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There are thousands of known associations between genetic variants and complex human phenotypes, and the rate of novel

discoveries is rapidly increasing. Translating those associations into knowledge of diseasemechanisms remains a fundamental

challenge because the associated variants are overwhelmingly in noncoding regions of the genomewherewehave few guiding

principles to predict their function. Intersecting the compendium of identified genetic associations with maps of regulatory

activity across the human genome has revealed that phenotype-associated variants are highly enriched in candidate regula-

tory elements. Allele-specific analyses of gene regulation can further prioritize variants that likely have a functional effect on

disease mechanisms; and emerging high-throughput assays to quantify the activity of candidate regulatory elements are a

promising next step in that direction. Together, these technologies have created the ability to systematically and empirically

test hypotheses about the function of noncoding variants and haplotypes at the scale needed for comprehensive and system-

atic follow-up of genetic association studies. Major coordinated efforts to quantify regulatorymechanisms across genetically

diverse populations in increasingly realistic cell models would be highly beneficial to realize that potential.

The ultimate goal of genetic association studies is both to define
the genetic architecture of complex traits and diseases and also
to provide new insights into normal physiology and disease path-
ophysiology. Accomplishing that goal will require defining the
causal variants that account for the observed associations, their
mechanism of action, and their target genes. Success would have
both near- and long-term benefits to health and science. In terms
of health benefits, causal relationships between noncoding ge-
netic variants and disease risk can be used to improve the pre-
diction of disease onset and the design of prevention and early
detection strategies. Subsequently determining the effects of caus-
al variants on gene expression can prioritize downstream efforts to
characterize causal genes and their role in disease etiology. That
prioritization is particularly valuable when the target genes have
an unknown function. This discovery pathway can ultimately
lead to novel and potentially patient-specific therapeutic targets.
In terms of scientific benefits, expanding the catalog of noncoding
variants that are known to contribute to human traits is needed
to determine general and transferrable principles about the genetic
basis of complex human diseases. Recent conceptual and techni-
cal advances in genetics and genomics together have the potential
to greatly improve our understanding of the noncoding genetic
contributions to human traits. Although there are a wide variety
of ways in which noncoding variants may affect phenotypes, we
will focus specifically on variants that alter the activity of gene
regulatory elements and, subsequently, the expression of target
genes.

The plummeting cost of DNA sequencinghas enabled parallel
paradigm shifts in humangenetics and genomics. For genetic stud-
ies, the major benefit has been access to all variants in an individ-
ual for association testing. That benefit has been predominantly

realized by using whole-genome sequences of related populations
to impute the alleles of variants that have not been directly geno-
typed (The 1000 Genomes Project Consortium 2012; Delaneau
and Marchini 2014; Gudbjartsson et al. 2015; Horikoshi et al.
2015; Kuchenbaecker et al. 2015; Surakka et al. 2015) and by
whole-exome sequencing (for examples and reviews, see Bamshad
et al. 2011; Chong et al. 2015; de Bruin and Dauber 2015). Mean-
while, the first association studies that replace targeted genotyp-
ing with whole-genome sequencing are now starting to appear
(Gaulton et al. 2013; Morrison et al. 2013; Taylor et al. 2015).

Even with perfect genotype information, there will remain a
need for downstream functional studies to identify causal variants
that contribute to human phenotypes. One major reason is that
the resolution of genetic association is limited by patterns of re-
combination in the study population: Without recombination be-
tween a causal mutation and a nearby noncausal mutation, there
is no ability to unambiguously determine which of the two con-
tributes to phenotype with association alone. The ability to dis-
criminate causal effects within those regions requires alternative
strategies that effectively separate out the effects of variants that
are close to one another on the same chromosome.

Concurrent with the first human population sequencing
projects, large and coordinated genomics efforts completed the
first comprehensive maps of the molecular state of the human ge-
nome and epigenome (The ENCODE Project Consortium 2012;
Roadmap Epigenomics Consortium et al. 2015), and hundreds of
similar studies have been completed in other biological systems
(Fig. 1). The resulting data sets provide researchers with extensive
catalogs of transcription factor binding and chromatin states
across noncoding genomic regions in a wide diversity of cell types
and environmental conditions. Integrating results from studies of

Corresponding author: tim.reddy@duke.edu
Article and publication date are at http://www.genome.org/cgi/doi/10.1101/
gr.190603.115. Freely available online through the Genome Research Open
Access option.

© 2015 Lowe and Reddy This article, published in Genome Research, is avail-
able under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described at http://creativecommons.org/licenses/by-nc/
4.0/.

