the National Institute of 

Neurological Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association 

(NINDS-ADRDA) criteria 14. Eligibility criteria for participation in the ADNI study are described 

elsewhere 14. Detailed information about the A4 study participants can be found in our previous 

study 6. Demographic characteristics of the study participants are presented in Table 1.   

 

PET imaging and processing 
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The baseline preprocessed [18]F-flortaucipir PET (tau PET) images of both A4 and ADNI 

studies were downloaded from the ADNI database (https://ida.loni.usc.edu/). The detailed 

acquisition procedures were previously reported 6,15,16. T1-weighted magnetic resonance images 

(MRIs) that were acquired closest to the date of the baseline tau PET image scans and the 

respective tau PET images from the same participants were normalized to the standard native space 

using the SPM12 toolbox implemented in MATLAB (R2022a, Mathworks, Natick, MA, USA). 

The MRI images were processed using FreeSurfer, version 7.3.2 

(https://surfer.nmr.mgh.harvard.edu/) to create anatomical regions of interest (ROIs) within a 

native space. Then, the tau PET images were co-registered with the respective FreeSurfer 

processed MRI data, and the SUVRs were calculated from the composite regions normalized to 

the cerebellar gray matter region, as described in the ADNI methods 

(https://adni.bitbucket.io/reference/docs/UCBERKELEYAV1451/UCBERKELEY_AV1451_Me

thods_2021-01-14.pdf). Pre-processed amyloid-PET SUVR scores from the ADNI and A4 

participants were accessed as described here17. 

GWAS methods and statistical analysis 

Description of the SNP data and quality control measures for GWAS analysis are described 

in the Supplementary Methods and Supplementary Table 1. SNP-based GWAS was separately 

performed with Z-score standardized tau-SUVR measures adjusting for age, sex, and the first three 

principal components (PCs) in the A4 dataset and additionally AD diagnosis in the ADNI dataset. 

A second model including APOE-ε4 dosage as a covariate was also tested. The analyses were 

conducted using PLINK software, version 1.9 18. Results from A4 and ADNI studies were 

summarized in an  inverse-weighted meta-analysis using METAL software 19.  
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Genome-wide gene-based analysis of tau-SUVR was implemented independently in A4 

and ADNI using the MAGMA tool, version 1.09a 20 with the 'multi=all' function, using the same 

covariates as described above. Results were summarized using the 'meta' function in MAGMA. 

Similarly, gene-based amyloid-SUVR analysis were conducted using summary statistics from a 

previous amyloid PET GWAS 6.  

Manhattan and quintile-quintile (Q-Q) plots for the SNP-based and gene-based GWAS 

results were generated using the 'qqman' package in the R program, version 4.3.1 21. Pathways 

enrichment analyses was conducted in genes that were nominally significant with tau and amyloid 

SUVRs (Supplementary Methods). Replication analysis was performed using summary statistics 

from a previously published tau-PET GWAS 12. 

Mendelian Randomization analysis 

We applied the Mendelian Randomization (MR) framework to investigate whether 

genetically predicted circulating levels of plasma proteins are causally linked with Tau PET levels 

using the GWAS summary data from A4 and ADNI.  

Study population and data sources (Genetic associations of circulating plasma proteins) 

Genetic associations of circulating plasma proteins were obtained from the UK Biobank 

Pharma Proteomics Project (UKBPPP) for individuals of European ancestry (N=54,129; up to 95% 

Europeans) 22. We limited our analyses to circulating plasma proteins whose cognate gene showed 

suggestive significance in our gene-based test (Pgene-based test<0.05). Details about the instrument 

selection and MR analysis are described in Supplementary Methods. 
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Polygenic risk score (PRS) analysis 

PRSs for clinical AD in the ADNI/A4 participants and tau and amyloid SUVRs were in 

the Religious Orders Study and the Memory and Aging Project (ROSMAP) dataset were calculated 

using the PRSice tool, version 2, and PLINK software. Details of the reference datasets, quality 

control and PRS methods are provided in Supplementary Methods and Supplementary Table 2. 

Association analysis of brain cortical atrophy  

The effect of tau-associated SNPs on brain cortical atrophy was evaluated through general 

linear models (GLM) adjusting for age and sex, in MATLAB (R2022a, The Mathworks, Natick, 

MA, USA) using the Surfstat toolbox (http://www.math.mcgill.ca/keith/surfstat/).  