Perspective

1432 Genome Research 25:1432–1441 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/15; www.genome.org
www.genome.org

mailto:tim.reddy@duke.edu
mailto:tim.reddy@duke.edu
mailto:tim.reddy@duke.edu
http://www.genome.org/cgi/doi/10.1101/gr.190603.115
http://www.genome.org/cgi/doi/10.1101/gr.190603.115
http://www.genome.org/cgi/doi/10.1101/gr.190603.115
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


genomic regulatory activity with genetic associations has shown
initial promise for resolving causal variants of human phenotypes
after genetic association, as demonstrated both by overall trends
(Wang et al. 2010; Boyle et al. 2012; Ward and Kellis 2012; Zhou
et al. 2015) and specific examples (Zhang et al. 2012; Corradin
et al. 2014; Huang et al. 2014; Guo et al. 2015).

Notwithstanding those initial successes, predicting the effect
of noncoding genetic variation remains a foremost challenge for
several reasons. First, regulatory activity across the genome varies
dramatically between cell types and conditions (Thurman et al.
2012). Second, recent evidence suggests that few of the candidate
regulatory elements defined by chromatin state and transcription
factor binding have strong regulatory activity (Kwasnieski et al.
2014). Even with data supporting regulatory activity of an ele-
ment, predicting the effects of genetic variants therein is complex
and typically requires further empirical investigation. In this
Perspective, we will describe recent advances at the interface be-
tween genetics and genomics that have improved the ability to
identify regulatory mechanisms of disease. We particularly focus
on emerging technologies that overcome some of the most emi-
nent challenges and emphasize the need for collaborative studies
between genetics and genomics investigators to realize the poten-
tial of those technologies.

The landscape of genetic association signals

As of February 2015, genome-wide association studies (GWAS) and
other studies had demonstrated the association of more than
15,000 SNPs with a complex disease or trait (Welter et al. 2014).
However, the mechanisms underlying these associations remain
largely undefined. More generally, the underlying architecture of
complex diseases and traits remains poorly defined. The common
disease–common variant hypothesis (Gibson 2011) initially pre-
dicted that common variants present in all populations underlie
phenotypic variation or disease risk and that, together, these vari-
ants have an additive ormultiplicative effect on disease risk or trait
variation. As initial genome-wide association studies failed to ac-
count for the observed narrow sense heritability of diseases and
traits, alternative explanations have been proposed for the archi-
tecture of complex diseases and traits, including (1) a large number
of small-effect common variants across the spectrum of allele fre-
quency account for disease risk and quantitative trait variation;
(2) a large number of large-effect rare variants underlie observed as-
sociations; or (3) a combination of genotypic, environmental, and
epigenetic interactions account for the associations (Gibson 2011).

It is likely that some combination of those different potential
mechanisms accounts for the underlying architecture of complex
diseases and traits as common, low frequency, and rare variants
have all now been shown to be associated with complex diseases
and traits (Fu et al. 2013; Morrison et al. 2013; Ratnapriya et al.
2014; Surakka et al. 2015).

The fundamental problem now faced by geneticists is that
variants identified through genetic association studies are typical-
ly common SNPs thatmark an associated locus rather than the var-
iant that mechanistically contributes to the association. The
reason is that alleles of variants that are close together in the ge-
nome are likely to be inherited together, a phenomenon known
as linkage disequilibrium (LD). The small number of recombina-
tion events per human generation, the preferential occurrence of
recombination events in certain genomic regions, the history of
the population, and other influences all contribute to patterns of
LD (for review, see Stumpf and McVean 2003). In the human ge-
nome, regions 10–100 kb in size within which causality cannot
be inferred are typical (The 1000 Genomes Project Consortium
2012). For that reason, a small number of common variants can
represent a large fraction of the genetic variation. Genetic associa-
tion studies have taken advantage of that LD structure with great
success by genotyping common variants rather than those most
likely to cause the trait or disease.

The LD patterns that have made genome-wide association
studies successful are also a major limiting factor in the identifica-
tion of causal variants using statistical association alone. For exam-
ple, a standard approach to identify a causal variant within a locus
of genetic association is to first take advantage of different patterns
of LD in different ancestry groups to narrow the boundaries of the
association locus (for review, see Rosenberg et al. 2010; Edwards
et al. 2013). Sequencing the narrowed locus in appropriate po-
pulations to identify all the genetic variation across the locus fol-
lows. At that point, the number of variants that could contribute
to phenotype may number into the hundreds or thousands.
Computational strategies to prioritize among the remaining vari-
ants based on genomics data and other features may help but, as
described above, accurately predicting the functional impact of
specific variants on the regulation of gene expression remains a
largely unsolved problem.

Further complicating causal variant identification is the pos-
sibility that multiple as opposed to a single variant within an LD
block may be functional and contribute to the observed associa-
tion. Analogous to examples in which multiple coding variants
in the same gene independently contribute to disease risk
(Kotowski et al. 2006; Nejentsev et al. 2009; Rivas et al. 2011),
Corradin and colleagues recently suggested a “multiple enhancer
variant” (MEV) hypothesis (Corradin et al. 2014) based on investi-
gation into six different autoimmune diseases. In that study, they
provide evidence thatmultiple variants within an LD block impact
the activity ofmultiple different enhancers, and those effects coor-
dinately alter target gene expression. The MEV hypothesis is sup-
ported by case studies. In one example, we provided empirical
evidence that regulatory variants spanning multiple enhancers
within an LD block associated with maternal glucose levels during
pregnancy have a coordinated allelic effect on expression of
HKDC1 (Guo et al. 2015). Similar patternswere reported previously
for the SOX9 region associated with prostate cancer risk (Zhang
et al. 2012). The observation that multiple variants within an LD
block can affect regulatory element activity and gene expression
argues that testing single variants in isolation will be both an inef-
ficient and potentially misleading approach for identifying causal

Figure 1. Number of publications in the NCBI database matching the
search queries for RNA-seq (circles) and ChIP-seq (squares). Queries were
performed via the NCBI PubMed website (http://www.ncbi.nlm.nih.
gov/pubmed/) on July 14, 2015. For RNA-seq andChIP-seq, the exact que-
ry used was “RNA-seq OR RNAseq” and “ChIP-seq OR ChIPseq,” respec-
tively.
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variants. Instead, high-throughput strategies to systematically and
comprehensively evaluate the function of variants and haplotypes
present in a phenotype-associated locus are needed.

Genetic associations with gene expression

reveal target genes

Studies to associate genetic variants with gene expression have
generated extensive catalogs of expression quantitative trait loci
(eQTLs) in diverse cell types and conditions (e.g., Gamazon et al.
2010; Lappalainen et al. 2013; Liang et al. 2013; The GTEx
Consortium 2015). Known eQTLs are highly enriched in variants
associated with traits and diseases (e.g., Nica et al. 2010; Nicolae
et al. 2010; Torres et al. 2014), and those associations can mark
candidate target genes for downstream mechanistic investigation
(Cookson et al. 2009). That feature is especially useful when the
target gene is not an obvious choice for follow-up because the
gene is not in LDwith the phenotype-associated variant or because
there is not a clear biologic rationale for the association. For exam-
ple, one of the most robust genetic associations is between genetic
variants on Chromosome 16 and body mass index (Dina et al.
2007; Frayling et al. 2007; Scuteri et al. 2007). Despite localization
of the associated variants in the first intron of the FTO gene and
demonstration of a role for FTO in body weight regulation and
fat mass in mouse models (Fawcett and Barroso 2010), recent
eQTL analyses have suggested that the Iroquois-related homeo-
box 3 (IRX3) gene, located more than a megabase away from
the most highly associated variant, may also be a causal gene
(Smemo et al. 2014; Ronkainen et al. 2015). Mice deficient in
Irx3 have obesity and diabetes-related traits, increasing confidence
in this mechanistic connection (Smemo et al. 2014). Similar ap-
proaches have used eQTL analyses to reveal target genes in other
studies (e.g., Teslovich et al. 2010; Innocenti et al. 2011;
Hernandez et al. 2012; Farh et al. 2015), supporting the broad util-
ity of the approach.

Expression QTLs have now beenmapped for several different
tissue types (Schadt et al. 2008; Dimas et al. 2009;Gibbs et al. 2010;
Innocenti et al. 2011; Grundberg et al. 2012, 2013) and hormone
responses (Maranville et al. 2011). Further studies have investi-
gated the distribution of eQTLs across different tissues from the
same individuals (Dimas et al. 2009; Nica et al. 2011; The GTEx
Consortium 2015). Although those studies have revealed a sub-
stantial degree of shared eQTLs between tissues, the degree of shar-
ing varies across tissues, and certain tissues such as brain appear to
have an especially high degree of tissue-specific gene regulation
(Hernandez et al. 2012; The GTEx Consortium 2015). The impor-
tance of tissue-specific eQTLs is supported by studies showing that
GWAS results are specifically enriched for eQTLs in tissues that are
relevant to the phenotype (Emilsson et al. 2008; Nica et al. 2010;
Below et al. 2011; Brown et al. 2013; Torres et al. 2014). On the oth-
er hand, tissue-general eQTLs may be enriched for variants that
have a function throughout the body and thus as a class may
have a disproportionate effect on phenotypes. To the best of our
knowledge, however, the relative contribution of tissue-general
eQTLs to phenotypes has yet to be estimated. There is also growing
evidence for substantial allelic heterogeneity in gene expression
levels (Brown et al. 2013), in agreement with the previously de-
scribed observations of multiple coordinated regulatory variants
in disease loci (Zhang et al. 2012; Corradin et al. 2014; Guo et al.
2015). Taken together, increasing the diversity of primary tissues,
cell types, and environments for which eQTLs have been mapped

is likely to be highly valuable for identifying variants, genes, and
tissues that contribute to phenotypes.