Results 

Tau-PET GWAS identifies the JARID2 locus 

The tau SUVR distribution in the ADNI cohort was right-skewed compared to that of A4 

cohort (Figure 1A-1D). MCI and AD patients in ADNI had higher levels of tau-deposition 

compared to CN in ADNI and A4 participants, who had similar levels. We used clinical AD as a 

covariate for the ADNI dataset, while no such adjustments were made for A4.  

The SNP-based genome-wide meta-analysis of non-Hispanic White (NHW) individuals 

from A4 (N=311) and ADNI (N=375), identified a significant association of rs78636169 

(P=5.76×10-10) near the JARID2 (Jumonji and AT-Rich Interaction Domain containing 2) gene on 

chromosome 6 with tau deposition (Figure 2A-2D, Table 2, and Supplementary Table 3). The 

association remained genome-wide significant when we included all multi-ethnic individuals 

(Supplementary Figure 1 and Supplementary Table 4).  In addition, rs7292124 (P=2.20×10-8), 
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near the ISX (Intestine Specific Homeobox) gene on chromosome 22, was also genome-wide 

significant in NHW.  These associations remained significant after adjustment for APOE-ε4 status, 

(rs78636169, P=1.20×10-8 and rs7292124, P=5.17×10-9). Additionally, rs112518363 (P=3.51×10-

8) near INTS10 (Integrator Complex Subunit 10) became genome-wide significant when adjusted 

for APOE ε4 status. 

Relationship of tau-associated SNPs with amyloid deposition and clinical Alzheimer’s 

Disease 

Amongst 41,455 SNPs nominally associated (P<0.005) with tau deposition, we identified 

20 genetic loci that are also associated (P<0.005) with amyloid-SUVR. Sixteen SNPs had the same 

direction of effect for both amyloid and tau deposition including SNPs related to PVRL2 

(Poliovirus receptor-related 2) and APP (Amyloid Precursor Protein) (Supplementary Table 5). 

Amongst 75 genetic loci associated for AD risk in a previous large-scale GWAS of clinical AD23,  

four variants in SNORA73 (rs76928645), INPP5D (rs10933431), ABCA7 (rs12151021) and IL34 

(rs4985556) were nominally associated (P<0.05) with tau pathology (Supplementary Table 6).  

Gene level association with tau deposition 

Gene-based meta-analysis using MAGMA on tau-SUVR identified APOE (P=2.55×10-6) 

in chromosome 19 and CTNNA3 (P=2.86×10-6) on chromosome 10 (Supplementary Table 7). 

JARID2 had a suggestive association with tau deposition (P=1.22×10-4). Additionally, we 

conducted a gene-based analysis with amyloid deposition using summary statistics from our 

previous study6. In addition, we identified 61 genes that were nominally significant association 

(P<0.05) with both tau and amyloid deposition including APOE, TOMM40, and COL5A2 

(P<0.005) with both tau and amyloid pathologies (Supplementary Figure 2 and Supplementary 
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Table 8). JARID2 was also nominally significant (p=0.047) for association with Tau deposition in 

an independent tau-PET GWAS dataset 12 (Supplementary Table 9).  

Mendelian randomization of circulating plasma proteins levels with tau deposition 

Of the 916 genes nominally associated with tau SUVR levels, 84 overlapped with the 

UKBPPP and were used for the cis-MR analysis. Since JARID2 levels were not directly measured, 

we used other proteins in the PRC2 complex to confirm a causal link to Tau pathology. MR 

analysis of circulating plasma proteins found evidence of a potential causal effect of genetically 

predicted LRRFIP1 (βWald-ratio = -2.64 [-4.46, -1.21], p=0.016), HADH (βWald-ratio = 3.47 [1.47, 

5.47], p=0.019), IST1 (βWald-ratio = -2.26 [-3.51, -1.01], p=0.016), and PRTG (βIVW = -0.42 [-0.68, 

-0.15], p=0.04) on tau-PET levels (Supplementary Figure 3, Table 4 and Supplementary Table 

10). Among these, HADH showed suggestive evidence of co-localization (PPH4=61.6%) while 

LRRFIP1 and IST1 indicated limited power in colocalization to differentiate between a true causal 

variant or horizontal pleiotropy (Supplementary Figure 4 and Supplementary Table 11 and 

12).  