Genomic regulatory elements are highly enriched

in phenotype-associated variants

Although eQTLs have demonstrated value in identifying target
genes for genetic association studies, they too suffer from the
same limitation that the most strongly associated variant may
not be causal of the regulatory event. Comprehensive genomic
measurements of the epigenetic and regulatory state of the ge-
nome, made possible by high-throughput sequencing, can over-
come that limitation because LD does not limit their resolution.
Many different assays have been developed to measure genomic
components of gene regulation, and we will focus on two widely
used approaches, chromatin accessibility mapping and ChIP-seq.
The accessibility of chromatin to various enzymes such as DNase
I is a well-established indicator of genomic regulatory activity.
High-throughput sequencing-based assays such as DNase-seq and
ATAC-seq exploit that principle to reveal comprehensive maps of
chromatin accessibility across the human genome (Song and
Crawford 2010; Thurman et al. 2012; Buenrostro et al. 2013).
Similarly, the high-throughput sequencing version of chromatin
immunoprecipitation, ChIP-seq (Johnson et al. 2007; Mikkelsen
et al. 2007; Robertson et al. 2007), is now commonly used to iden-
tify binding sites for transcription factors and histone modifica-
tions associated with regulatory states of the human genome.
ChIP-seq can localize a binding event or a modified histone to
within 50 bp, and DNase-seq has a similar resolution.

There is now strong evidence that genetic variation within
candidate regulatory elements identified with DNase-seq or with
ChIP-seq contributes to human phenotypes. For example, several
studies have found that phenotype-associated variants are en-
richedDNase- or ChIP-positive regions in a tissue-specificmanner,
and that tissue specificity can be used to implicate unexpected
tissues in disease etiologies (Ernst et al. 2011; Maurano et al.
2012; Schaub et al. 2012; The ENCODE Project Consortium
2012; Parker et al. 2013; Pickrell 2014). Genetic variation in the
same regions also accounts for a substantial and significantly en-
riched fraction of the heritability of complex human diseases
(Gusev et al. 2014). Moreover, using an association approach sim-
ilar to that used to identify eQTLs, several studies have identified
genetic variants that are correlated with changes in chromatin ac-
cessibility, histonemodifications, andDNAmethylation; and they
have shown that the identified variants explain a large fraction of
eQTL associations (Degner et al. 2012; McVicker et al. 2013;
Banovich et al. 2014). Together, those results suggest that variation
in regulatory elements is a primary contributor to expression phe-
notypes. Those overall enrichments motivate a deeper investiga-
tion into the genetic architecture of gene regulation, with a
particular focus on determining the specific variants that alter reg-
ulatory element activity.

Allele-specific genomic activity reveals candidate

mechanisms of disease

The use of high-throughput sequencing as readout for DNase and
ChIP assays not only improves detection of regulatory elements
but also allows for the simultaneous observation of the gene-
tic sequence of the identified elements. If one or more positions
within the identified regulatory element are heterozygous in an
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individual, that feature can be leveraged to estimate the abun-
dance of each allele in the assayed DNA. A significant deviation
from the expected ratio based on that individual’s genome indi-
cates an allele-specific difference in the activity of that element.
Allele-specific analyses were first used to investigate gene expres-
sion using a variety of approaches, including targeted sequencing,
RT-qPCR, and microarrays (e.g., Singer-Sam et al. 1992; Yan et al.
2002; Bray et al. 2003; Lo et al. 2003; Pastinen et al. 2004;
Gimelbrant et al. 2007;Ge et al. 2009; Adoue et al. 2014; for review,
see Knight 2004; Pastinen 2010). Those studies typically found
evidence for allele-specific expression of ∼10% of human genes.
High-throughput sequencing of RNA advanced the field by
making it possible to measure allele-specific gene expression
genome-wide and agnostic of reference gene annotations (e.g.,
Degner et al. 2009; McManus et al. 2010; Pickrell et al. 2010;
Reddy et al. 2012). Allele-specific analyses of DNase-seq and
ChIP-seq data use similar strategies to reveal variants associated
with chromatin state or transcription factor binding (Kasowski
et al. 2010; McDaniell et al. 2010; Reddy et al. 2012). If the obser-
vations reflect direct local effects of genetic variation on gene reg-
ulation (Fig. 2A), then such allele-specific analyses can be used to
identify individual causal variants within large LD blocks identi-
fied via association studies. On the other hand, long-range regula-
tory interactions may limit the ability to pinpoint individual
genetic causes.

Several findings indicate that allele-specific effects are indeed
local events. The initial allele-specific ChIP-seq studies found that
genetic variants with allele-specific transcription factor binding
are enriched near the specific nucleotides bound by the transcrip-
tion factor (Reddy et al. 2012). The inverse was also true: Variants
without allele-specific binding were depleted near transcription
factor binding sequences (Reddy et al. 2012). Moreover, the vari-
ants with the strongest effects typically altered the DNA sequences
bound by transcription factors (Kasowski et al. 2010; Reddy et al.

2012). Allele-specific transcription factor binding and, to a lesser
extent, chromatin state, are both heritable, indicating a clear ge-
netic contribution (McDaniell et al. 2010; Reddy et al. 2012;
Kasowski et al. 2013; Kilpinen et al. 2013). Although changes in
the DNA sequence bound by the transcription factor explain the
largest effects, most allele-specific effects are modest and cannot
be explained by changes in the transcription factor binding se-
quence (Reddy et al. 2012). One potential explanation is that tran-
scription factors often bind the human genome in complexes
often referred to as cis-regulatory modules (for review, see
Hardison and Taylor 2012). Observed allele-specific transcription
factor binding may result from genetic variants that disrupt bind-
ing of other transcription factors in the same module (Fig. 2B).
That model is supported by a strong degree of allele-specific coor-
dination between multiple transcription factors and chromatin
state at the same genomic locus (Reddy et al. 2012; The ENCODE
Project Consortium 2012; McVicker et al. 2013; Soccio et al.
2015). On the other hand, observations of long-range coordina-
tion in allele-specific chromatin indicate that local effects of regu-
latory variants may affect distal sites on the same chromosome
(Fig. 2C; Kilpinen et al. 2013). In that scenario, LD would still im-
pair resolution of allele-specific analyses for identifying causal var-
iants. Taken together, it is likely that allele-specific measurements
of the regulatory state reflect a mixture of local and distal effects.
Although the relative proportion of local and distal signals is not
yet known, the contributions of local effects to the overall signal
likely provide some ability to identify causal variants within re-
gions of high LD.

There are several additional advantages of allele-specific
analyses over association-based studies that motivate their in-
creased use. Because the two alleles compete for regulatory factors
in the same nucleus and in the same environment and because
both alleles undergo the same sample processing steps, variation
due to sample history or handling is unlikely to contribute to
false positives. Allele-specific analyses also have a practical advan-
tage in that, unlike for association studies, a large cohort of indi-
viduals is not needed to detect an allele-specific effect at an
individual variant. In cases in which samples are rare or difficult
to obtain, an allele-specific approach may therefore be the only
viable path forward for identifying genetic associations with reg-
ulatory element activity. Finally, because comparisons are made
between the two alleles present in the same individual, the power
to detect an allele-specific effect of a heterozygous variant in that
individual does not depend on the population frequency of the
variant.

The corresponding limitations are that only heterozygous
sites in an individual are informative, and there are additional an-
alytical challenges over genetic association studies. The limitation
to heterozygous sites means that homozygous individuals do not
contribute to the power to detect an effect, and also that large
cohorts are still needed to observe a rare variant. Ideally, it would
be possible to combine allele-specific analyses with standard ge-
netic association, and newly developed approaches to do so are a
promising advance (van de Geijn et al. 2014). The primary addi-
tional analytical challenge is aligning short-read sequences in a
manner that is not biased to the reference genome. Such align-
ment biases arise from numerous sources, including unobserved
genetic variation and repetitive sequences (Degner et al. 2009;
Stevenson et al. 2013). Alignment biases have been overcome pre-
viously by aligning sequences to personal genome sequences
(McDaniell et al. 2010; Rozowsky et al. 2011; Reddy et al. 2012),
prefiltering genomic regions prone to bias (Degner et al. 2009),

Figure 2. Mechanisms of allele-specific transcription factor occupancy.
(A) Local effects occur when a genetic variant directly impacts the ability
of a transcription factor to bind DNA. In this example, only the A allele is
bound by the transcription factor and recovered by ChIP. (B) Genetic var-
iants may lead to allele-specific binding of entire regulatory complexes. In
this example, transcription factor TF1 binds the A but not the G allele.
Because TF1 also recruits TF2 to the same regulatory complex, ChIP-seq
for TF2 preferentially isolates the A and C alleles even though TF2 does
not directly bind either variant. (C) Long-range interactions may also drive
distal allele-specific effects. One potential mechanism is that TF1 and TF2
form a regulatory complex via DNA looping. Because occupancy of TF1 in-
fluences that of TF2, variants that impact TF1 binding lead to an allele-spe-
cific signal for TF2 occupancy.
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and the development of variant-tolerant alignment algorithms
(Wu and Nacu 2010). Once alignments are made, detecting a
bias toward one allele requires statistical approaches to handle
overdispersion in read-count data. Software packages for allele-spe-
cific alignment and statistical analysis have now been established,
making those advances available to a wide diversity of researchers
(Wu and Nacu 2010; Rozowsky et al. 2011; Skelly et al. 2011; van
de Geijn et al. 2014). As for genetic association studies, allele-spe-
cific analyses rely on dense genotyping for each individual.
However, recent advances to perform allele-specific analyses with-
out supporting genome sequence information may remove that
limitation (Harvey et al. 2015; Romanel et al. 2015). Such advances
aremajor breakthroughs because they greatly reduce cost and com-
plexity. For all of the aforementioned reasons, expanding studies
to include allele-specific analyses is a promising strategy to im-
prove the identification of causal regulatory variants in a diversity
of tissues and cell types.