Pathways associated with tau and amyloid deposition  

Pathway analysis revealed that genes associated with tau deposition were enriched in 

pathways related to the positive regulation of sterol and cholesterol transport, fascia adherens, 

postsynaptic specialization, and asymmetric synapse (q-value <0.05) (Supplementary Figure 5 

and Supplementary Table 13). 

Amongst genes showing significant associations with both tau and amyloid, no gene 

pathways remained significantly associated (q-value <0.05) after multiple corrections, but 
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endocytosis and signal transduction pathways were nominally significant (Supplementary Figure 

6 and Supplementary Table 14). 

Association of tau and amyloid PRS with clinical AD and neuropathological measures 

In ADNI and A4 participants, we found a robust association of AD PRS with amyloid-

SUVR levels (P=1.94×10-11; R2=0.079) but only a weak association with tau-SUVR (P=0.03; 

R2=0.0087).  

Next, we analyzed the association of tau and amyloid-SUVR PRS with the clinical and 

pathological diagnosis of AD24 in the ROSMAP cohort. Results showed a significant association 

between amyloid PRS and clinical AD status (P=0.018; R2=0.0038), but not with tau PRS (P=0.29; 

R2=0.00076). However, tau PRS was significantly associated with clinical AD status among 

APOE-ε4 carriers (P=0.015; R2=0.017). In non-ε4 carriers, neither amyloid nor tau PRS were 

associated with clinical AD. Neither amyloid PRS nor tau PRS was associated with pathological 

AD status (Supplementary Table 15).   

Effects of rs78636169 on brain cortical atrophy 

We analyzed the effects of the rs78636169 SNP from the JARID2 gene on brain cortical 

atrophy under an additive genetic model. In ADNI, which included individuals with clinical 

diagnoses ranging CN, MCI and AD, the results revealed cortical atrophy patterns in the entorhinal 

cortex, parahippocampal region, posterior cingulate, inferior parietal lobe, precuneus, middle 

temporal gyrus, inferior temporal gyrus, and superior frontal region. Additionally, the atrophy 

pattern was asymmetrical in some regions (Figure 2E). Analysis of the A4 study cohort, which 

comprised pre-clinical individuals, showed cortical atrophy patterns in fewer regions, including 

parahippocampal, anterior cingulate and inferior parietal regions (Figure 2E). 
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Discussion 

In this study, we conducted a genome-wide meta-analysis using tau-SUVR measures 

derived from [18]F-flortaucipir PET images from the A4 and ADNI study cohorts. Among 686 non-

Hispanic White individuals, we identified two significant SNPs: rs78636169 (P=5.76×10-10) near 

JARID2 and rs7292124 (P=2.20×10-08) near the ISX gene, associated with cerebral tau deposition. 

JARID2 remained genome-wide significant when 47 multi-ethnic individuals were included and 

when adjusted for APOE-ε4 dosage, suggesting APOE-ε4 has no significant influence on these 

loci. Gene-based analyses identified APOE and CTNNA3, while JARID2 showed suggestive 

significance. Our study reinforces the association of APOE with both amyloid tau deposition, 4,6,25.  

JARID2 (Jumonji, AT-rich interactive domain 2) is a protein coding gene involved in 

regulating gene expression and chromatin structure 26. JARID2 is also a component of PRC2 

(Polycomb Repressive Complex 2) multi-protein complex, necessary for transcriptional silencing 

through histone modification27. PRC2 methylates JARID2, promoting PRC2 activity by guiding it 

to target genomic regions  27,28. PRC2 is essential for processes like cell differentiation, 

proliferation, and maintaining stem-cell plasticity. With age, PRC2 expression decreases in the 

brain, leading to abnormal expression of genes linked to AD 29. Neuronal deficiency in PRC2 is 

also associated with progressive neurodegeneration in mice 30. Overall, JARID2 and PRC2 multi-

protein complex play roles in tau pathology and neurodegeneration in AD, though further 

validation is needed. 