High-throughput measurement of regulatory

element activity

One major outstanding challenge subsequent to the widespread
adoption of DNase-seq and ChIP-seq is to reconcile the ab-
undance of candidate regulatory elements identified. One likely
explanation is that a small fraction of candidate regulatory ele-
ments are highly active and those elements affect the majority
of gene regulation. Reporter-gene expression assays have a dis-
tinct advantage over eQTL associations and allele-specific ge-
nomic analyses because they directly measure the regulatory
activity of a genomic sequence. Briefly, in a reporter assay, a
candidate regulatory element is introduced into a plasmid that
contains an easily observable reporter such as a fluorescent or
chemiluminescent protein (Fig. 3A). The plasmid is then intro-
duced into cells of interest by any of a variety of approaches.
Once the plasmid enters the nucleus, transcription factors and
RNA polymerases bind the plasmid and control reporter gene ex-
pression. Because reporter assays isolate regulatory elements from
the surrounding genomic context, results are independent of ad-
jacent elements that may be in LD. Critical for genetic studies, re-
porter assays can be used to estimate the effect of genetic variants
on regulatory activity by comparing the activity of different al-
leles of the same regulatory element. For those reasons, reporter
assays have been valuable for identifying individual regulatory
variants that contribute to phenotype (Musunuru et al. 2010;
Feng et al. 2013; Fogarty et al. 2014; Stadhouders et al. 2014;
Guo et al. 2015).

Themajor drawback to standard reporter assay systems for ge-
netic screens is the throughput. Because readout is limited to a sin-
gle reporter gene, assays must be individually constructed and
assayed. Multiwell plates and automated liquid handling increase
throughput substantially (e.g., Landolin et al. 2010; Whitfield
et al. 2012), but not to the extent required to routinely comprehen-
sively assay regulatory variants in an entire LD region identified by
a genetic association study. To address the need to increase the
scale of reporter assays, high-throughput versions have been devel-
oped in which regulatory activity is measured using high-through-
put sequencing rather than by observing a fluorescent protein.
One strategy is to construct a library of regulatory elements that
are uniquely associated with DNA barcode sequences embedded
in an otherwise ignored reporter gene (Fig. 3B). High-throughput
sequencing of the expressed barcodes can then be used to estimate

activity of the associated element (Kwasnieski et al. 2012;
Melnikov et al. 2012; Patwardhan et al. 2012). Each of the initially
published mammalian examples focused on evaluating the effects
of genetic variants within a small set of previously defined regula-
tory elements. The CRE-seq assay developed by Kwasnieski et al.
(2012) used high-throughput DNA synthesis to generate and assay
more than 1000 genetic variants of a 52-bp rhodopsin promoter.
Similarly, Melnikov et al. (2012) used DNA synthesis to generate
and assay more than 27,000 variants of two 87-bp inducible en-
hancers. In both cases, the length of the regulatory elements as-
sayed was limited by DNA synthesis. Patwardhan et al. (2012)
used degenerate PCR rather than DNA synthesis to generate ran-
dommutants of three known liver enhancers. That approach en-
abled generation of more unique versions (more than 100,000)
of longer regulatory elements (258–619 bp). Finally, a related
strategy known as functional identification of regulatory ele-
ments within accessible chromatin (FIREWACh) assayed cap-
tured DNase hypersensitive regions rather then predefined
regulatory elements. By combining DNase-seq with a reporter as-
say, Murtha and colleagues were able to agnostically quantify
the activity of approximately 80,000 open chromatin sites in a
single assay (Murtha et al. 2014).