To establish causal relationship between circulating plasma protein levels of the top genetic 

hits, we conducted MR analysis using the UKBPPP cohort. Since JARID2 protein levels were not 

measured directly, we assessed constituent proteins in the PRC2 complex. MR analysis revealed 
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potential causal links of genetically predicted LRRFIP1 protein levels to lower tau deposition. 

LRRFIP1, along with PRC2 multi-protein complex, is involved in the downregulation of tumor 

necrosis factor-α (TNF-α) 31, a pro-inflammatory cytokine involved in regulating innate and 

adaptive immunity, playing an important role in AD pathology. Inhibiting TNF-α has 

demonstrated a protective effect against AD pathology, including Aβ and tau deposition 32,33. Our 

analysis suggests JARID2, LRRFIP1 and other proteins in the PRC2 multi-protein complex plays 

a critical role in protecting against tau pathology. 

CTNNA3 (α-3 catenin) forms the α-3/β-1 catenin complex with CTNNB1 (β-1 catenin), 

binding to PSEN1 (presenilin-1) and promoting higher Aβ42 levels 34,35, linked to the early onset 

of familial AD 36,37. CTNNA3 is also associated with AD, particularly in females 38 and Caribbean-

Hispanics39. In this study, CTNNA3 shows an APOE-dependent association with tau deposition, 

consistent with previous studies 40.  

We analyzed MAPT (Microtubule Associated Protein Tau), previously implicated in tau 

pathology in AD 41,42 and found that sixteen SNPs nominally associated with tau deposition, 

including rs63750072 (Supplementary Table 16), a missense mutation previously reported in 

AD-related studies 43,44.      

SNPs from four AD-associated loci: SNORA73, INPP5D, ABCA7, and IL34 showed 

nominal associations (P<0.05) with tau pathology. The roles of ABCA7 (ATP Binding Cassette 

Subfamily A Member 7) 45,46, IL34 (Interleukin 34) 47,48 and INPP5D (Inositol Polyphosphate-5-

Phosphatase D) 49,50 in Aβ-mediated AD pathology have been well-studied. Our findings suggest 

a potential link between these genes and tau and amyloid pathologies. 
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Gene-based analysis from amyloid-PET and tau-PET GWASs identified 61 genes 

associated (P<0.05) with both amyloid and tau pathology. APOE, TOMM40 and COL5A2 showed 

robust associations (P<0.005). COL5A2, particularly noteworthy, is linked to reduced neuronal 

energy supply, leading to AD-related apoptosis 51. No previous studies have explored genes 

associated with both tau and amyloid pathologies using amyloid-PET and tau-PET GWAS results. 

Gene pathway analysis revealed tau-associated genes enriched in “positive regulation of 

sterol” and “cholesterol transport”, “fascia adherens”, “postsynaptic specialization”, and 

“asymmetric synapse” pathways. Positive regulation of sterol and cholesterol is crucial for cellular 

homeostasis, especially lipid metabolism 52. Disturbed cholesterol homeostasis in neuronal cells is 

observed in AD, contributing to tau-related pathogenesis 53. Disruptions in postsynaptic 

specialization may lead to synaptic dysfunction in AD 54. Asymmetric synapses, or excitatory 

synapses, are activated by neurotransmitter release 55. Aβ co-localizes with postsynaptic densities, 

contributing to the loss of excitatory synapses in AD 56, suggesting tau-associated gene pathways 

likely contribute to synaptic dysfunctions. 

AD PRS was strongly associated with amyloid-SUVR compared to tau, indicating that AD-

associated genetic loci are linked strongly to Aβ pathology but not tau. Amyloid-SUVR PRS was 

significantly associated with clinical AD, whereas tau PRS showed no association, suggesting 

different genetic pathways for Aβ and tau in AD pathology. Among APOE ε4 carriers, Aβ seems 

crucial in early AD stages, while tau plays a role later in the middle and late stages of the disease. 

Hippocampal sclerosis, likely mediated by tau, occurs specifically among APOE non-ε4 carriers, 

though its association with tau PRS showed only a trend towards significance. 

Cortical atrophy was associated with rs78636169 in JARID2 in both ADNI and A4 cohorts. 