Figure 3. High-throughput reporter assays. (A) In a standard reporter as-
say, a candidate regulatory element is placed upstream of a reporter gene
that is expressed from a constitutively active promoter. (B) In a high-
throughput version of the same system, a random DNA sequence known
as amolecular barcode is inserted into the 3′ UTR of the reporter gene, and
a library of candidate regulatory elements are placed upstream of the pro-
moter. Each individual candidate regulatory element is physically linked to
a unique molecular barcode. Measuring the expression of each molecular
barcode can then be used to estimate the activity of the associated regu-
latory element. (C) An alternative strategy is to clone the library of candi-
date regulatory elements directly into the 3′ UTR of the reporter gene.
By that construction, the regulatory element controls its own expression,
which can be measured with paired-end high-throughput sequencing.
(D) The preceding strategy can be modified for genetic studies by cloning
genetically diverse regulatory elements captured from donor genomes
into the reporter gene. By that construction, each allele is expressed at a
level that is directly related to its regulatory activity.
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For barcode-based approaches, each regulatory element to be
assayed must be linked with a unique barcode in the assay. The
STARR-seq approach uses a different library construction strategy
that obviates that step. In STARR-seq, the reporter element itself
is cloned into the 3′ untranslated region (UTR) of the reporter
gene and serves as its own barcode (Fig. 3C; Arnold et al. 2013).
The major advantage of STARR-seq is that the greatly simplified li-
brary construction makes the approach particularly amenable to
assaying highly diverse libraries of randomly fragmented DNA.
Specifically, in the initial demonstration of STARR-seq, libraries
of more than 10 million unique regulatory fragments were as-
sayed, and the median size of the regulatory fragments was ∼600
bp. That level of diversity was sufficient to agnostically assay the
entire Drosophila melanogaster genome in multiple cell lines and
six human bacterial artificial chromosomes ranging in size from
150 to 185 kb. As in the FIREWACh assay, combining capture of
regulatory elements with STARR-seq has enabled focused investi-
gation of genomic regions that are of interest because they are like-
ly to be functional or because they are associated with disease
(Vanhille et al. 2015; Vockley et al. 2015). The STARR-seq assay
has now been used to investigate changes in regulatory activity
across species (Arnold et al. 2014), in response to hormones
(Shlyueva et al. 2014), and in combination with different promot-
ers (Zabidi et al. 2015), highlighting the flexibility of the approach.

Comprehensive evaluation of human and mouse candidate
regulatory elements identified using ChIP-seq, DNase-seq, and
integrative techniques has revealed that only a small fraction of
elements typically have a strong effect on gene expression
(Kwasnieski et al. 2014; Murtha et al. 2014). Interestingly, with
growing evidence that transcription factors tend to bind the ge-
nome in heterotypic and homotypic clusters, Smith and col-
leagues used a massively parallel reporter approach to show that
heterotypic clusters of transcription factors are especially potent
regulators of gene expression (Smith et al. 2013). Similarly, muta-
genesis studies have shown that mutations in distal regulatory el-
ements typically have modest effects on regulatory element
activity (Melnikov et al. 2012; Patwardhan et al. 2012). Together,
these results indicate that allele-specific DNase-seq and ChIP-seq
will be useful to reduce the search space for causal variants, but
that additional functional assays will be needed to identify indi-
vidual causal regulatory variants.

Using high-throughput assays to measure the effects of non-
coding variants in GWAS cohorts is one possible strategy that uses
existing technology to identify causal variants underlying a ge-
netic association result. As an initial example, we recently used
STARR-seq to measure the activity of candidate regulatory ele-
ments captured from the genomes of 95 individuals from a recent
genetic association study (Fig. 3D; Urbanek et al. 2013; Vockley
et al. 2015). That population-scale approach allowed identification
of functional regulatory variants within a genetically linked region
of association. Because the capture was performed from donor ge-
nomes, all variants and haplotypes tested were found in the study
population, including a substantial fraction of variants not found
in existing databases. We expect that continued development and
application of such high-throughput reporter assays to expanded
populations is a promising strategy to connect genetics and geno-
mics and thereby reveal causal variation within large genomic re-
gions associated with disease.

As with any approach, reporter assays have limitations,
some of which can be mitigated with improved study designs.
Regulatory element activity may require additional contexts such
as a specific promoter, genomic integration, or cellular environ-

ment. Those concerns can be largely addressed with experimental
designsthat includecustompromoters (Zabidietal.2015),genomic
integration (Dickel et al. 2014;Murtha et al. 2014), and strategies to
assay libraries in vivo (Kwasnieski et al. 2012; Patwardhan et al.
2012; Smith et al. 2013).Genome and epigenome editing strategies
are alsoemergingas complementarystrategies to investigate regula-
tory element activity in vivo (Mendenhall et al. 2013; Yin et al.
2014; Hilton et al. 2015). However, there are many contexts for
which tractable culture models do not yet exist, and continued de-
velopment ofmore realisticmodelswill remain invaluable to deter-
mine contributions of regulatory variation to disease.

Finally, although reporter assays are a promising strategy to
identify causal regulatory variants, integration with results from
other approaches, such as ChIP-seq and eQTL studies, will be need-
ed to identify the responsible transcription factors and the causal
genes, respectively. An additional exciting possibility is the inte-
gration with chromatin conformation assays such as ChIA-PET
(Li et al. 2014), Hi-C (Belton et al. 2012), and variants thereof
(Jäger et al. 2015) that can reveal physical interactions between
causal variants and causal genes.

Informing future association studies by improving

models of regulatory variants

Prioritizing variants that are most likely to have a phenotypic ef-
fect is a promising strategy for improving resolution within an as-
sociated locus (for review, see Cooper and Shendure 2011). Briefly,
that strategy is commonly applied to genetic variants in coding re-
gions, where gene annotations, codon sequences, and protein
structure can guide analyses (Sunyaev et al. 2001; Ng and
Henikoff 2003; Adzhubei et al. 2010, 2013; Price et al. 2010;
Schwarz et al. 2010; Hu et al. 2013; Ionita-Laza et al. 2013). A cur-
rent need is to improve understanding of the basic characteristics
of the types of variants that most impact gene expression to sup-
port the development of analogous methods for noncoding geno-
mic regions. Approaches to computationally predict the effects of
genetic variants in noncoding regions have largely relied on evolu-
tionary conservation in closely related species (e.g., Cooper et al.
2005; Siepel et al. 2005; Pollard et al. 2010). With a dramatic in-
crease in empirical data describing the epigenetic and regulatory
state of the genome, integrative strategies have also recently
emerged that combine both conservation and empirical data to
identify and predict the effects of noncoding variants (Lee et al.
2011; Ernst and Kellis 2012; Hoffman et al. 2012; Ward and
Kellis 2012; Khurana et al. 2013; Kircher et al. 2014; Ritchie et al.
2014; Shihab et al. 2015). Such integrative approaches are limited
by the empirical data available. As the high-throughput empirical
approaches described above are further developed and applied, in-
tegrative strategies to predict the effects of noncoding variants are
likely to immediately benefit.Meanwhile, the catalog of regulatory
variants that are known to contribute to human phenotypes will
be greatly expanded. That expansion is critical to support the de-
velopment of additional guiding principles for the interpretation
of noncoding regulatory variation. For example, certain classes
of variants, such as rare variants or variants in regions with specific
histone modifications, may be more likely to alter regulatory ele-
ment activity. Another possibility is that the three-dimensional
structure of the genomewill help tomodel genetic effects on target
gene expression. Early indications suggest that prioritization based
on such models will be helpful, and the full extent of possibilities
remains to be determined.
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Discussion

The aforementioned approaches are only a few examples of the
ways in which the integration of genomic and genetic analyses
can inform our understanding of noncoding mechanisms of hu-
man phenotypes. Although by no means comprehensive, the pre-
ceding examples represent both the basic principles and common
challenges of using genomic assays to inform a positive genetic as-
sociation. Specifically, as LD is disrupted in experimental systems,
it becomes easier to finelymap causal variants. The sacrifice is that
context-dependent regulation and the identity of target genes is
typically lost. For that reason, we expect that the greatest value
for mechanistic interpretation will be achieved when integration
across multiple levels of resolution reveals both candidate causal
variants and one or more target genes for downstream study.

This Perspective has focused on associations with complex
phenotypes in which causal variants are difficult to ascertain.
Similar strategies will likely benefit the investigation of rare
Mendelian diseases, specifically in cases in which a causative cod-
ingmutation has not been found. Especially in cases of intermedi-
ate phenotypes, regulatory mutations are a plausible explanation
for the missing diagnosis (Weedon et al. 2014). Identifying such
cases will likely improve diagnosis and could reveal patients who
may be candidates for novel treatments.

Much of the work described here involved efforts of major
consortia focused specifically on genetic associations or on highly
coordinated genomic studies. Moving forward, we believe that the
greatest benefit for human health will be obtained through joint
studies that integrate both genetic and genomic principles in their
design. We have found that such highly interactive studies yield
substantial mutual benefits. For example, performing high-
throughput reporter assays on DNA from genetic association co-
horts required access to unique DNA samples that had been col-
lected over several years and expert knowledge about the cell
models and conditions that are most relevant to the phenotype
(Guo et al. 2015). Then, once regulatory variants are identified
via genomic strategies, follow-up genotyping in an independent
cohort is needed to confirm the effects and to establish genetic
risk scores. Meanwhile, informed genetic association based on ge-
nomic evidence of activity will require the generation of new func-
tional genomic data in relevant cell models to support that
development. Joint research efforts by genetics and genomics
teams dramatically lowers the bar for such cross-cutting activities
and, for that reason, we believe that such approaches will be
well-positioned to realize translational benefits of biomedical re-
search in both the short and long term.
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