ADNI results showed rs78636169-A allele mediated cortical atrophy in Braak stage 1-6 regions 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.10.04.24314853doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.04.24314853
http://creativecommons.org/licenses/by-nd/4.0/


57. Conversely, pre-clinical AD participants in the A4 cohort exhibited cortical atrophy in Braak 

stage 1, representing early tau accumulation stage. Previous studies demonstrated tau accumulation 

following Braak stages 58, and share a similar topography with cortical atrophy patterns 59. 

Consistent with those findings, our results suggest that rs78636169-mediated tau accumulation 

triggers cortical atrophy in the same topographical regions. 

Despite our limited sample size, results obtained through a meta-analysis of two cohorts, 

enhance the generalizability of our findings due to consistent associations.  We identified JARID2 

in the PRC2 multi-protein complex and CTNNA3 genes as associated with tau deposition using 

tau-PET SUVR measures. MR analysis confirmed the role of the PRC2 complex in tau pathology. 

Brain cortical analysis revealed JARID2-mediated atrophy following Braak stages. We also found 

COL5A2 and two major pathways involved in amyloid and tau pathologies. 

Taken together, the findings here offer valuable insights into tau pathology mediated by 

the PRC2 complex in AD, paving the way for new therapeutic interventions and understanding 

genetic loci associated with amyloid and tau in AD progression. 
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Table 1: Demographic characteristic of multi-ethnic population and non-Hispanic Whites for Tau PET from ADNI and A4 
cohorts 

Demographic 
information 

ADNI A4 

All ethnicity Non-Hispanic White All ethnicity 
Non-Hispanic 

White 

Clinically 
diagnosed  

sample groups  
CN MCI AD CN MCI AD Pre-clinical AD Pre-clinical AD 

N 303 81 19 280 76 19 330 311 

Age  
(y, mean ± SD) 

71.43 ± 5.94 69.96 ± 7.62 73.79 ± 10.75 71.64 ± 5.87 70.28 ± 7.61 73.79 ± 10.75 78.41 ± 4.76 71.76 ± 4.76 

Female (n, %) 184 (61%) 32 (39%) 7 (37%) 164 (59%) 28 (37%) 7 (37%) 206 (62%) 193 (62%) 

Years of 
education  

(y, mean ± SD) 
16.81 ± 2.38 16.36 ± 2.60 16.16 ± 2.75 16.82 ± 2.35 16.41 ± 2.63 16.16 ± 2.75 16.34 ± 2.73 16.33 ± 2.72 

MMSE  
(mean ± SD) 

29.18 ± 1.08 28.26 ± 1.51 22.68 ± 2.31 29.18 ± 1.10 28.24 ± 1.51 22.68 ± 2.31 28.73 ± 1.31 28.74 ± 1.29 

Tau SUVR  
(mean ± SD) 

1.09 ± 0.07 1.14 ± 0.14 1.36 ± 0.33 1.10 ± 0.07 1.14 ± 0.14 1.36 ± 0.33 1.08 ± 0.06 1.08 ± 0.06 

ADNI, Alzheimer's Disease Neuroimaging Initiative; A4, Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease; CN, 
Cognitively Normal; MCI, Mild Cognitive Impairment; AD, Alzheimer’s disease; N, number of participants; y, Years; SD, Standard 
Deviation; MMSE Mini Mental State Examination; SUVR, standard uptake value ratio  
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Table 2. Genome-wide significant associations with tau deposition among non-Hispanic White participants  

SNP 
Nearest 

gene 
Chr BP 

Variant 
type 

A1 

ADNI cohort A4 cohort Tau-SUVR Meta-analysis* 

β SE P-value MAF β SE P-value MAF β SE P-value Dir 
Het 

ChiSq 
Het 

PVal 

rs78636169 JARID2 6 15242005 
Upstream 

variant 
A 0.73 0.17 1.66E-05 0.04 0.7 0.16 1.44E-05 0.06 0.71 0.12 5.76E-10 ++ 0.01 0.9 

rs200751686 JARID2 6 15213555 
Intergenic 

region 
CA 0.66 0.16 6.70E-05 0.05 0.7 0.16 1.65E-05 0.06 0.68 0.11 2.74E-09 ++ 0.03 0.86 

rs7292124 ISX 22 35419122 
Intergenic 

region 
C 0.77 0.16 1.75E-06 0.05 0.58 0.2 4.39E-03 0.04 0.69 0.12 2.20E-08 ++ 0.53 0.46 

SNP, Single Nucleotide Polymorphism; Chr, Chromosome; BP, Base pair location; A1, Effect allele; SE, Standard error; MAF, Minor Allele Frequency; Dir, 
Effect direction; Het ChiSq, Chi-square value for heterogeneity test; Het PVal, P-value for heterogeneity in effect sizes in meta-analysis. 
*P-value of 5E-08 was used to assess genome-wide significance in the meta-analysis. 
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Table 3. Mendelian Randomization identified proteins with potential causal effect on Tau PET levels 

Mendelian Randomization analysis 
Gene-based meta-analysis on non-Hispanic Whites 

showing the association with tau deposition 

Protein Method Panel NSNP Beta SE OR (LCI-UCI) P-value FDR GENE 

Condition 
analysis 1* 

Condition 
analysis 2# 

ZSTAT P-value ZSTAT P-value 

LRRFIP1 
Inverse variance 

weighted 
Inflammation II 2 -2.6353 0.7250 0.07 (0.02-0.3) 2.78E-04 0.016 LRRFIP1 1.6247 0.05 2.6126 4.49E-03 

IST1 Wald ratio Inflammation II 1 -2.2590 0.6372 0.1 (0.03-0.36) 3.93E-04 0.016 IST1 2.8723 2.04E-03 2.3256 0.01 

HADH Wald ratio Inflammation 1 3.4662 1.0206 32.01 (4.33-236.62) 6.83E-04 0.019 HADH 1.7522 0.04 2.741 3.06E-03 

PRTG 
Inverse variance 

weighted 
Oncology 4 -0.4152 0.1348 0.66 (0.51-0.86) 2.07E-03 0.044 

PRTG 1.5565 0.06 2.0335 0.02 PRTG Weighted median Cardiometabolic 4 -0.3959 0.1413 0.67 (0.51-0.89) 5.07E-03 0.044 

PRTG MR Egger Oncology 4 -0.5782 0.3128 0.56 (0.3-1.04) 0.21 0.044 

MR Egger, Mendelian Randomization-Egger; NSNP, Number of Single Nucleotide Polymorphism; SE, Standard Error; OR, Odds Ratio; LCI, Lower Confidence 
Interval; UCI, Upper Confidence Interval; FDR, False Discovery Rate; ZSTAT, Z statistics. 
*Condition analysis 1: Adjusted for age, sex, three principal components and clinical diagnosis status  
#Condition analysis 2: Adjusted for age, sex, three principal components, APOE ε4 status and clinical diagnosis status  
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Figure legends 

 

Figure 1. Tau standard uptake value ratios (SUVRs) histograms for ADNI and A4 cohort 

individuals. A) All individuals from both cohorts. B) Cognitively normal (CN) individuals from 

ADNI and all individuals from A4. C) Mildly cognitively impaired (MCI) individuals from ADNI 

and all individuals from A4. D) MCI and Alzheimer’s disease (AD) individuals from ADNI 

compared with all individuals from A4. 

 

Figure 2. SNPs associated with cerebral tau deposition. (A) Manhattan plot showing meta-analysis 

P-values (depicted on the –log10 scale) from linear regression on cerebral tau deposition involving 

non-Hispanic White (NHW) subjects. The threshold for genome-wide significance is represented 

by a blue line at P = 5×10-8, while suggestive significance is indicated by a blue line at P = 5×10-

6 threshold. (B) Quantile-Quantile (QQ) plots for the SNPs associated with cerebral tau deposition 

involving multi-ethnic subjects. The QQ plot showed no spurious genomic inflation (λ = 1.004). 

(C) Magnified LocusZoom regional association plots show the regions around rs78636169 in the 

JARID2 loci and (D) rs7292124 near ISX loci. The purple dot indicates the most associated SNP 

in the region. E) Brain cortical atrophy associated with rs78636169 in JARID2. Brian cortical 

patterns associated with rs78636169 represented in t-value. rs78636169 AA+AG carriers were 

compared with GG carriers to infer the cortical atrophy in ADNI cohort (left) and A4 cohort (right). 

The black arrow indicates greater atrophy in the parahippocampal region among rs78636169 

AA+AG carriers in the ADNI cohort, while mild atrophy was observed in the same region among 

individuals from the A4 cohort. 
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